
1

Programmazione
di
Processori MultiCore – V lezione

Federico Massaioli (federico.massaioli@caspur.it)

CASPUR e Università degli Studi di Roma “La Sapienza”
Laurea Magistrale in Informatica
Anno accademico 2008-2009

2

Multicore: tutti i gusti Intel

Core 1 Core 2

Cache L1 Cache L1
Cache L2

Core 1.1 Core 1.2

Cache L1 Cache L1
Cache L2

Core 2.1 Core 2.2

Cache L1 Cache L1
Cache L2

Core 1 Core 2

Cache L1 Cache L1
Cache L2

Core 3

Cache L1

Core 4

Cache L1

Dual-Core

Dual Dual-Core

Quad-Core

Sottosistema di memoria
esterno alla CPU



2

3

Multicore: tutti i gusti AMD

Core 1 Core 2

Cache L1 Cache L1
Cache L2 Dual-Core

Quad-Core

Cache L2

Memory Controller

Core 1 Core 2

Cache L1 Cache L1
Cache L2 Cache L2

Memory Controller

Core 2

Cache L1
Cache L2

Core 2

Cache L1
Cache L2

Solo i moduli RAM
sono esterni alla CPU

4

Multicore: come sfruttarli?

• Scopo: velocizzare un’applicazione
• Concorrenza: flussi di esecuzione 

sincronizzati tra loro
• Parallelismo: i flussi di esecuzione 

avanzano contemporaneamente
• Con la concorrenza

– Modularità, separazione funzionale
– Non necessariamente velocizzazione

• Con il parallelismo
– Velocizzazione dell’esecuzione



3

5

Aspettative?

• Legge di Amdahl
– T: tempo di elaborazione
– P: numero di processori utilizzabili
– αT: parte intrinsecamente seriale
– (1-α)T: parte dell’elaborazione suddividibile 

in parti uguali tra i processori
– TP = αT + (1-α)T/P: tempo su P processori
– T∞ = αT: limite asintotico
– SP = T/ TP: speedup
– EP = SP/P: efficienza

• Troppo semplice…

6

La legge di Amdahl a colpo d’occhio



4

7

La legge di Amdahl è:

• Ottimista:
– TP costante per P>K fissato
– K differenti in parti diverse dell’applicazione
– assume una parallelizzazione bilanciata
– trascura costi di coordinazione e sincronizzazione 

dei flussi di esecuzione
• Pessimista:

– più risorse (es. cache)
– più risorse (es. memory bandwidth)
– trascura l’algoritmo: il miglior algoritmo seriale 

potrebbe essere pessimo in parallelo
– trascura layout dei dati

8

Esempio: ricerca binaria vs. lineare

• La ricerca binaria non è parallelizzabile
– ma richiede dati ordinati
– il sorting è parzialmente parallelizzabile

• La ricerca lineare è parallelizzabile
– si passa O(N/2) ad O(N/(2×P))

• Approcci possibili a seconda dei dati
– sorting parallelo
– ricerca lineare parallela
– suddivisione dei dati, poi ogni processore esegue 

sorting e ricerca binaria locali
• Altre caratteristiche dei dati

– serve solo il primo match o tutti?
– i dati sono disposti casualmente o clustered? 



5

9

Cache: condivise o disgiunte?

• Diversi flussi di esecuzione possono 
accedere le stesse locazioni o locazioni 
diverse

• Cache condivise accedendo locazioni:
– differenti: contesa per la cache
– stesse: cache ‘efficace’ più grande

• Cache disgiunte accedendo locazioni:
– differenti: cache ‘efficace’ più grande
– stesse: non c’è vantaggio

• Dipende dalle applicazioni

10

La bandwidth verso la memoria
• Le macchine multiprocessore (single- o multi-core) sono sempre più

comuni
• Uniform Memory Access: le CPU condividono il bus di memoria

• Non Uniform Memory Access: ogni CPU ha il suo banco ed il suo bus
di memoria

CPU

CPU CACHE

CACHE

MEMORIA

CPU

CPU CACHE

CACHE MEMORIA

MEMORIA



6

11

UMA, NUMA e performance

• Problemi principali:
– se un processo o thread viene trasferito da una CPU ad un’altra, 

va perso tutto il lavoro speso per usare bene la cache
– macchine UMA: processi “memory intensive” su più CPU 

contendono per il bus, rallentandosi a vicenda
– macchine NUMA: codice eseguito da una CPU con i dati nella 

memoria di un’altra portano a rallentamenti del 50÷100%

• Dipende, di nuovo, dall’applicazione
• Soluzioni:

– binding di processi o thread alle CPU
– memory affinity (Linux su Opteron, numactl)

12

Multicore: processi o thread?

• Processi + message passing
– processi separati
– consente uso di più macchine
– scheduling più oneroso
– inefficiente dentro la singola macchina (copie memoria-

memoria)
• Multithreading

– memoria dati condivisa
– scheduling meno oneroso
– data race mutua esclusione rischio deadlock
– consistenza della memoria: garantita dalle cache, non dai 

read/write buffer delle CPU
• Processi + shared memory segment

– combina alcuni svantaggi e ne aggiunge di altri
– utile per altri scopi



7

13

OK, i thread, ma quali?

