
Un po’ di pratica
Reti di Elaboratori

Corso di Laurea in Informatica

Università degli Studi di Roma “La Sapienza”

Original slides from Marco Barbera

Network tools
●  netstat
●  netcat
●  ping
●  host
●  nslookup
●  wireshark
●  ..and many others

DISCLAIMER
●  You are free to use your favourite operating system, but during this and the

following practical lectures, we will only refer to GNU/Linux.
o  other operating systems may have slightly different behaviours or tool

implementations we won’t discuss (although there might be some exception to
this rule)

●  It is strongly recommended to run the examples at home
●  For Windows/OSX users:

o  you can run Linux on a virtual machine
o  VirtualBox is free and easy to use
o  You can download the image of a XUbuntu distribution from:

http://virtualboxes.org/images/xubuntu/
§  it’s very lightweight, should run on older computers too

●  Another possibility would be to use a XUbuntu as a Live distribution
http://xubuntu.org/getxubuntu/ (does not require to install software)

netstat

a command line tool that displays network
connections, routing tables, interface statistics
and so on..

netstat
●  by default, netstat shows only the established connections
●  using the -a option, it shows both established and listening

connections
o  a connection in LISTEN state typically belongs to a server

waiting for clients to connect
●  netstat shows both TCP/UDP/TCPv6/UDPv6 connections and

UNIX sockets
o  TCPv6, UDPv6: TCP and UDP connections on top of the IPv6

protocol (check out the lectures on IP)
o  UNIX sockets are roughly like a TCP/UDP connection used

only for local inter-process communication purposes (not covered
by this course. Check out the Operating Systems course)

netstat
root@bt:~# netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 *:12345 *:* LISTEN
tcp 0 0 localhost:7337 *:* LISTEN
tcp 0 0 192.168.1.130:51051 mil01s19-in-f12.1:https ESTABLISHED
tcp 0 0 192.168.1.130:44305 fa-in-f84.1e100.n:https ESTABLISHED
tcp 0 0 192.168.1.130:41495 zrh04s05-in-f20.1e1:www ESTABLISHED
tcp 1 0 192.168.1.130:45425 zrh04s05-in-f31.1e1:www CLOSE_WAIT
tcp 0 0 192.168.1.130:41640 OCSP.AMS1.VERISIGN.:www TIME_WAIT
...
tcp6 0 0 [::]:ssh [::]:* LISTEN
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [ACC] STREAM LISTENING 24790 /tmp/.X11-unix/X0
unix 2 [ACC] STREAM LISTENING 25029 /tmp/.ICE-unix/
3732
...

root@bt:~# netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 *:12345 *:* LISTEN
tcp 0 0 localhost:7337 *:* LISTEN
tcp 0 0 192.168.1.130:51051 mil01s19-in-f12.1:https ESTABLISHED
tcp 0 0 192.168.1.130:44305 fa-in-f84.1e100.n:https ESTABLISHED
tcp 0 0 192.168.1.130:41495 zrh04s05-in-f20.1e1:www ESTABLISHED
tcp 1 0 192.168.1.130:45425 zrh04s05-in-f31.1e1:www CLOSE_WAIT
tcp 0 0 192.168.1.130:41640 OCSP.AMS1.VERISIGN.:www TIME_WAIT
...
tcp6 0 0 [::]:ssh [::]:* LISTEN
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [ACC] STREAM LISTENING 24790 /tmp/.X11-unix/X0
unix 2 [ACC] STREAM LISTENING 25029 /tmp/.ICE-unix/
3732
...

netstat

Protocol used

netstat
root@bt:~# netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 *:12345 *:* LISTEN
tcp 0 0 localhost:7337 *:* LISTEN
tcp 0 0 192.168.1.130:51051 mil01s19-in-f12.1:https ESTABLISHED
tcp 0 0 192.168.1.130:44305 fa-in-f84.1e100.n:https ESTABLISHED
tcp 0 0 192.168.1.130:41495 zrh04s05-in-f20.1e1:www ESTABLISHED
tcp 1 0 192.168.1.130:45425 zrh04s05-in-f31.1e1:www CLOSE_WAIT
tcp 0 0 192.168.1.130:41640 OCSP.AMS1.VERISIGN.:www TIME_WAIT
...
tcp6 0 0 [::]:ssh [::]:* LISTEN
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [ACC] STREAM LISTENING 24790 /tmp/.X11-unix/X0
unix 2 [ACC] STREAM LISTENING 25029 /tmp/.ICE-unix/
3732
...

