Introduction to 802.11 Wireless LANs

Stefano Basagni, <u>s.basagni@neu.edu</u>

Basato su slide di Giuseppe Bianchi

——— Giuseppe Bianchi ——

WLAN History

→ Early Wireless LAN proprietary products

 \Rightarrow WaveLAN (AT&T)

 \rightarrow the ancestor of 802.11

⇒ HomeRF (Proxim)

 \rightarrow Support for Voice, unlike 802.11

 \rightarrow 45% of the home network in 2000; 30% in 2001, ... ϵ % today

 \rightarrow Abandoned by major chip makers (e.g. Intel: dismissed in april 2001)

→ IEEE 802.11 Committee formed in 1990

⇒ Charter: specification of MAC and PHY for WLAN

→ First standard: june 1997

 \rightarrow 1 and 2 Mbps operation

→ Reference standard: september 1999

⇒ Multiple Physical Layers

- \rightarrow 2.4GHz Industrial, Scientific & Medical shared unlicensed band
 - » Legacy; 802.11b/g
- \rightarrow 5 GHz ISM (802.11a)

→ 1999: Wireless Ethernet Compatibility Alliance (WECA) certification

- ⇒ Later on named Wi-Fi
- ⇒ Boosted 802.11 deployment!!

Why so much talking about of 802.11 today?

→ 802.11: no more "just" a WLAN

→ Hot-spots (and, more recently, hot-zones)

- ⇒ Where the user goes, the network is available: home, school, office, hotel, university, airport, convention center...
- ⇒ Freedom to roam with seamless connectivity in every domain, with single client device
- → Compete (complement) with 4G for Wireless Internet access

Which of these two is the proper (closer) picture of Wireless Internet and Mobile Computing? Which technology is most suited?

= Giuseppe Bianchi

The 1999 revolution: PHY layer impressive achievements...

\rightarrow 802.11a: PHY for 5 GHz

 \rightarrow published in 1999

 \rightarrow Products available since early 2002

\rightarrow 802.11b: higher rate PHY for 2.4 GHz

 \rightarrow Published in 1999

 \rightarrow Products available since 1999

 \rightarrow Interoperability tested (wifi)

→ 802.11g: OFDM for 2.4 GHz

 \rightarrow Published in june 2003

 \rightarrow Products available, though no extensive interoperability testing yet

→ 802.11n: "multi-streaming modulation technique"(Higher data rate)

 \rightarrow Launched in september 2003, standards in 2007/2009

→Minimum goal: 108 Mbps (but higher numbers considered)

 \rightarrow Support for space division multiple access and smart antennas?

 \rightarrow Claims for solutions @ 1 gbps ...

PHY rates at a glance

Standard	Transfer Method	Frequency Band	Data Rates Mbps
802.11 legacy	FHSS, DSSS	2.4 GHz	1, 2
802.11b	DSSS, HR-DSSS	2.4 GHz	1, 2, 5.5, 11
"802.11b+" non-standard	DSSS, HR-DSSS	2.4 GHz	1, 2, 5.5, 11, 22, 33, 44
802.11a	OFDM	5.2, 5.5 GHz	6, 9, 12, 18, 24, 36, 48, 54
802.11g	DSSS, HR-DSSS, OFDM	2.4 GHz	1, 2, 5.5, 11; 6, 9, 12, 18, 24, 36, 48, 54

802.11 Nets: Basic Service Set (BSS)

group of stations that can communicate with each other

→Infrastructure BSS

⇒or, simply, BSS
 ⇒Stations connected through AP

→Independent BSS

- ⇔or IBSS
- Stations connected in ad-hoc mode

— Giuseppe Bianchi

Frame Forwarding in a BSS

BSS: AP = relay function No direct communication allowed!

IBSS: direct communication between all pairs of STAs

— Giuseppe Bianchi

Why AP = relay function?

→ Management:

⇒ Mobile stations do NOT neet to maintain neighbohr relationship with other MS in the area

→But only need to make sure they remain properly associated to the AP

→ Power Saving:

⇒ APs may assist MS in their power saving functions

→by buffering frames dedicated to a (sleeping) MS when it is in PS mode

→Obvious disadvantage: use channel bandwidth twice...

Extended Service Set

ESS: created by merging different BSS through a network infrastructure (possibly overlapping BSS

- to offer a continuous coverage area) Stations within ESS MAY communicate each other via Layer 2 Procedures; APs acting as bridges

MUST be on a same LAN or switched LAN or VLAN (no routers)

——— Giuseppe Bianchi =

The concept of Distribution System

Ethernet backbone: Distribution system medium (but DS is mor e than just a medium!!) DS role:

- track where an MS is registrered within an ESS area
- deliver frame to MS

—— Giuseppe Bianchi —

Association and DS

DS implementation:

- an AP must inform other APs of associated MSs MAC addresse
- proprietary implementation \rightarrow no interoperability (must use A)
- standardized protocol on the way (?): IAPP (802.11f)
 - 802.11f Working Practice Standard: june 2003

=== Giuseppe Bianchi =

Wireless Distribution System

Resulting AP = wireless bridge

— Giuseppe Bianchi

802.11 MAC CSMA/CA Distributed Coordination Function

= Giuseppe Bianchi =

Wireless Ethernet

→ 802.3 (Ethernet)

- \Rightarrow CSMA/CD
 - →Carrier Sense Multiple Access
 - \rightarrow Collision Detect

→ 802.11(wireless LAN)

- \Rightarrow CSMA/CA
- ⇒ (Distributed Coordination Function)
 →Carrier Sense Multiple Access
 →Collision Avoidance

- → Both A and C sense the channel idle at the same time → they send at the same time.
- → Collision can be detected at sender in Ethernet.
- → Why this is not possible in 802.11?
 - 1. Either TX or RX (no simultaneous RX/TX)
 - 2. Large amount of power difference in Tx and Rx (even if simultaneous txrx, no possibility in rx while tx-ing)
 - 3. Wireless medium = additional problems vs broadcast cable!!