• Pthreads, Windows threads
– troppo basso livello
– scheduler generico
– orientati alla concorrenza
– occorre sviluppare molto codice di infrastruttura

• Java: inefficiente
• Estensioni ‘mirate’ a linguaggi esistenti (Cilk, OpenMP,…)

– minima intrusività nel codice
– equivalenza seriale
– adattamento automatico all’ambiente (core disponibili)
– concepiti per il parallelismo
– runtime (scheduler, routine di supporto) efficiente

• Altri approcci: Intel Threading Building Blocks



1

OpenMP 2.5
In 8 slides

Federico Massaioli (federico.massaioli@caspur.it)

CASPUR e Università degli Studi di Roma “La Sapienza”
Laurea Magistrale in Informatica
Anno accademico 2008-2009

F. Massaioli 2

• Oct 1997 – 1.0 Fortran
• Oct 1998 – 1.0 C/C++
• Nov 1999 – 1.1 Fortran   (interpretations added)
• Nov 2000 – 2.0 Fortran
• Mar 2002 – 2.0 C/C++
• May 2005 – 2.5 Fortran/C/C++   (mostly a merge)

• Main targets:
– rapid, good enough speedup on small SMPs
– with an incremental approach to parallelization
– without preventing scalability on big SMPs
– and trying to be “compatible” with the serial version



2

F. Massaioli 3

OpenMP in real life
• Rapidly adopted by vendors

– at least for first specs
– some slow down for the latest ones
– some runtimes not up to user expectations
– interest is catching up

• Mostly used in HPC and scientific computing
– plus some ISVs
– plus some numerical libraries
– but growing interest in other fields

• Typical parallelization approach
– incrementally parallelize, checking for correctness
– most frequent pattern: parallel (a.k.a. worksharing) loops
– then take care of data locality

F. Massaioli 4

redundant
asynchronous

execution

The parallel construct
#pragma omp parallel
{
// I’m not alone, anymore
// do this…
// do that…

switch(omp_get_thread_num()) {
case 0 :
// …

case 1:
// …

}
}

Most users do not even realize how powerful this is
in itself



3

F. Massaioli 5

Worksharing: the loop construct

#pragma omp for
for (i= 0; i < N; ++i) {
// …
// …
}

redundant
asynchronous

execution

The number of iterations must be known each time
the construct is entered at runtime, and must be the same
for each thread

c
h
u
n
k

1

c
h
u
n
k

n

c
h
u
n
k

2

c
h
u
n
k

…

redundant
asynchronous

execution

F. Massaioli 6

Worksharing: the sections construct

#pragma omp sections
{

#pragma omp section
{
// do this …

}
#pragma omp section
{
// do that …

}
// …

}

redundant
asynchronous

execution

The omp section directive must be closely nested
in a sections construct, where no other worksharing
construct can appear.

s.  1
s. n

s. 2

s.…

redundant
asynchronous

execution

s. k



4

F. Massaioli 7

Worksharing: the single construct

#pragma omp single
{

// I’m the only one working…

}

redundant
asynchronous

execution

More complex than it appears, if the barrier is removed!

s.…

redundant
asynchronous

execution

nowait

F. Massaioli 8

And more stuff…
• Data scoping clauses

– shared
– private

• Synchronization and ordering
– barriers
– critical sections
– atomic updates of scalar types
– ordered sections

• Memory consistency
– the “dreaded” omp flush

• Syntactic sugar
– combined parallel and worksharing constructs
– initialization of private variables, reductions
– seems very sweet to average programmers…



5

F. Massaioli 9

OpenMP 2.5: how does it fare?
• Where it shines

– simplicity
– productivity (Hochstein et al., SC05)
– great performance/manWatt

• Where it lags (from HPC caves)
– manWatt/performance curve too steep at high performances
– too simple
– lacks support for cache and CPU affinity
– not enough control/not expliciting the metal

• Where it lags (from the seaside, on a glorious day)
– performance/manWatt still too low
– still too complex
– need far more flexibility
– runtimes should do more for users

• Conflicting requirements and tensions



1

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Ruud van der Pas

Senior Staff Engineer
Sun Microsystems

Menlo Park, CA, USA

IWOMP 2008
Purdue University

West Lafayette, IN, USA
May 12-14, 2008

An Overview Of OpenMP 2.5



2

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Outline
❑OpenMP Guided Tour

❑OpenMP Overview
● Directives

● Environment variables

● Run-time environment

❑Global Data

❑Wrap-Up

❑ Appendix: A First Glimpse Into OpenMP 3.0



3

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

OpenMP Guided Tour



4

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

http://www.openmp.org

http://www.compunity.org



5

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Shameless Plug - “Using OpenMP”

