
†Department of Computer Science – University of Rome “Sapienza” – Italy

Ad hoc Network Routing - Clustering

Internet of Things (ex. Reti Avanzate)
a.a 2015/2016

Un. of Rome “La Sapienza”

Chiara Petrioli†

2

Scalability Problems and Clustering

•  What happens to protocols when the number of network nodes
grows?
–  Especially crucial in WSNs

•  A traditional networking solution: Hierarchical organization of the
nodes

•  Network nodes are grouped into clusters
•  Some nodes, locally the “best,” are selected to coordinate the

clustering process: Clusterheads

3

How to Select the Best Nodes

•  Independence of the clusterheads

•  Dominance of the clusterheads

•  Possibility to express “preferences”

•  Distributed operations

•  Fast and simple implementation

4

Approaches

•  Heuristics based on Independent Sets
–  Minimum ID approach (Gerla & al.)
–  Maximum degree (Ephremides & al.)

•  Heuristics based on Dominating Sets
–  The concept of “spine”
–  Minimum connected dominating set

5

Maximum Independent Set (MIS)

•  A subset V’ of the vertices V of a graph G=(V,E) is
independent when for each u,v ∊ V’ the edge {u,v} ∉ E

•  MIS is an Optimization Problem
•  Input: A Graph G=(V,E) with n vertices
•  Output: A subset V’ of V that is independent and has

maximum size

6

MIS: Hardness

•  No known algorithm computes a MIS in polynomial time
•  Need for approximate solutions
•  And approximation algorithm is an algorithm that produces a

solution that is not optimal, but that approximates it
•  We sacrifice optimality in favor of a “good” solution that can be

computed efficiently

7

MIS is HARD to Approximate

•  Bad news
–  Not only MIS is computationally hard
–  It is also hard to approximate:

ü Approximate solutions are not so good
ü They are “unboundedly” far from the optimum

•  We consider the simple greedy heuristic for the MIS

8

Greedy Heuristic for MIS, 1

•  Select the vertex with minimum degree and put it in the
MIS
–  The degree of a vertex is the number of its neighbors

ü Cardinality of its adjacency list

–  Keep going till all the vertices are either in the MIS or COVERED
by a vertices in the MIS

9

Greedy Heuristic for MIS, 2

MIS(V,E,d) // d is the vector of degrees
 mis = Ø
 while V ≠ Ø do
 v = vertex with min degree
 mis = mis U {v}
 V = V – {{v} U N(v)}
 return mis

10

On MDS—what if we
look at UDG graphs?

•  Bad news: Still computationally hard
•  Better news: Minimum DS It is approximable “up to a

constant”
–  It means that the ratio between the size of a DS computed by

MIS greedy on UDGs and the size of a MDS is < c, c a constant

•  This constant is 5

11

Greedy MIS: Maximal Solution

•  The greedy solution provides a maximal independent set
–  An independent set is maximal when, if you add a vertex, the set is no

longer independent
ü  You cannot make a maximal independent set bigger

•  This solution is also a minimal dominating set
–  A dominating set D subset of V is a set such that a vertex v ∊ V is either

in D or it has a neighbor in D
•  Solutions we will see are variant of this approach

12

Greedy MIS for MDS on UDG
is 5-approximable, 1

•  Key fact: In a UDG disk (radius 1) there are at most 5
independent nodes

•  Consider an Optimal solution and a Greedy solution
•  Since Opt is dominant, it dominates Greedy
•  Assign every vertex of Greedy to one dominator in Opt

(choose one if more)

13

Greedy MIS for MDS on
UDG is 5-approximable, 2

•  For each u in Opt consider its assigned vertices v1(u),
v2(u), …, vk(u) of Greedy

•  How big is k?
•  Well, all vi(u) must be distant 1 from u and they also

have to be independent
•  Greedy: at most 5 times bigger than Opt

14

Advantages of
hierarchical organization (from SoA)

•  routing always through the clusterhead
•  data aggregation at the clusterhead
•  easy to locally synchronize nodes within the cluster,

using TDMA MAC protocol for intra-cluster
communication and different MAC protocols (e.g. CDMA)
for inter-cluster communications

•  Challenge: cluster maintenance

15

MWIS-Based Clustering

•  MWIS = Maximal Weight Independent Set
•  Clustering selection based on generic weights (real

numbers > 0)

–  Mobility/node related parameters (e.g., energy, link
quality …)

–  Generalizes previous “Independent Set” solutions

16

Two Protocols

•  Distributed Clustering Algorithm (DCA)
–  Quasi-mobile networks, periodical reclustering. Allow complexity

analysis, fast and simple
•  Distributed and Mobility-Adaptive Clustering (DMAC)