root@bt:~# netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 *:12345 *:* LISTEN
tcp 0 0 localhost:7337 *:* LISTEN
tcp 0 0 192.168.1.130:51051 mil01s19-in-f12.1:https ESTABLISHED
tcp 0 0 192.168.1.130:44305 fa-in-f84.1e100.n:https ESTABLISHED
tcp 0 0 192.168.1.130:41495 zrh04s05-in-f20.1e1:www ESTABLISHED
tcp 1 0 192.168.1.130:45425 zrh04s05-in-f31.1e1:www CLOSE_WAIT
tcp 0 0 192.168.1.130:41640 OCSP.AMS1.VERISIGN.:www TIME_WAIT
...
tcp6 0 0 [::]:ssh [::]:* LISTEN
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [ACC] STREAM LISTENING 24790 /tmp/.X11-unix/X0
unix 2 [ACC] STREAM LISTENING 25029 /tmp/.ICE-unix/
3732
...

netstat

●  connections endpoints, in the form addr:port
○  netstat gives a name to any known port (e.g., 22 becomes ‘ssh’,

80 becomes ‘http’, and so on). You can use the -n option to
disable this feature

○  ‘*’ means ‘any’
○  ‘*:ssh’ in the Local Address column means that a process is

listening on the ‘ssh’ (22) port from any interface (e.g., both
ethernet and WiFi)

○  For listening connections, ‘*:*’ in the Foreign Address column
means that the server accepts connections from any client

root@bt:~# netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 *:12345 *:* LISTEN
tcp 0 0 localhost:7337 *:* LISTEN
tcp 0 0 192.168.1.130:51051 mil01s19-in-f12.1:https ESTABLISHED
tcp 0 0 192.168.1.130:44305 fa-in-f84.1e100.n:https ESTABLISHED
tcp 0 0 192.168.1.130:41495 zrh04s05-in-f20.1e1:www ESTABLISHED
tcp 1 0 192.168.1.130:45425 zrh04s05-in-f31.1e1:www CLOSE_WAIT
tcp 0 0 192.168.1.130:41640 OCSP.AMS1.VERISIGN.:www TIME_WAIT
...
tcp6 0 0 [::]:ssh [::]:* LISTEN
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [ACC] STREAM LISTENING 24790 /tmp/.X11-unix/X0
unix 2 [ACC] STREAM LISTENING 25029 /tmp/.ICE-unix/
3732
...

netstat

●  connections endpoints, in the form addr:port
○  for established connections, the Foreign Address column

shows the address:port of the remote endpoint of the connections
○  for established connection, the Local Address column shows

the address:port of the local endpoint of the connections

root@bt:~# netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 *:12345 *:* LISTEN
tcp 0 0 localhost:7337 *:* LISTEN
tcp 0 0 192.168.1.130:51051 mil01s19-in-f12.1:https ESTABLISHED
tcp 0 0 192.168.1.130:44305 fa-in-f84.1e100.n:https ESTABLISHED
tcp 0 0 192.168.1.130:41495 zrh04s05-in-f20.1e1:www ESTABLISHED
tcp 1 0 192.168.1.130:45425 zrh04s05-in-f31.1e1:www CLOSE_WAIT
tcp 0 0 192.168.1.130:41640 OCSP.AMS1.VERISIGN.:www TIME_WAIT
...
tcp6 0 0 [::]:ssh [::]:* LISTEN
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [ACC] STREAM LISTENING 24790 /tmp/.X11-unix/X0
unix 2 [ACC] STREAM LISTENING 25029 /tmp/.ICE-unix/
3732
...

netstat

●  Example of connection states:
○  LISTEN: waiting for connections
○  ESTABLISHED: the connection is opened
○  CLOSE_WAIT/TIME_WAIT: the connection is about to be

closed

netstat
●  Other netstat options:

o  -p shows the name of the process that opened the connections
o  -t shows TCP connections only
o  -l shows listening connections only
o  -4 shows TCPv4 or IPv4 connections
o  -n does not resolve addresses or ports
o  -c shows output continuously

●  Options can be combined together:
o  for example: -t4l shows only listening TCP connections

●  netstat -r shows the local routing table (check out the lectures on IP)
o  not very interesting for typical desktop/laptops configurations

●  netstat -i shows info on the available network interfaces (e.g., ethernet, WiFi,
local loop)

netstat

Example. Let’s check how many connections Spotify uses
(next slide)

netstat

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 localhost:4371 *:* LISTEN 9269/spotify
tcp 0 0 *:57621 *:* LISTEN 9269/spotify
tcp 0 0 *:ssh *:* LISTEN 1146/sshd

tcp 0 0 localhost:4381 *:* LISTEN 9269/spotify
tcp 0 0 localhost:7337 *:* LISTEN 1041/
postgres.bin
tcp 0 0 *:29642 *:* LISTEN 9269/spotify

netstat -t -l -p -4

Means: show all the TCP connections (-t)
based on IPv4 (-4) that are in the LISTEN
state (-l). Print also the PID of the process
associated to each connection (-p)

