

Structural health monitoring

Cultural Heritage

- In many applications (e.g., SHM) the network is required to run for **decades**
- Nodes are powered by batteries
 - Limited lifetime (a few days on 2xAA batteries if always on)

- Pose the basis for very long lasting operation
- Energy Neutral protocols have been proposed for several applications
- Changes also what a WSN can do

- Pose the basis for very long lasting operation
- Energy Neutral protocols have been proposed for several applications
- Changes also what a WSN can do

- Energy predictions to mitigate uncertain energy availability
- Plan energy usage in advance: **proactive** vs reactive energy allocation
- Exploit available energy at best:
 - I. Minimizing the likelihood of running out of energy and missing high priority tasks
 - II. Minimizing the waste of energy (energy buffers are limited in size and time)
 - III. Enable operations which were not considered feasible

- Keep track of energy profiles observed during D typical days
- Store traces representative of different weather conditions (sunny, windy, ...)
- Predict future energy intake by looking at the most similar stored profile

$$\hat{E}_{t+1} = \alpha \cdot C_t + (1-\alpha) \cdot E_{t+1}^d \tag{2}$$

where:

- \hat{E}_{t+1} is the predicted energy intake in timeslot t+1 of the current day;
- E_{t+1}^d is the energy harvested during timeslot t+1 on the stored day d;
- C_t is the energy harvested during timeslot t on the current day C;
- α is a weighting factor, $0 \le \alpha \le 1$.

The weighting parameter, α , allows to combine the value reported in the stored profile with the current energy observation, i.e., the energy observed in the last slot, C_t .

Figure 2. Pearson autocorrelation coefficient for (a) solar ORNL Dataset and (b) wind Bologna Dataset.

$$\gamma_i = \begin{cases} \alpha \cdot \left(1 - \frac{i-1}{G}\right), & \text{if } i \leq G \\ 0 & \text{if } i > G \end{cases} \qquad \forall i, 1 \leq i \leq F \end{cases}$$

where:

- α is the weighting factor defined in Equation (2);
- *i* is the i^{th} timeslot in the future, with respect to the current slot, t;
- G is the number of timeslots in the future which show a correlation above a given threshold with timeslot t;
- *F* is the number of future timeslots for which Pro-Energy is delivering energy predictions.

Solar: Pro-Energy performs up to 75% better than EWMA and 60% better than WCMA

Wind: Pro-Energy performs up to 55% better than EWMA and 10% better than WCMA

Rome underground testbed

Vibrating Wire Strain Gauges

Monitor concrete and steel deformations to evaluate stability of the underground tunnel

SISGEO OVK4200VC00 Dedicated interface board for TelosB mote Energy consumption: 720 mJ

Why air-flow energy harvesting?

- SHM sensors are power-hungry
- required lifetime of decades or more
- battery-powered WSNs last only a few years

Micro wind turbines

Energy harvesting from wind generated by trains

220 meter of instrumented tunnel 6 energy-harvesting nodes 33 days of data collection

Source

GreenCastalia features

- Support for multi-source harvesting
- Support for multi-storage devices
- Support for energy predictions
- Easily customizable
- Based on Castalia / OMNET++

TraceEnergySource module: allows to feed the simulator with timestamped power traces collected through reallife deployments, or with energy availability traces obtained by data repositories or meteorological stations

Simulation settings

- 120x120 meters field (7x7 grid deployment)
- Nodes with heterogeneus energy harvesting capabilities:

solar, wind both, none

Self-adaptive behaviour: nodes experiencing energy peaks are selected with higher priority as next hop relays

Task allocation

- Sensing tasks (missions) arrive in the network dynamically over time at different locations
- Multiple missions active at the same time, competing for the sensing resources of the network

Decide which sensor(s) should be assigned to each mission

- Missions have different priority (profit) and require different amount of resources (demand)
 Sensing task
- Assigments are not all equal..
 - Nodes contribute to different missions with different utility (quality of information)
 - Achieved profit depends on allocated demand

Maximize the profit obtained by the network for missions execution within a given **target lifetime**

- Distributed heuristic for task allocation in WSN with energy harvesting
- Nodes make independent decisions about task execution
- Decision based on:

Partial profit	1 .	Profit of the mission Potential contribution to the mission
Tune eagerness	_ 3.	Target network lifetime
	- 4.	Current energy level of the node (fuel cell + supercap)
Classify	5.	Energetic cost of the mission
missions	6.	Future energy availability