“Using OpenMP”
Portable Shared Memory 
Parallel Programming

Chapman, Jost, van der Pas

MIT Press, October 2007

ISBN-10: 0-262-53302-2
ISBN-13: 978-0-262-53302-7



6

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

What is OpenMP?
❑ De-facto standard API for writing shared memory 

parallel applications in C, C++, and Fortran

❑ Consists of:

● Compiler directives

● Run time routines

● Environment variables

❑ Specification maintained by the OpenMP 
Architecture Review Board (http://www.openmp.org)

❑ Latest Specification: Version 2.5

❑ Version 3.0 has been in the works since September 
2005, draft specification released October 2007

http://www.openmp.org/


7

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

When to consider OpenMP?
❑ The compiler may not be able to do the parallelization 

in the way you like to see it:

● A loop is not parallelized

✔ The data dependence analysis is not able to 
determine whether it is safe to parallelize or not

● The granularity is not high enough

✔ The compiler lacks information to parallelize at 
the highest possible level

❑ This is when explicit parallelization through OpenMP 
directives and functions comes into the picture



8

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Advantages of OpenMP
❑Good performance and scalability

● If you do it right ....

❑ De-facto standard

❑ An OpenMP program is portable

● Supported by a large number of compilers

❑ Requires little programming effort

❑ Allows the program to be parallelized incrementally

❑Maps naturally onto a multicore architecture:

● Lightweight

● Each OpenMP thread in the program can be 
executed by a hardware thread



9

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

A first OpenMP example

  for (i = 0; i < n; i++) 
    c[i] = a[i] + b[i];

For-loop with independent 
iterations

% cc -xopenmp source.c
% setenv OMP_NUM_THREADS 4
% a.out

#pragma omp parallel for  \
        shared(n, a, b, c)\
        private(i) 
for (i = 0; i < n; i++)
    c[i] = a[i] + b[i];

For-loop parallelized using 
an OpenMP pragma



10

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The OpenMP execution model

Fork and Join Model
Master
Thread

Worker
ThreadsParallel region

Synchronization

Parallel region Worker
Threads

Synchronization



11

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Example parallel execution

a

b

C
c

501-7501-250 251-500 751-1000

+

=

Iteration:

Thread 0 Thread 1 Thread 2 Thread 3



12

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

A loop parallelized with OpenMP

!$omp parallel default(none)     &
!$omp shared(n,x,y) private(i)
!$omp do
      do i = 1, n
         x(i) = x(i) + y(i)
      end do
!$omp end do
!$omp end parallel

#pragma omp parallel default(none) \
            shared(n,x,y) private(i)
{
 #pragma omp for
   for (i=0; i<n; i++)
       x[i] += y[i];
} /*-- End of parallel region --*/

clauses



13

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Components of OpenMP

 Parallel regions

 Work sharing

 Synchronization

 Data-sharing 
attributes

☞ private

☞ firstprivate

☞ lastprivate

☞ shared

☞ reduction

 Orphaning

Directives Environment
variables

 Number of threads

 Scheduling type

 Dynamic thread 
adjustment

 Nested parallelism

Runtime
environment

 Number of threads

 Thread ID

 Dynamic thread 
adjustment

 Nested parallelism

 Timers

 API for locking



14

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Directive format

❑ Fortran: directives are case insensitive

● Syntax: sentinel directive [clause [[,] clause]...]

● The sentinel is one of the following:

✔ !$OMP or C$OMP or *$OMP (fixed format)

✔ !$OMP (free format)

❑ Continuation: follows the language syntax

❑ Conditional compilation: !$ or C$  -> 2 spaces

❑ C: directives are case sensitive

● Syntax: #pragma omp directive [clause [clause] ...]

❑ Continuation:  use \ in pragma

❑ Conditional compilation: _OPENMP macro is set



15

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

A more elaborate example

for (i=0; i<n; i++)
   z[i] = x[i] + y[i];

      ....
scale = sum(a,0,n) + sum(z,0,n) + f;
      ....

#pragma omp barrier synchronization

#pragma omp for nowait

parallel loop
(work is distributed)

Statement is executed 
by all threads

f = 1.0; Statement is executed 
by all threads

#pragma omp for nowait

parallel loop
(work is distributed)

#pragma omp parallel if (n>limit) default(none) \
        shared(n,a,b,c,x,y,z) private(f,i,scale)
{

} /*-- End of parallel region --*/

p
arallel reg

io
n

for (i=0; i<n; i++)
   a[i] = b[i] + c[i];



16

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Another OpenMP example
 1 void mxv_row(int m,int n,double *a,double *b,double *c)
 2 {
 3  int i, j;
 4  double sum;
 5
 6 #pragma omp parallel for default(none) \
 7             private(i,j,sum) shared(m,n,a,b,c)
 8  for (i=0; i<m; i++)
 9  {
10    sum = 0.0;
11    for (j=0; j<n; j++)
12      sum += b[i*n+j]*c[j];
13     a[i] = sum;
14  } /*-- End of parallel for --*/
15 }