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 localhost:4371 *:* LISTEN 9269/spotify
tcp 0 0 *:57621 *:* LISTEN 9269/spotify
tcp 0 0 *:ssh *:* LISTEN 1146/sshd

tcp 0 0 localhost:4381 *:* LISTEN 9269/spotify
tcp 0 0 localhost:7337 *:* LISTEN 1041/
postgres.bin
tcp 0 0 *:29642 *:* LISTEN 9269/spotify

netstat
netstat -t -l -p -4

●  This column appeared because we used the -p option
●  It shows, for each entry, the PID and the name of the

process the relative connection is associated to. What is a
PID? Check out the Operating Systems course.

netstat
netstat -t -l -p -4

So, Spotify is waiting for connections to ports 57621 and 29642 coming from ANY
network interface (e.g., WiFi and ethernet)

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 localhost:4371 *:* LISTEN 9269/spotify
tcp 0 0 *:57621 *:* LISTEN 9269/spotify
tcp 0 0 *:ssh *:* LISTEN 1146/sshd

tcp 0 0 localhost:4381 *:* LISTEN 9269/spotify
tcp 0 0 localhost:7337 *:* LISTEN 1041/
postgres.bin
tcp 0 0 *:29642 *:* LISTEN 9269/spotify

netstat

netstat -t -l -p -4

.. and on ports 4371 and 4381 from the virtual
internal interface only

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 localhost:4371 *:* LISTEN 9269/spotify
tcp 0 0 *:57621 *:* LISTEN 9269/spotify
tcp 0 0 *:ssh *:* LISTEN 1146/sshd

tcp 0 0 localhost:4381 *:* LISTEN 9269/spotify
tcp 0 0 localhost:7337 *:* LISTEN 1041/
postgres.bin
tcp 0 0 *:29642 *:* LISTEN 9269/spotify

netstat
netstat -t -p -4

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 192.168.1.128:42948 host81-148-21-127:18671 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:44735 host109-153-120-2:26071 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:39386 i19-les02-ntr-176:17048 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:45017 cpc8-seac19-2-0-c:47488 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:58314 96.29.82.79.rev.s:18428 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:54971 fa-in-f189.1e100.:https ESTABLISHED 8997/firefox
tcp 0 0 192.168.1.128:44571 178-26-158-174-dy:63235 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:42548 bl10-81-202.dsl.t:13687 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34983 68.232.34.151:www ESTABLISHED 9691/spotify
tcp 0 1 192.168.1.128:60928 bl15-104-193.dsl.:39711 SYN_SENT 9691/spotify
tcp 0 726 192.168.1.128:53426 host109-145-57-13:24432 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:42496 cdt33-1-88-177-70:43360 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:40787 169.130.79.188.dy:32885 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:46408 5.226-134-109.ads:40967 ESTABLISHED 9691/spotify
tcp 0 1 192.168.1.128:45038 24.133.118.209:16100 SYN_SENT 9691/spotify
tcp 0 1 192.168.1.128:55793 78-21-193-22.acce:55959 SYN_SENT 9691/spotify
tcp 0 1 192.168.1.128:37999 195-132-159-157.r:24555 SYN_SENT 9691/spotify
tcp 0 0 192.168.1.128:38959 greta.lon.spotify:https ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:54784 host109-145-62-17:54001 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:33482 thebreakfa96.pnds:55664 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34698 82-135-201-51.sta:35423 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34333 bl18-112-171.dsl.:26916 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:44186 ip-178-201-42-170:44792 ESTABLISHED 9691/spotify

Means: show all the TCP connections (-t)
based on IPv4 (-4) that are not in the LISTEN
state (-l is omitted). Print also the PID of the
process associated to each connection (-p)

netstat
netstat -t -p -4

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 192.168.1.128:42948 host81-148-21-127:18671 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:44735 host109-153-120-2:26071 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:39386 i19-les02-ntr-176:17048 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:45017 cpc8-seac19-2-0-c:47488 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:58314 96.29.82.79.rev.s:18428 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:54971 fa-in-f189.1e100.:https ESTABLISHED 8997/firefox
tcp 0 0 192.168.1.128:44571 178-26-158-174-dy:63235 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:42548 bl10-81-202.dsl.t:13687 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34983 68.232.34.151:www ESTABLISHED 9691/spotify
tcp 0 1 192.168.1.128:60928 bl15-104-193.dsl.:39711 SYN_SENT 9691/spotify
tcp 0 726 192.168.1.128:53426 host109-145-57-13:24432 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:42496 cdt33-1-88-177-70:43360 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:40787 169.130.79.188.dy:32885 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:46408 5.226-134-109.ads:40967 ESTABLISHED 9691/spotify
tcp 0 1 192.168.1.128:45038 24.133.118.209:16100 SYN_SENT 9691/spotify
tcp 0 1 192.168.1.128:55793 78-21-193-22.acce:55959 SYN_SENT 9691/spotify
tcp 0 1 192.168.1.128:37999 195-132-159-157.r:24555 SYN_SENT 9691/spotify
tcp 0 0 192.168.1.128:38959 greta.lon.spotify:https ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:54784 host109-145-62-17:54001 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:33482 thebreakfa96.pnds:55664 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34698 82-135-201-51.sta:35423 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34333 bl18-112-171.dsl.:26916 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:44186 ip-178-201-42-170:44792 ESTABLISHED 9691/spotify