Mission classification

check energy requirements and

A new mission arrives energy availability

More willing to accept

- Fuel cell/battery required not enough energy in the supercapacitor to execute the mission; use energy from the fuel-cell
- **Capacitor sustainable** mission energy cost sustained by supercapacitor
- **Recoverable** mission energy cost sustained by supercapacitor AND energy cost recovered through harvesting before the next mission arrives
- **Free** mission energy cost expected to be fully sustained by energy harvesting

Mission classification

check energy requirements and

PREDICTIONS

A new mission arrives energy availability

More willing to accept

- Fuel cell/battery required not enough energy in the supercapacitor to execute the mission; use energy from the fuel-cell
- Capacitor sustainable mission energy cost sustained by supercapacitor
- **Recoverable** mission energy cost sustained by supercapacitor AND energy cost recovered through harvesting before the next mission arrives
 - Free mission energy cost expected to be fully sustained by energy ha REQUIRE ENERGY

Expected partial profit of a mission

 $\overline{p} = \frac{E[u]}{E[d]} \times \frac{E[p]}{P},$

Always for free missions

Mission selection rule

capacitor sustainable and recoverable

P maximum achievable profit: E[u],E[d],E[p] expected utility, demand and profit of a given mission

Partial profit achievable by a node participating to a mission

$$p^* = \frac{e_{ij}}{d_j} \times \frac{p_j}{P} \times w_1$$

w weight which depends on mission classification. Bid if $p^* > = expected partial profit$

Task-Allocation

EN-MASSE-In summary

A decentralized harvesting-aware heuristic

Key features:

- Uses short and long term energy predictions for pro-active energy allocation
- Takes into account missions arrival statistics to make sustainable allocation decisions
- Considers the impact of executing a mission on node energy

Higher priority to less-impacting missions

- 1. Free: fully sustained by harvesting
- 2. Recoverable: sustained by supercapacitor and recovered before next mission
- 3. Capacitor-sustainable: sustained by supercapacitor
- 4. Battery-required: sustained by battery

Modeling real harvesting systems

Performance evaluation

In-field testbed validation

Gap between simulations and testbed: less than 3% of maximum profit

Total profit achieved (fraction of max)

Enable on-demand communication

- O Low-power dedicated hardware, continuously monitoring the channel
- O Nodes keep their main radio OFF unless data communication is needed
- O Virtually eliminates idle listening on the main radio
- O Based on the architecture, possibility to selectively wake-up only specific nodes
- Terrific energy saving especially in event-based applications
- No latency vs. energy trade off

Passive WURs

- Harvest power from the radio signal
- No external power supply
- Low sensitivity = short wake-up range (3 m)
- Prone to interferences
 RFID-based
 - Shifts energy toll to the transmitter
 - Unsuitable for P2P
 networking

Semi-active WURs

- External power is needed
- Higher sensitivity = longer
 - wake-up range
- Sensitivity: -35 to -47 dBm
- Power consumption: 2.3 to 10 uW
 - Nano-power WURs
 - Power consumption: 98-270 nW
 - Wake-up range <= 10m</p>

- Sensitivity: -49 dBm
- Maximum wake-up range: 42 m (no addressing)
- Wake-up probability depends on WTx data rate and distance

Key idea: Semantic wake up addressing

- use WRx addresses to wake up a node or a group of nodes based on their state
 - selectively wake up only good potential relays
 - e.g., relays ranked based on advance toward the sink, traffic and channel conditions
 - WRx addresses have a semantic meaning
 - each node dynamically changes its own WRx address to reflect its state

Wake-up-enabled communication stack

- Exploits proposed WuR to addresses latency vs. energy consumption tradeoff
- Both interest dissemination and convergecasting primitives
- Key idea: use wake-up addresses to wake up a node or a group of nodes based on certain properties

Interest dissemination

- Transmission of commands from sink to nodes
- Goal: avoid reception of duplicated packets
- Use current wake-up address to indicate whether a packet was already received

- Nodes are assigned shared wake-up broadcast addresses: w_a and w_b
- Initially in sleep, wake-up radio active with address = w_a
- Sink broadcasts first interest packet preceding it with wake-up sequence w_a
- Nodes with address w_a wakes up, sets main radio to RX, receive packet
- * Then change broadcast wake up address to w
- After a random time, nodes re-broadcast packet preceding it with w_a.
- No duplicates, only nodes with address , wake mp