% cc -c -fast -xrestrict -xopenmp -xloopinfo mxv_row.c
"mxv_row.c", line  8: PARALLELIZED, user pragma used
"mxv_row.c", line 11: not parallelized



17

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

0 1 10 100 1000 10000 100000 1000000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

OpenMP - 1 CPU

OpenMP - 2 CPUs

OpenMP - 4 CPUs

OpenMP performance

SunFire 6800
UltraSPARC III Cu @ 900 MHz
8 MB L2-cache

Memory Footprint (KByte)

P
er

fo
rm

an
ce

 (
M

fl
o

p
/s

)

Matrix too 
small *

*) With the IF-clause in OpenMP this performance 
degradation can be avoided

scales



18

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

OpenMP Directives



19

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Terminology and behavior
❑OpenMP Team := Master + Workers

❑ A Parallel Region is a block of code executed by all 
threads simultaneously

☞ The master thread always has thread ID 0

☞ Thread adjustment (if enabled) is only done before entering a 
parallel region

☞ Parallel regions can be nested, but support for this is 
implementation dependent

☞ An "if" clause can be used to guard the parallel region; in case 
the condition evaluates to "false", the code is executed 
serially

❑ A work-sharing construct divides the execution of the 
enclosed code region among the members of the team; 
in other words: they split the work



20

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

About OpenMP clauses
❑Many OpenMP directives support clauses

❑ These clauses are used to specify additional information 
with the directive

❑ For example, private(a) is a clause to the for directive:

● #pragma omp for private(a)

❑ Before we present an overview of all the directives, we 
discuss several of the OpenMP clauses first

❑ The specific clause(s) that can be used, depends on the 
directive



21

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The if/private/shared clauses

✔ Only execute in parallel if 
expression evaluates to true

✔ Otherwise, execute serially

if (scalar expression)

✔ No storage association with original object

✔ All references are to the local object

✔ Values are undefined on entry and exit

✔ Data is accessible by all threads in the team

✔ All threads access the same address space

private (list)

shared (list)

#pragma omp parallel if (n > threshold) \
        shared(n,x,y) private(i)
  {
    #pragma omp for
     for (i=0; i<n; i++)
        x[i] += y[i];
  } /*-- End of parallel region --*/



22

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

About storage association
❑ Private variables are undefined on entry and exit of the 

parallel region

❑ The value of the original variable (before the parallel 
region) is undefined after the parallel region !

❑ A private variable within a parallel region has no 
storage association with the same variable outside of 
the region

❑ Use the first/last private clause to override this 
behavior

❑We illustrate these concepts with an example



23

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Example private variables
main()
{
  A = 10;

  
  for (i=0; i<n; i++)
  {
      ....
      B = A + i;     

      ....  
  }

  C = B;            

}

#pragma omp for private(i,A,B) ...

/*-- A undefined, unless declared 
     firstprivate --*/

/*-- B undefined, unless declared 
     lastprivate --*/

#pragma omp parallel
{

} /*-- End of OpenMP parallel region --*/

#pragma omp for private(i,B) firstprivate(A) ...#pragma omp for private(i) firstprivate(A) lastprivate(B)...

Disclaimer: This code fragment is not very meaningful and only serves to 
demonstrate the clauses



24

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The first/last private clauses

firstprivate (list)

✔ All variables in the list are initialized with the 
value the original object had before entering 
the parallel construct

✔ The thread that executes the sequentially last 
iteration or section updates the value of the 
objects in the list

lastprivate (list)



25

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The default clause

default ( none | shared | private )

✔ No implicit defaults

✔ Have to scope all variables explicitly

none

✔ All variables are shared

✔ The default in absence of an explicit "default" clause

✔ All variables are private to the thread

✔ Includes common block data, unless THREADPRIVATE 

Fortran

C/C++
Note: default(private) is 
not supported in C/C++

default ( none | shared )

shared

private



26

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

      sum = 0.0
!$omp parallel default(none) &
!$omp shared(n,x) private(i)
!$omp do reduction (+:sum)
      do i = 1, n
         sum = sum + x(i)
      end do
!$omp end do
!$omp end parallel
      print *,sum

The reduction clause - Example

Variable SUM is a 
shared variable

☞ Care needs to be taken when updating shared variable SUM

☞ With the reduction clause, the OpenMP compiler generates 
code such that a race condition is avoided



27

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The reduction clause

reduction ( [operator | intrinsic] ) : list )

✔ Reduction variable(s) must be shared variables

✔ A reduction is defined as:

Fortran

C/C++

x = x operator expr
x = expr operator x
x = intrinsic (x, expr_list)
x = intrinsic (expr_list, x)

x = x operator expr
x = expr operator x
x++, ++x, x--, --x
x <binop> = expr

Fortran C/C++

✔ Note that the value of a reduction variable is undefined 
from the moment the first thread reaches the clause till 
the operation has completed

✔ The reduction can be hidden in a function call

Check the docs 
for details

reduction ( operator : list )



28

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Barrier/1

Suppose we run each of these two loops in parallel over i:

This may give us a wrong answer (one day)