Algorithm
–  Same rules/procedures for clustering set up and maintenance,

adaptive to nodes mobility and node/link failures

17

DCA: Distributed Clustering Algorithm, 1

•  Assumptions

–  Knowledge of IDs and weights of one-hop neighbors

–  Broadcast transmission of a packet in finite time (a “step”)

–  Nodes do not move during clustering

18

DCA, 2

•  (Only) Two messages:
–  CH(v): Sent by a clusterhead v
–  JOIN(u,t): Sent by ordinary node u when it joins the cluster of

clusterhead t

•  Three (simple) procedures:
–  Init (start up)
–  OnReceivingCH(v), OnReceivingJOIN(u,v) (message triggered)

19

DCA

•  Each node knows its neighbors and their weight
•  A node is init if it has the largest weight in its neighborhood
•  Init nodes become clusterheads and invite their neighbors to

join the cluster
•  A node waits to receive messages from larget weight neighbors

before it makes a decision on its role
–  If a neighbor with larger weight invites it to join its cluster then node x sends a JOIN

and enters the cluster as ordinary node
–  Otherwise it becomes clusterhead and sends a CH message to invite its neighbors to

join its cluster

20

DCA

•  Two types of messages
–  CH(v) used by node v to let its neighbors know it is acting as

clusterhead
–  JOIN(v,u) used by v to communicate to its neighbors that it will

be part of the cluster whose clusterhead is node u

21

DCA

•  Variables at node v
–  Cluster(v) identifies the set of nodes which are part of node v’s cluster
–  Clusterhead is a variable which identifies the clusterhead of the cluster I

am affiliated to.
–  Ch(u) is a boolean variable set to true if I have either sent a CH message

(in this case the boolean variable is set to true for u==v) or I have
received a CH message from node u.

–  Boolean variable Join (u,t) is true if node v has received a JOIN(u,v)
message from node u

22

DCA-Procedure
(executed at node v)

•  Init
If all neighors have weight smaller than v

 send CH(v);
 Cluster(v)=Cluster(v)U{v};
 Ch(v)=true;
 Clusterhead=v;

23

DCA-Procedure
(executed at node v)

•  On receiving CH(u)
 Ch(u)=true;
 If u has weight greater than mine and all my other
neighbors with weight larger than his have sent a Join
then:
 Clusterhead=u;
 send JOIN(v,Clusterhead);

24

DCA-Procedure
(executed at node v)

•  On receiving JOIN(u,t)
 Join(u,t)=true;
 If v is a clusterhead then if t==v
 {Cluster(v)=Cluster(v)U{u};
 If I have received Join from all smaller weight neighbors EXIT}
 Otherwise if all bigger weight neighbors have made a decision on their role
 {if they all have sent a JOIN
 {send CH(v);
 Cluster(v)=Cluster(v)U{v};
 Clusterhead =v;
 If JOIN have been received by all smaller weight neighbors EXIT.}
 Otherwise (one or more bigger weight neighbors have sent a CH)
 {Clusterhead= biggest weight neighbor among those who have
become clusterhead and have invited me to join their cluster sending a
 send JOIN(v,Clusterhead);
 EXIT;}

 }
 }

25

Example

4(9)

5(8)

7(5)

6(1)

2(3)

1(6)

8(1)

3(2)

Cluster 1
Cluster 2

Cluster 3

clusterhead clusterhead

clusterhead

I Step II Step III Step IV Step V Step

26

DCA: Provable Properties

•  Consider
τ: V à {1,2,3, … , 2k}

V = set of network nodes, k = number of clusters
•  Proposition: Each node v in V sends exactly one message by τ(v)

steps
•  Corollary 1: DCA message complexity is n =|V|
•  Corollary 2: DCA terminates correctly in at most 2k steps (<= 2n)

27

Joining Clusterheads:
Dynamic Backbone

•  A theorem from Chlamtac and Farago:
 If a network is connected, and DCA is used, then if and
only if each clusterhead is linked to all the clusterheads
at most three hops away, the resulting backbone
network is guaranteed to be connected

28

Example

4(9)

5(8)

7(5)

6(1)

2(3)

1(6)

8(1)

3(2)

Cluster 1
Cluster 2

Cluster 3

clusterhead clusterhead

clusterhead

I Step II Step III Step IV Step V Step

29

4 Backbone Formation Protocols

•  3 representatives of major approaches

–  Selection of independent set of nodes and backbone
construction (DCA)

–  Rich dominating set formation and pruning (WuLi)
–  Two-phase algorithm with theoretical guarantees (WAF)

•  1 proposal after the performance comparison (DCA-S)

30

Distributed Clustering
Algorithm (DCA)

•  Distributed and localized implementation of the greedy
for independent set

•  Takes node status into account for node selection
•  Independent nodes are joined into a connected

backbone (connectivity is guaranteed) via gateways
•  Low degree of parallelism (“dependency chains”)

