
Mininet: First steps

9/05/2017

Configure Mininet VM

• Download VirtualBox from:

https://www.virtualbox.org/

• Download and install the mininet VM from:

http://mininet.org/download/

Configure VM: Linux Users

• Change network settings by enabling «bridge»

• Start the mininet VM

• From Host terminal(Ubuntu) launch:
• ssh –Y mininet@<address_of_VM>

• Password is mininet

MORE INFO at http://mininet.org

Configure VM: all users

Run the following commands inside the VM to configure the GUI

• sudo apt-get update

• sudo apt-get install xinit lxde

• startx

• sudo apt-get install virtualbox-guest-dkms

MORE INFO at http://mininet.org

Setup 1: Mininet-based Single Switch

5

Switch
s1

h3
10.0.0.3

h2
10.0.0.2

h1
10.0.0.1

s1-eth0 s1-eth1 s1-eth2

h1-eth0 h2-eth0 h3-eth0

sudo mn --topo single,3

virtual hosts

virtual
switch

First sample commands

• sudo mn --topo tree,depth=2,fanout=3 --test pingall

• sudo mn --topo tree,depth=2,fanout=3 --link tc,bw=5,delay=40ms

S1

S4S3S2

H1 H3H2 H4 H6H5 H7 H9H8

First sample commands

• sudo mn -h

• sudo mn --topo single,8 --test pingall

• sudo mn --topo single,8 --test iperf

• sudo mn --topo linear,8 --test pingall

• sudo mn -c

Custom Topologies
from mininet.topo import Topo

class MyTopo(Topo):

def __init__(self):

Initialize topology
Topo.__init__(self)

Add hosts and switches
leftHost = self.addHost('h1')
rightHost = self.addHost('h2')
leftSwitch = self.addSwitch('s3')
rightSwitch = self.addSwitch('s4')

Add links
self.addLink(leftHost, leftSwitch)
self.addLink(leftSwitch, rightSwitch)
self.addLink(rightSwitch, rightHost)

topos = { 'mytopo': (lambda: MyTopo()) }

Custom Topologies

sudo mn --custom ~/mininet/custom/topo-2sw-2host.py

--topo mytopo –-link tc --test pingall

Each host gets 50%/n of system CPU
host = self.addHost('h%s' % (h + 1), cpu=.5/n)

10 Mbps, 5ms delay, 10% loss, 1000 packet queue
self.addLink(host, switch, bw=10, delay='5ms',

loss=10, max_queue_size=1000, use_htb=True)

switch = self.addSwitch('s1')

Python's range(N) generates 0..N-1
for h in range(n):

host = self.addHost('h%s' % (h + 1))
self.addLink(host, switch)

Exercise 1

• Build the following topology, execute a ping
between all the hosts and measure the bandwidth
between host 1 and host 4

S1

S4S3S2

H2H1 H3 H4 H5

This link has a bandwidth of
4 Mbit and a delay of 50ms

and a loss of 15%

Control Commands: ping

• Used to test the reachability of a host on an IP
network

• It also measures the round-trip-time

• Operates by sending ICMP Echo Request packets to
the target host and waiting for an ICMP Echo Reply

Control Commands: ping

• Used to test the reachability of a host on an IP
network

• It also measures the round-trip-time

• Operates by sending ICMP Echo Request packets to
the target host and waiting for an ICMP Echo Reply

Control Commands: traceroute

• Used for displaying the route (path) and measuring
transit delays of packets across an IP network

• Works incrementing the TTL field of the IP packet

• Note: sometimes packets can follow different paths
and the output could be misleading…

Control Commands: traceroute

Control Commands: iperf

• Tool used to measure the bandwidth and the
quality of a network ‘‘link’’

• The network ‘‘link’’ is delimited by two hosts
running iperf

• iperf uses both TCP or UPD
• TCP is mainly used to measure the bandwidth

• UDP is mainly used to measure the packet loss

Control Commands: iperf

Example: TCP

• Sul server: iperf –s

• Sul client: iperf –c <ip_server>

Example: UDP

• Sul server: iperf -u –s

• Sul client: iperf –c <ip_server> -u