- Nodes are assigned shared wake-up broadcast addresses: w_a and w_b
- Initially in sleep, wake-up radio active with address = w_a
- Sink broadcasts first interest packet preceding it with wake-up sequence w_a
- Nodes with address w_a wakes up, sets main radio to RX, receive packet
- ▶ Then change broadcast wake-up address to w_b
- After a random time, nodes re-broadcast packet preceding it with wa
- No duplicates, only nodes with address w wake up

- Nodes are assigned shared wake-up broadcast addresses: w_a and w_b
- Initially in sleep, wake-up radio active with address = w_a
- Sink broadcasts first interest packet preceding it with wake-up sequence wa
- Nodes with address w_a wakes up, sets main radio to RX, receive packet
- Then change broadcast wake-up address to wb
- After a random time, nodes re-broadcast packet preceding it with w_a
- No duplicates, only nodes with address w wake up

- Nodes are assigned shared wake-up broadcast addresses: w_a and w_b
- Initially in sleep, wake-up radio active with address = w_a
- Sink broadcasts first interest packet preceding it with wake-up sequence w_a
- Nodes with address w_a wakes up, sets main radio to RX, receive packet
- Then change broadcast wake-up address to wb
- After a random time, nodes re-broadcast packet preceding it with w_a
- No duplicates, only nodes with address w, wake up

- Nodes are assigned shared wake-up broadcast addresses: w_a and w_b
- Initially in sleep, wake-up radio active with address = w_a
- Sink broadcasts first interest packet preceding it with wake-up sequence wa
- Nodes with address w_a wakes up, sets main radio to RX, receive packet
- Then change broadcast wake-up address to wb
- After a random time, nodes re-broadcast packet preceding it with w_a
- No duplicates, only nodes with address w wake up

- Nodes are assigned shared wake-up broadcast addresses: w_a and w_b
- Initially in sleep, wake-up radio active with address = w_a
- Sink broadcasts first interest packet preceding it with wake-up sequence w_a
- Nodes with address w_a wakes up, sets main radio to RX, receive packet
- Then change broadcast wake-up address to wb
- After a random time, nodes re-broadcast packet preceding it with w_a
- No duplicates, only nodes with address wa wake up

Converge Casting: GREEN-WUP

- Multi-hop data transfer to sink
- Energy harvesting scenario: nodes scavenge power from environment
- Key idea: Selectively wake-up only good potential relays
- Ranked based on hop count, residual energy, energy intake (harvesting-aware)
- Wake-up addresses have a semantic meaning
- Nodes dynamically change their wake-up addresses over time to reflect their state
 - Format Hop count Energy class
 - Energy class depends on harvesting and residual energy

- Example: energy classes
 - max battery level > threshold T_{high} and excess energy from harvesting
 - 2 battery level $> T_{high}$
 - 1 T_{low} < battery level $\leq T_{high}$
 - 0 battery level $\leq T_{low}$
- ▹ Node B has a packet to transmit
- Sends RTS only to nodes with hopcount = 1 and energy = max. Then it goes to sleep
- Only node D wakes up. Other nodes continues to sleep
- Iterate on energy class if no relay found
- K CTS, DATA, ACK.

- HC: 3 Example: energy classes HC: 2 B HC: 1 D HC: 1 Sink
- - max battery level > threshold T_{high} and excess energy from harvesting
 - 2 battery level $> T_{high}$
 - 1 T_{low} < battery level $\leq T_{high}$
 - 0 battery level $\leq T_{low}$
- Node B has a packet to transmit

- Example: energy classes
 - max battery level > threshold T_{high} and excess energy from harvesting
 - 2 battery level $> T_{high}$
 - 1 T_{low} < battery level $\leq T_{high}$
 - 0 battery level $\leq T_{low}$
- Node B has a packet to transmit
- Sends RTS only to nodes with hopcount = 1 and energy = max. Then it goes to sleep
- Only node D wakes up. Other nodes continues to sleep
- Iterate on energy class if no relay found
- CTS, DATA, ACK.

- Example: energy classes
 - max battery level > threshold T_{high} and excess energy from harvesting
 - 2 battery level $> T_{high}$
 - 1 T_{low} < battery level $\leq T_{high}$
 - 0 battery level $\leq T_{low}$
- Node B has a packet to transmit
- Sends RTS only to nodes with hopcount = 1 and energy = max. Then it goes to sleep
- Only node D wakes up. Other nodes continues to sleep
- Iterate on energy class if no relay found
- CTS, DATA, ACK..