31

A DCA Backbone

32

WuLi: Wu and
 Li protocol

•  Distributed and localized protocols for forming a
connected dominating set

•  Build a rich connected dominating set
•  Applies localized rules for pruning unnecessary nodes/

links
•  High degree of parallelism (“all localized”)

33

WuLi: Wu and
Li protocol

•  Distributed and localized protocols for forming a
connected dominating set

•  Build a rich connected dominating set
•  Applies localized rules for pruning unnecessary nodes/

links
•  High degree of parallelism (“all localized”)

If a vertex v has two neighbors which are not
in visibility range it enters the set C

34

WuLi: Wu and
Li protocol

•  Distributed and localized protocols for forming a
connected dominating set

•  Build a rich connected dominating set
•  Applies localized rules for pruning unnecessary nodes/

links
•  High degree of parallelism (“all localized”)

What is needed is, from the neighbors, whether
they are in C and their list of neighbors.

35

WuLi-dominance
property

Assume V’ is the set of vertices that are marked T in V, i.e., the set of vertices which initially enter the CDS since
they have at least two neighbors which are not neighbors of each other. The reduced graph G’ is the
subgraph of G induced by V’. The following two theorems show that G is a dominating set of G and it is
connected.

•  THEOREM 1: Given a G = (V, E) that is connected, but not completely connected, the vertex subset V’,

derived from the marking process, forms a dominating set of G.
•  PROOF: Randomly select a vertex v in G. We show that v is either in V’ (a set of vertices in V that are

marked T) or adjacent to a vertex in V’ . Assume v is marked F, if there is at least one neighbor marked T,
the theorem is proved. When all its neighbors are marked F, we consider the following two cases: (1) All the
other vertices in G are neighbors of v. Based on the marking process and the fact that m(v)=F, all these
neighbors must be pairwise connected, i.e., G is completely connected. This contradicts to the assumption
that G is not completely connected. (2) There is at least one vertex u in G that is not adjacent to vertex v.
Construct a shortest path, {v,vi,v2, u}, between vertices v and u. Such a path always exists since G is a
connected graph. Note that v2 is u when v and u are 2-distance apart in G. Also, v and v2 are not directly
connected; otherwise, {v, v2,. .. u} is a shorter path between v and u. Based on the marking process, vertex
vi, with both v and v2 as its neighbors, must be marked T. Again this contradicts the assumption that v’s
neighbors are all marked F. CVD

da ‘On Calculating Connected Dominating Set for Efficient Routing

in Ad Hoc Wireless Networks’, Wu and Li

36

WuLi (first step produces a CDS)

•  THEOREM 2: The resulting DS C=G’ is a connected graph.
•  PROOF: We prove this theorem by contradiction. Assume G’ is

disconnected and v and u are two disconnected vertices in G’. Assume
disG(v,u) =k+1 > 1 and{v,v1,v2,...,vk,u} is a shortest path between vertices
v and u in G. Clearly, all v1,v2,vk are distinct and among them there is
at least one vi such that m(vi) = F (otherwise, v and u are connected in
G’). On the other hand, the two adjacent vertices of vi, vi-1 and vi+i, are
not connected in G (otherwise, {v, ..vi, vi+1, vk,u} would be a shorter
path). Therefore, m(vi) =T based on the marking process.

37

WuLi: Wu and Li protocol

•  Distributed and localized protocols for forming a
connected dominating set

•  Build a rich connected dominating set
•  Applies localized rules for pruning unnecessary nodes/

links
•  High degree of parallelism (“all localized”)

38

WuLi: Wu and Li protocol

•  Distributed and localized protocols for forming a
connected dominating set

•  Build a rich connected dominating set
•  Applies localized rules for pruning unnecessary nodes/

links
•  High degree of parallelism (“all localized”)

Rule 1: for each pair of nodes u and v in C
the one with the smallest ID, say v, can be removed
from C if v and all its neighbors are covered by u
Rule 2: Assume nodes u,v, and w are in C and
assume that v’s ID is the smallest. If u and w are
neighors of v and are in each other transmission
range and if each neighbor of v is covered by u
and w, then v can be removed from C.

Connectivity and dominance properties are maintained

39

WuLi: Wu and Li protocol

•  Distributed and localized protocols for forming a
connected dominating set

•  Build a rich connected dominating set
•  Applies localized rules for pruning unnecessary nodes/

links
•  High degree of parallelism (“all localized”)

What is needed is, from the neighbors, whether
they are in C and their list of neighbors.