Why ?

for (i=0; i < N; i++)
   a[i] = b[i] + c[i];

for (i=0; i < N; i++)
   d[i] = a[i] + b[i];



29

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Barrier/2

We need to have updated all of a[ ] first, before using a[ ] *

for (i=0; i < N; i++)
   a[i] = b[i] + c[i];

All threads wait at the barrier point and only continue 
when all threads have reached the barrier point

wait !

barrier
for (i=0; i < N; i++)
   d[i] = a[i] + b[i];

*) If there is the guarantee that the mapping of iterations onto threads 
is identical for both loops, there will not be a data race in this case



30

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Barrier/3

time

Barrier Region

idle

idle

idle

!$omp barrier#pragma omp barrier

Barrier syntax in OpenMP:



31

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

When to use barriers ?
❑When data is updated asynchronously and the data 

integrity is at risk

❑ Examples:

● Between parts in the code that read and write the 
same section of memory

● After one timestep/iteration in a solver

❑ Unfortunately, barriers tend to be expensive and also 
may not scale to a large number of processors

❑ Therefore, use them with care



32

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The nowait clause
❑ To minimize synchronization, some OpenMP directives/

pragmas support the optional nowait clause

❑ If present, threads do not synchronize/wait at the end 
of that particular construct

❑ In Fortran the nowait clause is appended at the closing 
part of the construct

❑ In C, it is one of the clauses on the pragma

!$omp do 
       :
       :
!$omp end do nowait

#pragma omp for nowait
{ 
       :
}



33

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The Parallel Region

!$omp parallel [clause[[,] clause] ...]

   "this is executed in parallel"

!$omp end parallel (implied barrier)

#pragma omp parallel [clause[[,] clause] ...]
{
   "this is executed in parallel"

} (implied barrier)

A parallel region is a block of code executed by multiple 
threads simultaneously



34

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The Parallel Region - Clauses

if (scalar expression)
private (list)
shared (list)
default (none|shared) (C/C++)
default (none|shared|private) (Fortran)
reduction (operator: list)
copyin (list)
firstprivate (list)
num_threads (scalar_int_expr)

A parallel region supports the following clauses:



35

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Work-sharing constructs
The OpenMP work-sharing constructs

☞ The work is distributed over the threads
☞ Must be enclosed in a parallel region
☞ Must be encountered by all threads in the team, or none at all
☞ No implied barrier on entry; implied barrier on exit (unless 

nowait is specified)
☞ A work-sharing construct does not launch any new threads

#pragma omp for
{
   ....
}

!$OMP DO
   ....
!$OMP END DO

#pragma omp sections
{
      ....
}

!$OMP SECTIONS
      ....
!$OMP END SECTIONS

#pragma omp single
{
      ....
}

!$OMP SINGLE
      ....
!$OMP END SINGLE



36

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The workshare construct

Fortran has a fourth worksharing construct:

!$OMP WORKSHARE

    <array syntax>

!$OMP END WORKSHARE [NOWAIT]

Example:

!$OMP WORKSHARE
    A(1:M) = A(1:M) + B(1:M)
!$OMP END WORKSHARE NOWAIT



37

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The omp for/do directive

!$omp do [clause[[,] clause] ...]
<original do-loop>

!$omp end do [nowait]

The iterations of the loop are distributed over the threads

#pragma omp for [clause[[,] clause] ...]
<original for-loop>

private firstprivate
lastprivate reduction
ordered* schedule
nowait

Clauses supported:

covered later

*) Required if ordered sections are in the dynamic extent of this construct



38

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The omp for directive - Example

#pragma omp parallel default(none)\
        shared(n,a,b,c,d) private(i)
  {
    #pragma omp for nowait
     

    
    #pragma omp for nowait
     
  
  

  } /*-- End of parallel region --*/
(implied barrier)

for (i=0; i<n; i++)
    d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
    b[i] = (a[i] + a[i+1])/2;



39

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The sections directive

!$omp sections [clause(s)]
!$omp section

<code block1>
!$omp section

<code block2>
!$omp section
           :
!$omp end sections [nowait]

The individual code blocks are distributed over the threads

private firstprivate
lastprivate reduction
nowait

Clauses supported:

#pragma omp sections [clause(s)]
{
#pragma omp section

<code block1>
#pragma omp section

<code block2>
#pragma omp section
           :
}

Note: The SECTION directive must be within the lexical extent of 
the SECTIONS/END SECTIONS pair



40

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The sections directive - Example
#pragma omp parallel default(none)\
        shared(n,a,b,c,d) private(i)
  {
    #pragma omp sections nowait
    {
      #pragma omp section
       

      
      #pragma omp section
       

    
    } /*-- End of sections --*/

  } /*-- End of parallel region --*/

for (i=0; i<n; i++)
    d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
    b[i] = (a[i] + a[i+1])/2;



41

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Combined work-sharing constructs
#pragma omp parallel
#pragma omp for
   for (...)

!$omp parallel do
        ...
!$omp end parallel do

#pragma omp parallel for
for (....)