A connection belonging to the Firefox web browser

netstat
netstat -t -p -4

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 192.168.1.128:42948 host81-148-21-127:18671 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:44735 host109-153-120-2:26071 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:39386 i19-les02-ntr-176:17048 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:45017 cpc8-seac19-2-0-c:47488 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:58314 96.29.82.79.rev.s:18428 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:54971 fa-in-f189.1e100.:https ESTABLISHED 8997/firefox
tcp 0 0 192.168.1.128:44571 178-26-158-174-dy:63235 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:42548 bl10-81-202.dsl.t:13687 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34983 68.232.34.151:www ESTABLISHED 9691/spotify
tcp 0 1 192.168.1.128:60928 bl15-104-193.dsl.:39711 SYN_SENT 9691/spotify
tcp 0 726 192.168.1.128:53426 host109-145-57-13:24432 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:42496 cdt33-1-88-177-70:43360 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:40787 169.130.79.188.dy:32885 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:46408 5.226-134-109.ads:40967 ESTABLISHED 9691/spotify
tcp 0 1 192.168.1.128:45038 24.133.118.209:16100 SYN_SENT 9691/spotify
tcp 0 1 192.168.1.128:55793 78-21-193-22.acce:55959 SYN_SENT 9691/spotify
tcp 0 1 192.168.1.128:37999 195-132-159-157.r:24555 SYN_SENT 9691/spotify
tcp 0 0 192.168.1.128:38959 greta.lon.spotify:https ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:54784 host109-145-62-17:54001 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:33482 thebreakfa96.pnds:55664 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34698 82-135-201-51.sta:35423 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34333 bl18-112-171.dsl.:26916 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:44186 ip-178-201-42-170:44792 ESTABLISHED 9691/spotify

SYN_SENT: means Spotify is trying to open a
connection (check out the lectures on TCP)

netstat -t -p -4
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 192.168.1.128:42948 host81-148-21-127:18671 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:44735 host109-153-120-2:26071 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:39386 i19-les02-ntr-176:17048 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:45017 cpc8-seac19-2-0-c:47488 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:58314 96.29.82.79.rev.s:18428 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:54971 fa-in-f189.1e100.:https ESTABLISHED 8997/firefox
tcp 0 0 192.168.1.128:44571 178-26-158-174-dy:63235 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:42548 bl10-81-202.dsl.t:13687 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34983 68.232.34.151:www ESTABLISHED 9691/spotify
tcp 0 1 192.168.1.128:60928 bl15-104-193.dsl.:39711 SYN_SENT 9691/spotify
tcp 0 726 192.168.1.128:53426 host109-145-57-13:24432 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:42496 cdt33-1-88-177-70:43360 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:40787 169.130.79.188.dy:32885 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:46408 5.226-134-109.ads:40967 ESTABLISHED 9691/spotify
tcp 0 1 192.168.1.128:45038 24.133.118.209:16100 SYN_SENT 9691/spotify
tcp 0 1 192.168.1.128:55793 78-21-193-22.acce:55959 SYN_SENT 9691/spotify
tcp 0 1 192.168.1.128:37999 195-132-159-157.r:24555 SYN_SENT 9691/spotify
tcp 0 0 192.168.1.128:38959 greta.lon.spotify:https ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:54784 host109-145-62-17:54001 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:33482 thebreakfa96.pnds:55664 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34698 82-135-201-51.sta:35423 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:34333 bl18-112-171.dsl.:26916 ESTABLISHED 9691/spotify
tcp 0 0 192.168.1.128:44186 ip-178-201-42-170:44792 ESTABLISHED 9691/spotify

An https connection towards a Spotify Server

netstat

netstat -t -n -4

netstat
Just like the previous command, but with the -n
option, telling netstat to not give names to
addresses (through reverse DNS queries)