40

A WuLi Backbone

41

WAF: Wan, Alzoubi
and Frieder

•  Two phases
–  Leader election: One node is chosen among all network nodes to

be the root of a tree
–  Nodes at different levels of the trees can be chosen to form a

connected dominating set

•  The “leader election tree” is quite expensive
•  Very low degree of parallelism

42

A WAF Backbone

43

DCA-S: DCA Sparsified

•  Build a connected dominating set (say, with DCA) and consider its
spanned sub-graph H (include gateways)

•  Erdös: If a graph does not have small cycles then it is sparse
•  Find and break small cycles (small=log n)

–  In practice we search and break cycles with 3 and 4 links
•  Breaking cycles does not compromise connectivity

44

Simulation Results

•  Metrics (all averages)
1.  Protocol duration
2.  Operation overhead (in bytes)
3.  Energy consumption (per node)
4.  Backbone size
5.  Route length
6.  Backbone robustness (node deaths for disconnections)

45

Simulation Results, 2

•  Parameters of ns2-based simulations
–  Nodes: ≤ 300, IST EYES prototype

ü Tx range: 30m
ü Initial (residual) energy: 1J
ü Tx, Rx, idle power: 24, 14.4, 0.015 (mW)

–  Area: 200 x 200m
–  Six scenarios with increasing densities (avg. degrees: 3.5 to 20)

46

Protocol Duration

•  WuLi is fastest
–  Simple operation; parallelism

•  DCA: Reasonably fast
–  Possible dependencies and gateway selection

•  DCA-S: As DCA
–  The sparsification phase is executed by fewer nodes and

requires little info exchange

•  WAF: Slower
–  Non-trivial leader election

47

Protocol Duration, 2

48

Protocol Overhead

49

Protocol Overhead, 2

•  Average number of protocol bytes per node
•  WuLi: Best performing

–  Simple list exchange
•  DCA(-S): Almost twice as much

–  Bit more info needed (weight, IDs, …)

•  WAF
–  Leader election complexity

50

Energy Consumption

•  Important metric per backbone set up and maintenance
•  Similar to overhead results
•  WuLi and DCA perform quite well
•  DCA-S performs similarly: No difference in breaking

cycles with 3 or 4 links
•  WAF: High consumption due to first phase

51

Energy Consumption, 2

52

Backbone Size

•  Important metric: Routing info and awake/asleep cycles
–  Small backbone + role rotation: key for WSNs

•  Decrease with n increasing (bigger clusters)
•  WAF: “Slimmer” backbone (tree like)
•  DCA-S, 4 < DCA-S, 3 < DCA < WuLi

53

Backbone Size, 2

54

Backbone Robustness

•  Number of nodes needed to disconnect the backbone
•  Useful for planning backbone re-orgs
•  Increases with network density
•  WuLi and DCA: More robust

–  Resilient to up to 25 “death” when n = 300

•  WAF: Quite a disaster (tree-like topologies)
•  DCA-S: In the middle

55

Backbone Robustness, 2

56

Route Length

•  Flat topology (“visibility graph”) as a base
•  Expected increase: Hierarchy routes are longer
•  DCA & WuLi: 7 to 34.7% longer routes
•  DCA-S: Up to 9% more than DCA
•  WAF: Up to 33.4% longer than DCA

57

Route Length, 2

58

“To Go”

•  Hierarchical organization is effective for prolonging network lifetime
•  Four protocols for backbone formation:

–  DCA, WuLi, WAF and DCA-S

•  Nice theoretical features à hard to implement
•  Simple solutions (WuLi, DCA): Good starting point for efficient

implementations
•  DCA-S: “Slimmer” backbone at a reasonable cost

59

Adapting to Mobility and
Node/Link Failures: DMAC

•  DMAC is for clustering set up AND maintenance
•  Nodes can move during the clustering
•  Each node reacts to

–  Reception of a message
–  Presence of a new link
–  Link failure

•  Same assumptions of DCA, plus knowledge of neighbors’ roles (no
role = ordinary role)

60

Adapting to Mobility and
Node/Link Failures: DMAC

•  DMAC is for clustering set up AND maintenance
•  Nodes can move during the clustering
•  Each node reacts to

–  Reception of a message
–  Presence of a new link
–  Link failure

•  Same assumptions of DCA, plus knowledge of neighbors’ roles (no
role = ordinary role)

When an ordinary node “dies” we simply need to keep track
When a gw node “dies” we have to select a new gw to
interconnect two adjacent cluster
When a CH node “dies” an ordinary node in its cluster looks
for other CH neighbors, selecting the one with biggest
weight, if one or more are available.
Otherwise, if there are no CH neighbors and the ordinary
node has the biggest weight it becomes CH.
Nodes removal/arrival, changes in link quality may result in
need to maintain the backbone (which significantly
increases the control overhead of clustering).

61

DMAC: The Procedures

•  INIT
•  Link-dependent procedures:

–  Link_Failure
–  New_Link

•  Message-triggered procedures:
–  OnReceivingCH(v)
–  OnReceivingJOIN(u,t)

DMAC

62

DMAC

63

DMAC

64

DMAC

65

DMAC

66