= Giuseppe Bianchi

Hidden Terminal Problem

- ➔ Large difference in signal strength; physical channel impairments (shadowing)
 - ⇒ It may result that two stations in the same area cannot communicate
- ➔ Hidden terminals
 - ⇒ A and C cannot hear each other
 - ⇒ A transmits to B
 - ⇒ C wants to send to B; C cannot receive A;C senses "idle" medium (Carrier Sense fails)
 - ⇒ Collision occurs at B.
 - ⇒ A cannot detect the collision (Collision Detection fails).
 - \Rightarrow A is "hidden" to C.

802.11 MAC approach

→Still based on Carrier Sense:

 \rightarrow Listen before talking

→But collisions can only be inferred afterwards, at the receiver

→Receivers see corrupted data through a CRC error
→Transmitters fail to get a response

Two-way handshaking mechanism to infer collisions

⇒DATA-ACK packets

Giuseppe Bianchi

Channel Access details

→A station can transmit only if it senses the channel IDLE for a DIFS time

⇒DIFS = Distributed Inter Frame Space

→ Key idea: DATA and ACK separated by a different Inter Frame Space

⇔ SIFS = Short Inter Frame Space

Second station cannot hear a whole DIFS, as SIFS<DIFS</p>

——— Giuseppe Bianchi

DIFS & SIFS in wi-fi

\rightarrow DIFS = 50 µs

⇒Rationale: 1 SIFS + 2 slot-times

 \rightarrow Slot time = 20 µs, more later

\rightarrow SIFS = 10 μ s

⇒Rationale: RX_TX turnaround time

RULE: when the channel is initially sensed BUSY, station defers transmission; But when it is sensed IDLE for a DIFS, defer transmission of a further random time (BACKOFF TIME)

Giuseppe Bianchi

Note: slot times are not physically delimited on the channel! Rather, they are logically identified by every STA

Slot-time values: 20µs for DSSS (wi-fi) Accounts for: 1) RX_TX turnaround time 2) busy detect time 3) propagation delay

— Giuseppe Bianchi

Backoff freezing

\rightarrow When STA is in backoff stage:

⇒ It freezes the backoff counter as long as the channel is sensed BUSY

⇒ It restarts decrementing the backoff as the channel is sensed IDLE for a DIFS period

Why backoff between consecutive tx?

- → A listening station would never find a slot-time after the DIFS (necessary to decrement the backoff counter)
- → Thus, it would remain stuck to the current backoff counter value forever!!

Backoff rules

\rightarrow First backoff value:

 \Rightarrow Extract a uniform random number in range (0,CW_{min})

→If unsuccessful TX:

 \Rightarrow Extract a uniform random number in range (0,2×(CW_{min}+1)-1)

→If unsuccessful TX:

 \Rightarrow Extract a uniform random number in range (0,2²×(CW_{min}+1)-1)

\rightarrow Etc up to $2^{m} \times (CW_{min} + 1) - 1$

Exponential Backoff! CWmin = 31 CWmax = 1023 (m=5)

— Giuseppe Bianchi

Further backoff rules

\rightarrow Truncated exponential backoff

- ⇒ After a number of attempts, transmission fails and frame is dropped
- ⇒ Backoff process for new frame restarts from CWmin
- ⇒ Protects against cannel capture
 - →unlikely when stations are in visibility, but may occur in the case of hidden stations

→ Two retry limits suggested:

- \Rightarrow Short retry limit (4), apply to frames below a given threshold
- \Rightarrow Long retry limit (7), apply to frames above given threshold
- ⇒ (loose) rationale: short frames are most likely generated bu realk time stations
 - \rightarrow Of course not true in general; e.g. what about 40 bytes TCP ACKs?

Throughput vs CWmin

RTS/CTS

Request-To-Send / Clear-To-Send 4-way handshaking

⇒Versus 2-way handshaking of basic access mechanism

\rightarrow Introduced for two reasons

⇒Combat hidden terminal

⇒Improve throughput performance with long packets

RTS/CTS and hidden terminals Packet arrival DIFS ΤX RTS DATA **SIFS** SIFS SIFS CTS ACK RX others NAV (RTS) NAV (CTS) RX \mathbf{X} RTS *RTS/CTS: carry the amount of time the channel* CTS will be BUSY. Other stations may update a hidden *Network Allocation Vector, and defer TX* even if they sense the channel idle (Update NAV) (Virtual Carrier Sensing) Giuseppe Bianchi

Exposed Nodes

- →Any node within carrier sense range of transmitter and out of interference range of receiver
- \rightarrow Prevents simultaneous transmissions
- \rightarrow Reduction in Spatial Reuse

Is exposed node a problem?

\rightarrow Not really!

→Remember that DCF handshake is asynchronous...

DCF Overhead

—— Giuseppe Bianchi —

—— Giuseppe Bianchi

Frame formats

DATA FRAME (28 bytes excluded address 4)

Frame Control	Duration / ID Address 1	Address 2	Address 3	Sequence Control	Address 4	Data	FCS
------------------	----------------------------	-----------	-----------	---------------------	-----------	------	-----

RTS (20 bytes)

Frame Control	Duration	RA	ТА	FCS

CTS	/ ACK	(14 bytes	5)
Frame Control	Duration	RA	FCS

——— Giuseppe Bianchi —

Giuseppe Bianchi