!$omp parallel 
!$omp sections
        ...
!$omp end sections
!$omp end parallel

#pragma omp parallel
#pragma omp sections
{ ...}

!$omp parallel sections
        ...
!$omp end parallel sections

#pragma omp parallel sections 
{ ... }

Single PARALLEL sections

!$omp parallel
!$omp workshare
        ...
!$omp end workshare
!$omp end parallel

!$omp parallel workshare
        ...
!$omp end parallel workshare

Single WORKSHARE loop

!$omp parallel
!$omp do
        ...
!$omp end do
!$omp end parallel

Single PARALLEL loop



42

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Orphaning

♦The OpenMP standard does not restrict worksharing 
and synchronization directives (omp for, omp single, 
critical, barrier, etc.) to be within the lexical extent of a 
parallel region.  These directives can be orphaned 

♦That is, they can appear outside the lexical extent of a 
parallel region

        :
!$omp parallel
        :
     call dowork()
        :
!$omp end parallel
        :

 subroutine dowork()
      :
!$omp do
   do i = 1, n
      :
   end do
!$omp end do
      :

orphaned
work-sharing

directive



43

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

More on orphaning

♦When an orphaned worksharing or synchronization directive is 
encountered in the sequential part of the program (outside the 
dynamic extent of any parallel region), it is executed by the 
master thread only.  In effect, the directive will be ignored

   (void) dowork(); !- Sequential FOR

#pragma omp parallel
{
   (void) dowork(); !- Parallel FOR
}

void dowork()
{
#pragma omp for
   for (i=0;....)
   {
      :
   }
}



44

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Parallelizing bulky loops

for (i=0; i<n; i++) /* Parallel loop */
{
    a = ...
    b = ... a ..
    c[i] = ....
         ......
    for (j=0; j<m; j++)
    {
      <a lot more code in this loop>
    }
         ......
}



45

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Step 1: “Outlining”

for (i=0; i<n; i++) /* Parallel loop */
{
    (void) FuncPar(i,m,c,...)
}

void FuncPar(i,m,c,....)
{
    float a, b; /* Private data */
    int   j;  
    a = ...
    b = ... a ..
    c[i] = ....
         ......
    for (j=0; j<m; j++)
    {
      <a lot more code in this loop>
    }
         ......
}

Still a sequential program

Should behave identically

Easy to test for correctness

But, parallel by design



46

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Step 2: Parallelize

for (i=0; i<n; i++) /* Parallel loop */
{
    (void) FuncPar(i,m,c,...)
} /*-- End of parallel for --*/

Minimal scoping required

Less error prone

#pragma omp parallel for private(i) shared(m,c,..)

void FuncPar(i,m,c,....)
{
    float a, b; /* Private data */
    int   j;  
    a = ...
    b = ... a ..
    c[i] = ....
         ......
    for (j=0; j<m; j++)
    {
      <a lot more code in this loop>
    }
         ......
}



47

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

#pragma omp parallel
{
     .....

   "read a[0..N-1]";

     .....
}

     .....
   "read a[0..N-1]";
     .....

Single processor region/1

This construct is ideally suited for I/O or initializations
Original Code

one volunteer requested

thanks, we're done

"declare A to be be shared"

Parallel Version

May have to insert a 
barrier here



48

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Single processor region/2
❑ Usually, there is a barrier at the end of the region

❑Might therefore be a scalability bottleneck (Amdahl's 
law)

time

single processor 
region

Threads wait 
in the barrier



49

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

SINGLE and MASTER construct

!$omp single [clause[[,] clause] ...]
<code-block>

!$omp end single [nowait]

Only one thread in the team executes the code enclosed
#pragma omp single [clause[[,] clause] ...]
{

<code-block>
}

!$omp master
<code-block>

!$omp end master

Only the master thread executes the code block;

#pragma omp master
{<code-block>} There is no implied 

barrier on entry or 
exit !



50

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

for (i=0; i < N; i++){
     .....
   sum += a[i];
     .....
}

Critical region/1

If sum is a shared variable, this loop can not run in parallel

We can use a critical region for this:

one at a time can proceed

next in line, please

for (i=0; i < N; i++){
     .....
   sum += a[i];
     .....
}



51

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Critical region/2
❑ Useful to avoid a race condition, or to perform I/O (but 

which still has random order)

❑ Be aware that your parallel computation may be 
serialized and so this could introduce a scalability 
bottleneck (Amdahl's law)

time

critical region



52

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Critical and Atomic constructs

!$omp critical [(name)]
<code-block>

!$omp end critical [(name)]

Critical: All threads execute the code, but only 
one at a time:

#pragma omp critical [(name)]
{<code-block>} There is no implied 

barrier on entry or 
exit !

!$omp atomic
<statement>

#pragma omp atomic
<statement>

Atomic: only the loads and store are atomic .... 