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.1.128:42948 81.148.21.127:18671 ESTABLISHED
tcp 0 0 192.168.1.128:44735 109.153.120.206:26071 ESTABLISHED
tcp 0 0 192.168.1.128:39386 176.186.160.160:17048 ESTABLISHED
tcp 0 0 192.168.1.128:45017 81.108.153.96:47488 ESTABLISHED
tcp 0 0 192.168.1.128:58314 79.82.29.96:18428 ESTABLISHED
tcp 0 0 192.168.1.128:54971 173.194.70.189:443 ESTABLISHED
tcp 0 0 192.168.1.128:44571 178.26.158.174:63235 ESTABLISHED
tcp 0 0 192.168.1.128:42548 85.243.81.202:13687 ESTABLISHED
tcp 0 1 192.168.1.128:34049 78.146.230.119:52451 SYN_SENT
tcp 0 0 192.168.1.128:59208 173.194.116.14:443 ESTABLISHED
tcp 0 0 192.168.1.128:46408 109.134.226.5:40967 ESTABLISHED
tcp 0 1 192.168.1.128:41011 2.240.42.97:24628 SYN_SENT
tcp 0 0 192.168.1.128:38959 78.31.8.16:443 ESTABLISHED
tcp 0 1 192.168.1.128:34426 84.30.100.93:43383 SYN_SENT
tcp 0 0 192.168.1.128:54784 109.145.62.171:54001 ESTABLISHED
tcp 0 0 192.168.1.128:34957 68.232.34.151:80 TIME_WAIT
tcp 0 0 192.168.1.128:33482 80.229.251.184:55664 ESTABLISHED
tcp 0 0 192.168.1.128:34698 82.135.201.51:35423 ESTABLISHED
tcp 0 0 192.168.1.128:34333 188.83.112.171:26916 ESTABLISHED
tcp 0 0 192.168.1.128:44186 178.201.42.170:44792 ESTABLISHED

netstat -t -n -4

netstat
Just like the previous command, but with the -n
option, telling netstat to not give names to
addresses (through reverse DNS queries)

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.1.128:42948 81.148.21.127:18671 ESTABLISHED
tcp 0 0 192.168.1.128:44735 109.153.120.206:26071 ESTABLISHED
tcp 0 0 192.168.1.128:39386 176.186.160.160:17048 ESTABLISHED
tcp 0 0 192.168.1.128:45017 81.108.153.96:47488 ESTABLISHED
tcp 0 0 192.168.1.128:58314 79.82.29.96:18428 ESTABLISHED
tcp 0 0 192.168.1.128:54971 173.194.70.189:443 ESTABLISHED
tcp 0 0 192.168.1.128:44571 178.26.158.174:63235 ESTABLISHED
tcp 0 0 192.168.1.128:42548 85.243.81.202:13687 ESTABLISHED
tcp 0 1 192.168.1.128:34049 78.146.230.119:52451 SYN_SENT
tcp 0 0 192.168.1.128:59208 173.194.116.14:443 ESTABLISHED
tcp 0 0 192.168.1.128:46408 109.134.226.5:40967 ESTABLISHED
tcp 0 1 192.168.1.128:41011 2.240.42.97:24628 SYN_SENT
tcp 0 0 192.168.1.128:38959 78.31.8.16:443 ESTABLISHED
tcp 0 1 192.168.1.128:34426 84.30.100.93:43383 SYN_SENT
tcp 0 0 192.168.1.128:54784 109.145.62.171:54001 ESTABLISHED
tcp 0 0 192.168.1.128:34957 68.232.34.151:80 TIME_WAIT
tcp 0 0 192.168.1.128:33482 80.229.251.184:55664 ESTABLISHED
tcp 0 0 192.168.1.128:34698 82.135.201.51:35423 ESTABLISHED
tcp 0 0 192.168.1.128:34333 188.83.112.171:26916 ESTABLISHED
tcp 0 0 192.168.1.128:44186 178.201.42.170:44792 ESTABLISHED

Names have been replaced by
IP addresses (and ports).

netstat -t -n -4

netstat
Just like the previous command, but with the -n
option, telling netstat to not give names to
addresses (through reverse DNS queries)

