Chapter 4: outline

4.1 introduction
4.2 virtual circuit and datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 broadcast and multicast routing
Broadcast routing

- deliver packets from source to all other nodes
- source duplication is inefficient:

- source duplication: how does source determine recipient addresses?
In-network duplication

- **flooding**: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- **controlled flooding**: node only broadcasts pkt if it hasn’t broadcast same packet before
 - node keeps track of packet ids already broadcasted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- **spanning tree**:
 - no redundant packets received by any node
Unicast ad N vie

- Inefficiente
 - Un singolo collegamento attraversato da N copie del messaggio se il nodo origine è connesso al resto della rete tramite un unico collegamento

- Indirizzi di tutte le destinazioni devono essere noti al mittente
 - altri meccanismi protocollari sono richiesti

- Broadcast può essere usato per inoltrare informazioni di topologia in una situazione in cui le rotte non sono ancora note
 - es. OSPF
Broadcast Routing

- deliver packets from source to all other nodes
- source duplication is inefficient:

 source duplication: how does source determine recipient addresses?
In-network duplication

- Flooding: when node receives broadcast packet, sends copy to all neighbors *EXCEPT* the one from which the packet was received
 - Problems: *cycles* & broadcast storm

![Diagram showing in-network duplication](image-url)
In-network duplication

- flooding: when node receives brdcst pckt, sends copy to all neighbors
 - Problems: cycles & broadcast storm
In-network duplication

- flooding: when node receives brdcst pckt, sends copy to all neighbors
 - Problems: cycles & broadcast storm

E ricominciamo come nella prima situazione
Bisogna saper distinguere tra quando mandiamo un nuovo messaggio e quando stiamo rtrasmettendo qualcosa che abbiamo già visto
→ Sequence numbers!
Broadcast storm
Broadcast storm
Broadcast storm

Il numero di pacchetti in rete cresce significativamente!!
Controlled flooding

- Il nodo origine pone il proprio indirizzo ed il numero di sequenza nei pacchetti che invia in broadcast
- Ciascun nodo mantiene una lista di ID origine, SEQN per i broadcast ricevuti, trasmesso o inoltrato
- Se riceve un pacchetto broadcast per prima cosa verifica se <ID, SEQN> compare nella lista dei pacchetti già gestiti
 - Se si scarta
 - Altrimenti riinvia su tutte le interfacce tranne quella da cui ha ricevuto
Controlled flooding, altre opzioni

- Reverse path forwarding (RPF): only forward packet (on all links but the one from which the packet was received) if it arrived on shortest path between node and source
In-network duplication

- **flooding**: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- **controlled flooding**: node only broadcasts pkt if it hasn’t broadcast same packet before
 - node keeps track of packet ids already broadcasted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- **spanning tree**:
 - no redundant packets received by any node
Spanning Tree

- First construct a spanning tree
- Nodes forward copies only along spanning tree

(a) Broadcast initiated at A
(b) Broadcast initiated at D
Minimum spanning tree- Prim’s Algorithm

- Prim's algorithm:
 let T be a single vertex x
 while (T has fewer than n vertices) {
 Find the smallest edge connecting T to G-T
 Add it to T
 }
Minimum spanning tree--Kruskal algorithm

- Kruskal's algorithm:
 Sort the edges of G in increasing order of weight
 Keep a subgraph S of G, initially empty
 For each edge e in sorted order
 If the endpoints of e are disconnected in S then add e to S
 Return S
Spanning tree

- first construct a spanning tree
- nodes then forward/make copies only along spanning tree

(a) broadcast initiated at A
(b) broadcast initiated at D
Spanning tree: creation

- center node
- each node sends unicast join message to center node
 - message forwarded until it arrives at a node already belonging to spanning tree

(a) stepwise construction of spanning tree (center: E)
(b) constructed spanning tree
Multicasting

- Molte applicazioni richiedono il trasferimento di pacchetti da uno o più mittenti ad un gruppo di destinatari
 - trasferimento di un aggiornamento SW su un gruppo di macchine
 - streaming (audio/video) ad un gruppo di utenti o studenti
 - applicazioni con dati condivisi (lavagna elettronica condivisa da più utenti)
 - aggiornamento di dati (adnamento di borsa)
 - giochi multi-player interattivi
 - …
Indirizzamento Multicast

- L’identificatore che rappresenta un gruppo multicast è un indirizzo IP multicast di classe D
- Come ci si affilia ad un indirizzo multicast? Come vengono gestiti i cambiamenti dinamici (join/remove) nel gruppo?
 - Gestione dinamica del gruppo OLTRE a
 - Algoritmi per la consegna delle informazioni ad un gruppo multicast
IGMP Internet Group Management Protocol

- Messaggi incapsulati in datagrammi IP, con IP protocol number 2
- Mandati con TTL a 1
- Messaggi IGMP
 - Type (8bit) Query (richiesta dal router)/ Membership Report (risposta dagli host)/ Leave group (ma anche possible timeout + mancata risposta alla richiesta del router → soft state)
- Max Response Time (per rispondere ad una query)
- Checksum
- Group Address (0 se si manda una general query, indirizzo IP del gruppo nel caso di una group specific query con cui si richiede chi sia affiliato a quel gruppo)
IGMP Internet Group Management Protocol