This is a lightweight, special 
form of a critical section

#pragma omp atomic
    a[indx[i]] += b[i];



53

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

More synchronization constructs
The enclosed block of code is executed in the order in 
which iterations would be executed sequentially:

May introduce 
serialization

(could be expensive)
!$omp ordered

<code-block>
!$omp end ordered

#pragma omp ordered
{<code-block>}

Ensure that all threads in a team have a consistent view 
of certain objects in memory:

In the absence of a list, 
all visible variables are 
flushed; this could be 

expensive!$omp flush [(list)]

#pragma omp flush [(list)]



54

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Implied FLUSH - C/C++
The FLUSH pragma is implied on:

#pragma omp barrier

exit from parallel region

#pragma omp critical
exit from critical region

#pragma omp ordered
exit from ordered region

exit from for

exit from sections

exit from single

The FLUSH pragma is not 
implied if a nowait clause is 

present



55

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Implied FLUSH - Fortran
The FLUSH pragma is implied on:

!$omp barrier

!$omp critical
!$omp end critical

!$omp parallel [do|sections|workshare]
!$omp end parallel [do|sections|workshare]

!$omp ordered
!$omp end ordered

!$omp end do
!$omp end sections
!$omp end single
!$omp workshare

!$omp do
!$omp master
!$omp end master
!$omp single
!$omp workshare

NOT implied on:

The FLUSH pragma is not 
implied if a nowait clause 

is present



56

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Load Balancing
❑ Load balancing is an important aspect of performance

❑ For regular operations (e.g. a vector addition), load 
balancing is not an issue

❑ For less regular workloads, care needs to be taken in 
distributing the work over the threads

❑ Examples:

● Transposing a matrix

● Multiplication of triangular matrices

● Parallel searches in a linked list

❑ For these irregular situations, the schedule clause 
supports various iteration scheduling algorithms



57

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The schedule clause/1

schedule ( static | dynamic | guided  [, chunk] )
schedule (runtime)

✔ Distribute iterations in blocks of size "chunk" over the 
threads in a round-robin fashion 

✔ In absence of "chunk", each thread executes approx. N/P 
chunks for a loop of length N and P threads

static [, chunk]

TID 0 1 2 3
no chunk 1-4 5-8 9-12 13-16

chunk = 2 1-2 3-4 5-6 7-8
9-10 11-12 13-14 15-16

Example: Loop of length 16, 4 threads:



58

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The schedule clause/2

✔ Fixed portions of work; size is controlled by the value of 
chunk

✔ When a thread finishes, it starts on the next portion of 
work

✔ Same dynamic behavior as "dynamic", but size of the 
portion of work decreases exponentially

✔ Iteration scheduling scheme is set at runtime through 
environment variable OMP_SCHEDULE

dynamic [, chunk]

guided [, chunk]

runtime



59

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The experiment

0 50 100 150 200 250 300 350 400 450 500

3

2

1

0

3

2

1

0

3

2

1

0

static

dynamic, 5

guided, 5

Iteration Number

T
h

re
ad

 ID
500 iterations on 4 threads



60

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

OpenMP Environment Variables



61

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

OpenMP Environment Variables

Note: The names are in uppercase, the values are case insensitive

1

static, “N/P”

OMP_DYNAMIC { TRUE | FALSE } TRUE

OMP_NESTED { TRUE | FALSE } FALSE

OpenMP environment variable Default for Sun OpenMP

OMP_NUM_THREADS n

OMP_SCHEDULE “schedule,[chunk]”



62

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

OpenMP Run-time Environment



63

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

OpenMP run-time environment
❑OpenMP provides several user-callable functions

▶ To control and query the parallel environment

▶ General purpose semaphore/lock routines

✔OpenMP 2.0: supports nested locks
✔ Nested locks are not covered in detail here

❑ The run-time functions take precedence over the 
corresponding environment variables

❑ Recommended to use under control of an #ifdef for 
_OPENMP (C/C++) or conditional compilation (Fortran)

❑ C/C++ programs need to include <omp.h>

❑ Fortran: may want to use “USE omp_lib”



64

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Run-time library overview
Name Functionality
omp_set_num_threads Set number of threads
omp_get_num_threads Return number of threads in team
omp_get_max_threads Return maximum number of threads
omp_get_thread_num Get thread ID
omp_get_num_procs Return maximum number of processors
omp_in_parallel Check whether in parallel region
omp_set_dynamic Activate dynamic thread adjustment

(but implementation is free to ignore this)
omp_get_dynamic Check for dynamic thread adjustment
omp_set_nested Activate nested parallelism

(but implementation is free to ignore this)
omp_get_nested Check for nested parallelism
omp_get_wtime Returns wall clock time
omp_get_wtick Number of seconds between clock ticks



65

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Example
N

u
m

P

N#pragma omp parallel single(...)
   NumP = omp_get_num_threads();

allocate WorkSpace[NumP][N];
#pragma omp parallel for (...)
for (i=0; i < N; i++)
{
    TID = omp_get_thread_num();
     .....

    WorkSpace[TID][i] = .... ;
     .....