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.1.128:42948 81.148.21.127:18671 ESTABLISHED
tcp 0 0 192.168.1.128:44735 109.153.120.206:26071 ESTABLISHED
tcp 0 0 192.168.1.128:39386 176.186.160.160:17048 ESTABLISHED
tcp 0 0 192.168.1.128:45017 81.108.153.96:47488 ESTABLISHED
tcp 0 0 192.168.1.128:58314 79.82.29.96:18428 ESTABLISHED
tcp 0 0 192.168.1.128:54971 173.194.70.189:443 ESTABLISHED
tcp 0 0 192.168.1.128:44571 178.26.158.174:63235 ESTABLISHED
tcp 0 0 192.168.1.128:42548 85.243.81.202:13687 ESTABLISHED
tcp 0 1 192.168.1.128:34049 78.146.230.119:52451 SYN_SENT
tcp 0 0 192.168.1.128:59208 173.194.116.14:443 ESTABLISHED
tcp 0 0 192.168.1.128:46408 109.134.226.5:40967 ESTABLISHED
tcp 0 1 192.168.1.128:41011 2.240.42.97:24628 SYN_SENT
tcp 0 0 192.168.1.128:38959 78.31.8.16:443 ESTABLISHED
tcp 0 1 192.168.1.128:34426 84.30.100.93:43383 SYN_SENT
tcp 0 0 192.168.1.128:54784 109.145.62.171:54001 ESTABLISHED
tcp 0 0 192.168.1.128:34957 68.232.34.151:80 TIME_WAIT
tcp 0 0 192.168.1.128:33482 80.229.251.184:55664 ESTABLISHED
tcp 0 0 192.168.1.128:34698 82.135.201.51:35423 ESTABLISHED
tcp 0 0 192.168.1.128:34333 188.83.112.171:26916 ESTABLISHED
tcp 0 0 192.168.1.128:44186 178.201.42.170:44792 ESTABLISHED

Overall:
●  1 connection to Belgium
●  3 connections to Germany
●  2 connections to France
●  6 connections to U.K.
●  1 connection to Lithuania
●  1 connection to Luxembourg
●  1 connection to Netherlands
●  2 connections to Portugal
●  3 connections to the U.S.

Spotify truly is a world-wide P2P network!

nslookup

nslookup is a command-line tool to query Internet
Domain Name Servers (DNS) interactively

nslookup

(simplified) syntax:

nslookup [-type=TYPE] name [server]

by default, it tells the name server to perform a recursive query

nslookup

default: -type=A

(simplified) syntax:

nslookup [-type=TYPE] name [server]

default
(system configured)
/etc/resolv.conf

on Linux

nslookup
possible types are:

 Type Meaning

A IPv4 address of a host

AAAA IPv6 address of a host

MX Domain willing to accept mail

NS Name of a server for this domain

PTR Alias for an IP address

CNAME Alias of one name to another

… ...

nslookup
Example N.1: nslookup uniroma1.it

Means: give me the address
of the domain uniroma1.it

Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
Name: uniroma1.it
Address: 151.100.101.67

My default name server

the answer is not authorative
because 8.8.8.8 is not the
manager of the root of the tree.
These values are coming from
8.8.8.8’s cache

IP address
associated to the
uniroma1.it
domain

so.. who is responsible for the domain uniroma1.it ?

nslookup
Example N.2: nslookup -type=NS uniroma1.it

Means: give me the name server
responsible for the domain uniroma1.it

Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
uniroma1.it nameserver = risc-ns.cics.uniroma1.it.
uniroma1.it nameserver = desiree.cics.uniroma1.it.
uniroma1.it nameserver = ns1.garr.net.

Authoritative answers can be found from:

3 nameservers for
uniroma1.it
(may be for fault
tolerance reasons)

let’s ask one of them for an authorative answer for uniroma1.it

nslookup
Example N.3: nslookup uniroma1.it 151.100.4.13

IP address of desiree.cics.uniroma1.it

Finally! Next question is: who is responsible for the root of the tree?

Server: 151.100.4.13
Address: 151.100.4.13#53

Name: uniroma1.it
Address: 151.100.101.67

nslookup
Example N.4: nslookup -type=NS .

Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
. nameserver = b.root-servers.net.
. nameserver = e.root-servers.net.
. nameserver = f.root-servers.net.
. nameserver = j.root-servers.net.
…
. nameserver = h.root-servers.net.

Authoritative answers can be found from:

root name servers
(there are 13)

the answer is not authorative
because 8.8.8.8 is not
responsible for the root of the tree.
These values are coming from
8.8.8.8’s cache

Means: give me the name server
responsible for the root domain ‘.’

nslookup
Example N.5: nslookup -type=CNAME phd.di.uniroma1.it

Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
phd.di.uniroma1.it canonical name = ccalcolo.di.uniroma1.it.

Authoritative answers can be found from:

Means: give me the alternative names of
‘phd.di.uniroma1.it’

ccalcolo is the actual name of the phd host

nslookup
Example N.6, the -norecurse option:
nslookup -norecurse venere.di.uniroma1.it

Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
*** Can't find venere.di.uniroma1.it: No answer

OK, venere.di.uniroma1.it does not exist ...?
To be sure, let’s ask to desiree.cics.uniroma1.it (next slide)

nslookup
nslookup -norecurse venere.di.uniroma1.it 151.100.4.13

Server: 151.100.4.13
Address: 151.100.4.13#53

Name: venere.di.uniroma1.it
Address: 151.100.17.16

venere’s address is 151.100.17.16
Wait.. what? According to 8.8.8.8, venere.di.uniroma1.it does not exist!