- IGMP consente ad un router di imparare quali gruppi multicast hanno affiliati sulle sottoreti connesse a ciascuna delle loro interfacce.
- Un router multicast tiene una lista per ciascuna sottorete dei multicast group (multicast group membership → almeno un elemento del gruppo fa parte della sottorete) con un timer per membership:
 - la membership deve essere aggiornata da report inviati prima della scadenza del timer
 - può essere anche aggiornata tramite messaggi di leave espliciti
Multicast routing: problem statement

goal: find a tree (or trees) connecting routers having local mcast group members

- **tree:** not all paths between routers used
- **shared-tree:** same tree used by all group members
- **source-based:** different tree from each sender to rcvrs

![shared tree](image1)

![source-based trees](image2)

Legend
- **group member**
- **not group member**
- **router with a group member**
- **router without group member**
Approaches for building mcast trees

approaches:

- **source-based tree:** one tree per source
 - shortest path trees
 - reverse path forwarding

- **group-shared tree:** group uses one tree
 - minimal spanning (Steiner)
 - center-based trees

...we first look at basic approaches, then specific protocols adopting these approaches
Shortest path tree

- mcast forwarding tree: tree of shortest path routes from source to all receivers
 - Dijkstra’s algorithm
Reverse path forwarding

- rely on router’s knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

\[
\text{if (mcast datagram received on incoming link on shortest path back to center)} \\
\text{then flood datagram onto all outgoing links} \\
\text{else ignore datagram}
\]
result is a source-specific reverse SPT

- may be a bad choice with asymmetric links
Reverse path forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
 - no need to forward datagrams down subtree
 - “prune” msgs sent upstream by router with no downstream group members

```
s: source
R1  R2  R3  R4  R5  R6  R7
```

LEGEND
- router with attached group member
- router with no attached group member
- prune message
- links with multicast forwarding
Shared-tree: steiner tree

- **steiner tree**: minimum cost tree connecting all routers with attached group members
- problem is NP-complete
- excellent heuristics exists
- not used in practice:
 - computational complexity
 - information about entire network needed
 - monolithic: rerun whenever a router needs to join/leave
Center-based trees

- single delivery tree shared by all
- one router identified as “center” of tree

To join:
- edge router sends unicast join-msg addressed to center router
- join-msg “processed” by intermediate routers and forwarded towards center
- join-msg either hits existing tree branch for this center, or arrives at center
- path taken by join-msg becomes new branch of tree for this router
Center-based trees: example

suppose R6 chosen as center:

Legend:
- Router with attached group member
- Router with no attached group member
- Path order in which join messages generated
Internet Multicasting Routing: DVMRP

- **DVMRP**: distance vector multicast routing protocol, RFC1075
- **flood and prune**: reverse path forwarding, source-based tree
 - RPF tree based on DVMRP’s own routing tables constructed by communicating DVMRP routers
 - no assumptions about underlying unicast
 - initial datagram to mcast group flooded everywhere via RPF
 - routers not wanting group: send upstream prune msgs
DVMRP: continued...

- **soft state**: DVMRP router periodically (1 min.) “forgets” branches are pruned:
 - mcast data again flows down unpruned branch
 - downstream router: reprune or else continue to receive data

- routers can quickly regraft to tree
 - following IGMP join at leaf

- odds and ends
 - commonly implemented in commercial router
PIM: Protocol Independent Multicast

- not dependent on any specific underlying unicast routing algorithm (works with all)

- two different multicast distribution scenarios:

dense:
- group members densely packed, in “close” proximity.
- bandwidth more plentiful

sparse:
- # networks with group members small wrt # interconnected networks
- group members “widely dispersed”
- bandwidth not plentiful
Consequences of sparse-dense dichotomy:

dense
- group membership by routers *assumed* until routers explicitly prune
- *data-driven* construction on mcast tree (e.g., RPF)
- bandwidth and non-group-router processing *profligate*

sparse:
- no membership until routers explicitly join
- *receiver-driven* construction of mcast tree (e.g., center-based)
- bandwidth and non-group-router processing *conservative*
PIM- dense mode

flood-and-prune RPF: similar to DVMRP but…

- underlying unicast protocol provides RPF info for incoming datagram
- less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm
- has protocol mechanism for router to detect it is a leaf-node router
PIM - sparse mode

- center-based approach
- router sends join msg to rendezvous point (RP)
 - intermediate routers update state and forward join
- after joining via RP, router can switch to source-specific tree
 - increased performance: less concentration, shorter paths
 sender(s):
- unicast data to RP, which distributes down RP-rooted tree
- RP can extend mcast tree upstream to source
- RP can send *stop* msg if no attached receivers
 - “no one is listening!”

Network Layer 4-40
Chapter 4: done!

4.1 introduction
4.2 virtual circuit and datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol
 ▪ datagram format, IPv4 addressing, ICMP, IPv6
4.5 routing algorithms
 ▪ link state, distance vector, hierarchical routing
4.6 routing in the Internet
 ▪ RIP, OSPF, BGP
4.7 broadcast and multicast routing

❖ understand principles behind network layer services:
 ▪ network layer service models, forwarding versus routing
 ▪ how a router works, routing (path selection), broadcast, multicast

❖ instantiation, implementation in the Internet