- Example: energy classes
 - max battery level > threshold T_{high} and excess energy from harvesting
 - 2 battery level $> T_{high}$
 - 1 T_{low} < battery level $\leq T_{high}$
 - 0 battery level $\leq T_{low}$
- Node B has a packet to transmit
- Sends RTS only to nodes with hopcount = 1 and energy = max. Then it goes to sleep
- Only node D wakes up. Other nodes continues to sleep
- Iterate on energy class if no relay found
- CTS, DATA, ACK...

- Example: energy classes
 - max battery level > threshold T_{high} and excess energy from harvesting
 - 2 battery level $> T_{high}$
 - 1 T_{low} < battery level $\leq T_{high}$
 - 0 battery level $\leq T_{low}$
- Node B has a packet to transmit
- Sends RTS only to nodes with hopcount = 1 and energy = max. Then it goes to sleep
- Only node D wakes up. Other nodes continues to sleep
- Iterate on energy class if no relay found
- CTS, DATA, ACK..

Different concept of wake up radio

- Active, higher energy consumption
- + Semantic WUP radio addresses
- + Only one transceiver (TX)

Key feature of the proposed WuR

- Selective addressing of nodes combining frequency-domain and time-domain addressing space
- Wake-up signal: sequence of continuous-wave pulses OOK modulated over c IEEE 802.15.4 channels (2.4 GHz ISM band)

Prototyping and design validation

- Prototype with 4 channels at 2410, 2435, 2455 and 2480 MHz
- Lab experiments: sensitivity of -83 dBm
- In-field experiments: RX node (TelosB + WuR), TX node (MTM-CM3300)
- Varying distance up to 120 m
- TX node sends 4 different wake-up sequences (8 symbols) 100 times
- Wake-up statistics recorded by RX node
- ► False positive and false negative both < 1%
- Simulation for power consumption scaling: 168 μW per filter, 1.6 mW overall (including LNA)

Green Castalia simulations

Chiara Petrioli, Dora Spenza, Pasquale Tommasino, Alessandro Trifiletti A Novel Wake-Up Receiver with Addressing Capability for Wireless Sensor Nodes. IEEE DCOSS 2014: 18-25

Coverage time similar to Flooding with 100% DC Energy consumption reduced of up to $\approx 96\%$ vs Flooding10%: -24x coverage time, -8x energy

GREEN-WUP, network of 100 nodes

Average latency 100 ms higher than CTP without LPL Energy consumption reduced of up to $\approx 33x!$ vs CTP+LPL=500ms: latency -16x, -45% energy

- ALBA-R: The best relay is selected among the nodes that are awake
- ALBA-WUR: We wake up good potential relays when we need them
- Semantic addressing: WUR addresses reflect fundamental parameters—color, available queue space and QPI

• When a node has a packet to send, it wakes up only good potential relay

Color = Red Burst size = 2 Target QPI = 1

- Each node maintains a pool of WUR addresses, each corresponding to a request it can serve
- GPI is taken into account when answering to WUR requests

- Receiver:
 - Color: Red; queue occupancy: 1 (of 3);moving average of recent transmissions: 2, and maximum number of packets that can be sent in a burst: 2

Color = Red Burst Size = 1	QPI = 1
Color = Red Burst Size = 2	QPI = 2
Color = Blue Burst Size = 1	QPI = 1
Color = Blue Burst Size = 2	QPI = 2

11 IR W //

• Sender:

Color = Blue	Burst size = 1	Target QPI = 1

- Simulation framework: Green Castalia
- Developed extensions: MagoNode, WUR, module, WTx module
- Realistic energy and WUR models based on actual measurements and experiments
- Comparison with ALBA-R with duty cycles:100%, 10%, 3%, 1%
- 120 nodes distributed randomly and uniformly over a 200x200m field
- Data traffic: λ packets per second (Poisson process)

ALBA-WUR vs. ALBA-R: Energy Consumption and Latency

- Energy consumption reduced by up to three orders of magnitude
- Latency comparable to that of ALBA-R with 100% duty cycle

- Lifetime of several decades!
- Network with 1% duty cycle and **no traffic** = less than 2 years

- For applications (shorter range/dense deployments) in which wake up radio enabled sensor networks can be adopted WUP-WSNs allow to achieve very long lasting networks at the same time allowing real-time data communications.
- Wake up radio with semantic addresses: Paradigm shift introduced by our recent works
 - + Opens up a lot of research directions
 - + much still to investigate
 - Technology still under development
- Best students in the class could join the group of PhD and master students working on this reasearch@SENSES!