Well, let’s ask again to 8.8.8.8, but without the -norecurse option (next slide)

nslookup
nslookup venere.di.uniroma1.it

Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
Name: venere.di.uniroma1.it
Address: 151.100.17.16

8.8.8.8 was able to find venere.di.uniroma1.it now
So, it was the -norecurse option’s fault!

Are we sure? Let’s double check, using the -norecurse option again (next slide)

nslookup
nslookup -norecurse venere.di.uniroma1.it

Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
Name: venere.di.uniroma1.it
Address: 151.100.17.16

OK, now I’m confused. Why could 8.8.8.8 find the address of
venere.di.uniroma1.it?

(check out next slide)

nslookup

Explaination: 8.8.8.8 is not responsible for the venere.di.uniroma1.it
domain (whereas desiree.cics.uniroma1.it is). By using the -
norecurse option, we are not allowing 8.8.8.8 to navigate the domain tree
to retrieve the IP of venere.di.uniroma1.it. That’s why it could not find it.
However, when the 8.8.8.8 is allowed to perform a recursive search, not
only it successfully finds venere.di.uniroma1.it, but it also caches the
answer, so as to speed up the search next time someone (i.e., you, or some
other user) asks for the same information. Once the reply it’s cached, even if
the -norecurse option is used, 8.8.8.8 can retrieve the answer from its
cache.

nslookup

Exercise: use nslookup to find out what are the name
servers responsible for the domains:
•  . (root)
•  it.
•  uniroma1.it.
•  di.uniroma1.it.
•  redi.uniroma1.it.

Discuss the results based on what you know about the
structure of DNS

netcat

●  It’s the “TCP/IP swiss army knife”:
o  reads and writes data across network connections, using TCP or

UDP protocol.
o  it is a feature-rich network debugging and exploration tool, since it

can create almost any kind of connection you would need and has
several interesting built-in capabilities.

netcat
Simple example: 2 users chat:
●  open a new terminal window and type:

o  nc -l -p 12345
o  means: act as a server and listen for a new connection (-l)

on port (-p) 12345. Listens for connections from any interface
●  open another terminal window and type:

o  nc localhost 12345
o  means: act as a client and connect to localhost on port 12345

●  whatever is written on a terminal (followed by a new line) will
appear on the other terminal (and viceversa)

netcat

Simple example: 2 users chat:
●  the same example works between two remote machines

o  the machine acting as a server has to be reachable by the
client

o  ‘localhost’ must be replaced by the address (or name) of the
server

netcat
More useful example: copy ‘picture.png’ between two remote
machines:
●  on the receiver side (address a.b.c.d), open a new terminal

window and type:
o  nc -l -p 12345 > picture.png
o  ‘>’ is a shell command that redirects the output of nc to the

file picture.png
●  on the sender side:

o  nc a.b.c.d 12345 < picture.png
o  ‘<’ is a shell command that writes the contents of the file

picture.png to the input of nc

netcat

The same example works by switching the roles:
●  on the sender side (address a.b.c.d), open a new terminal

window and type:
o  nc -l -p 12345 < picture.png
o  sends the content of the picture.png file to any client

●  on the receiver side:
o  nc a.b.c.d 12345 > picture.png
o  writes the output of the server to the picture.png file

netcat

netcat can talk to any server/client, not just other netcat instances!
Example, retrieve a page from a web server:
●  type:

nc google.it 80
GET / HTTP/1.1

●  followed by two new lines

netcat
Server response:

HTTP/1.1 302 Found
Location: http://www.google.it/?gws_rd=cr&ei=WGVeUpWIAsjGtQaLsoDIDA
Cache-Control: private
Content-Type: text/html; charset=UTF-8
Set-Cookie: PREF=ID=6df6a36cfeac9258:FF=0:TM=1381918040:LM=1381918040:S=TxsHtJMBvvGYb-XB; expires=Fri, 16-Oct-2015
10:07:20 GMT; path=/; domain=.google.com
...
<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>302 Moved</TITLE></HEAD><BODY>
<H1>302 Moved</H1>
The document has moved
here.
</BODY></HTML>

netcat

Notice:
●  we got a “302 moved” message from the server (a redirection

to http://www.google.it/...WGVeUpWIAsjGtQaLsoDIDA)
●  netcat does not talk HTTP, so

o  it won’t follow the redirect
o  it won’t download the other page contents and so on

●  But, in principle, with A LOT of patience, you could use netcat
to browse (part of) the web manually (just pretend to be a
browser)
o  (don’t try this at home!)

netcat
Similar example: act as a Web Server!
●  type

o  nc -l -p 80
●  use your favourite web browser to go to:

o  http://localhost:80
●  go back to the terminal, you’ll see something like:

GET / HTTP/1.1
Host: localhost
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:27.0) Gecko/20100101 Firefox/27.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

netcat
The browser is asking for the / page in our (fake?) Web Server
If we don’t reply, the connection is eventually going to be closed
(timeout). So, type in terminal:

<html>
Hello, world!
</html>

then close the connection with CTRL+C. Now, go back to the browser
window. The page should have been loaded by now.

netcat

A simple bash Web server:

while true; do { echo "HTTP/1.1 200 OK"; echo ;
 echo "<html>Hello World</html>"; } | nc -l -p 8080; done

netcat

Interesting fact:
●  our netcat-based web server probably violated the HTTP

protocol (our response did not include the header!)
●  This is BAD!!! Still, the web browser did not complain, and figured

out how to display the webpage nicely
●  This is because web browsers have become very good at talking

to careless web servers who do not comply with standards

netcat

With a similar approach, you can use netcat to talk to:
●  Mail servers
●  DNS servers
●  FTP servers
●  …

It may help getting a better idea about how some protocols work. BUT,
always refer to the relative RFC to know what it is allowed or not by the
protocol! Complying to protocols is the only right way to keep the
Internet working (though being tolerant to protocol violations of other
people helps a lot)

netcat
netcat VS telnet:
●  telnet is a command line tool that speaks the Telnet protocol

o  for instance, it requires a carriage return character to be followed by a null
(‘\0’) character

●  since the Telnet protocol is very simple (just a bidirectional text oriented protocol),
telnet may be used to open raw TCP connections to any server

●  netcat, on the other hand, has been built with the specific purpose of opening raw
connections. It does not have any protocol to comply to
o  everything is always transmitted as-it-is from source to destination (and

viceversa)
●  netcat supports a much richer set of features with respect to telnet, for example

o  can be used to send arbitrary binary data
o  supports both TCP and UDP
o  allows to perform TCP port scanning
o  ...

wireshark

Enough with the application level. Let’s dive in the TCP/IP stack
with wireshark!

wireshark
●  Wireshark is a software (packet analyzer) that allows to monitor the incoming/

outgoing network frames
o  it captures a copy of the frames
o  does not inject traffic

●  it can expose the whole content of each frame (i.e., the whole protocol stack)
●  very useful for

o  learning how TCP/IP works
o  network administrators

●  it is not a security tool
●  Wireshark is a rather complex and powerful tool, whose complete set of

functionalities cannot be discussed with a single lecture
o  we will cover its basics only

●  other packet analyzers:
o  tcpdump, tshark

wireshark
To install Wireshark on Windows or OSX, go to http://www.wireshark.org
On a Debian-based GNU/Linux distribution (e.g., Ubuntu, Linux Mint.. and
Debian), just open a terminal window and type:
●  apt-get install wireshark

When the installation is complete, just type
●  wireshark

on a terminal (or run it from the applications menu)
Useful links:
●  http://wiki.wireshark.org/CaptureSetup
●  https://www.wireshark.org/docs/wsug_html_chunked/
●  http://wiki.wireshark.org/SampleCaptures

wireshark

wireshark

wireshark
commands menu

filter specification

list of packets
captured

details of
selected header

packet content
in hexadecimal
and ASCII

wireshark
Exercise N.1 (simple):
1.  Download and open the following capture file using Wireshark

http://wiki.wireshark.org/SampleCaptures?
action=AttachFile&do=get&target=http.cap

2.  Apply the filter:
○  ip.addr == 65.208.228.223
○  remember to hit ‘enter’ to see the effects of the filter

3.  Observe the list of exchanged packets
○  what are the HTTP connection endpoints?

4.  Select an HTTP packet, then:
○  Analyze → Follow TCP Stream
○  How many TCP connections have been opened?

5.  Notice: no DNS packets! (they have been probably removed by the author of
the capture file

wireshark
Exercise N.2 (more tricky):
1.  Use Wireshark to start a capture session on the pseudo device that captures on all the

interfaces
2.  Open your favourite browser, clean its cache (it may not be necessary), and go to:

○  http://gaia.cs.umass.edu/wireshark-labs/
3.  Wait for the page to finish loading, go back to Wireshark and stop the capture session
4.  Apply the filter

○  dns
5.  Search for the DNS query relative to gaia.cs.umass.edu and look for the resolved

IP address on the packet’s payload (hint, it’s probably: 128.119.245.12)
6.  Apply the filter

○  ip.addr == 128.119.245.12
7.  Now analyze the HTTP flow like we did in Exercise N.1

○  is HTTP’s ‘keep-alive’ used?

wireshark

Further exercises. Use Wireshark to analyze the traffic
generated when:
1.  A web page with text and pictures is downloaded
2.  A DNS request is performed with nslookup
3.  A file gets downloaded through FTP