    ... = WorkSpace[TID][i];

     .....
}



66

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

OpenMP locking routines
❑ Locks provide greater flexibility over critical sections and 

atomic updates:

● Possible to implement asynchronous behavior

● Not block structured 

❑ The so-called lock variable, is a special variable:

● Fortran: type INTEGER and of a KIND large enough to 
hold an address

● C/C++: type omp_lock_t and omp_nest_lock_t for nested 
locks

❑ Lock variables should be manipulated through the API only 

❑ It is illegal, and behavior is undefined, in case a lock 
variable is used without the appropriate initialization



67

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Nested locking
❑ Simple locks: may not be locked if already in a locked state

❑ Nestable locks: may be locked multiple times by the same 
thread before being unlocked

❑ In the remainder, we discuss simple locks only

❑ The interface for functions dealing with nested locks is 
similar (but using nestable lock variables):

Simple locks Nestable locks

omp_init_lock omp_init_nest_lock
omp_destroy_lock omp_destroy_nest_lock
omp_set_lock omp_set_nest_lock
omp_unset_lock omp_unset_nest_lock
omp_test_lock omp_test_nest_lock



68

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

OpenMP locking example

Other Work

parallel region - begin

TID = 0 TID = 1

Protected
Region

acquire lock

release lock

Protected
Region

acquire lock

release lock

Other Work

parallel region - end

♦The protected region 
contains the update of a 
shared variable

♦One thread acquires the 
lock and performs the 
update

♦Meanwhile, the other 
thread performs some 
other work

♦When the lock is released 
again, the other thread 
performs the update



69

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Locking example - The code

      Program Locks
            ....
      Call omp_init_lock (LCK)

!$omp parallel shared(LCK)
 
       Do While ( omp_test_lock (LCK) .EQV. .FALSE. )
          Call Do_Something_Else()
       End Do

       Call Do_Work()

       Call omp_unset_lock (LCK)

!$omp end parallel

      Call omp_destroy_lock (LCK)

      Stop
      End

Initialize lock variable

Check availability of lock
(also sets the lock)

Release lock again

Remove lock association



70

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Example output for 2 threads

 TID:  1 at 09:07:27 => entered parallel region
 TID:  1 at 09:07:27 => done with WAIT loop and has the lock
 TID:  1 at 09:07:27 => ready to do the parallel work
 TID:  1 at 09:07:27 => this will take about 18 seconds
 TID:  0 at 09:07:27 => entered parallel region
 TID:  0 at 09:07:27 =>   WAIT for lock - will do something else for  5 seconds
 TID:  0 at 09:07:32 =>   WAIT for lock - will do something else for  5 seconds
 TID:  0 at 09:07:37 =>   WAIT for lock - will do something else for  5 seconds
 TID:  0 at 09:07:42 =>   WAIT for lock - will do something else for  5 seconds
 TID:  1 at 09:07:45 => done with my work
 TID:  1 at 09:07:45 => done with work loop - released the lock
 TID:  1 at 09:07:45 => ready to leave the parallel region
 TID:  0 at 09:07:47 => done with WAIT loop and has the lock
 TID:  0 at 09:07:47 => ready to do the parallel work
 TID:  0 at 09:07:47 => this will take about 18 seconds
 TID:  0 at 09:08:05 => done with my work
 TID:  0 at 09:08:05 => done with work loop - released the lock
 TID:  0 at 09:08:05 => ready to leave the parallel region
Done at 09:08:05 - value of SUM is 1100

Note: program has been instrumented to get this information

Used to check the answer



71

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Global Data



72

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

      program global_data
             ....
      include "global.h"
          ....
!$omp parallel do private(j)
      do j = 1, n
         call suba(j)
      end do
!$omp end parallel do
        ......

Global data - An example

subroutine suba(j)
  .....
include "global.h"
  .....

do i = 1, m
   b(i) = j
end do

do i = 1, m
    a(i,j) = func_call(b(i))
end do

return
end

Data Race !

common /work/a(m,n),b(m)

file global.h



73

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Global data - A Data Race!

call suba(1)

Thread 1

call suba(2)

Thread 2
S

h
ar

ed
 

subroutine suba(j=1)
    

    
        ....
do i = 1, m
 a(i,1)=func_call(b(i))
end do

do i = 1, m
   b(i) = 1
end do

subroutine suba(j=2)
    

    
        ....
do i = 1, m
  a(i,2)=func_call(b(i))
end do

do i = 1, m
   b(i) = 2
end do



74

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

integer, parameter:: nthreads=4
common /work/a(m,n)
common /tprivate/b(m,nthreads)

Example - Solution

subroutine suba(j)
  .....
include "global_ok.h"
  .....

TID = omp_get_thread_num()+1
do i = 1, m
   b(i,TID) = j
end do

do i = 1, m
   a(i,j)=func_call(b(i,TID))
end do

return
end

file global_ok.h

☞ By expanding array B, we can 
give each thread unique access 
to it's storage area

☞ Note that this can also be done 
using dynamic memory 
(allocatable, malloc, ....)

      program global_data
             ....
      include "global_ok.h"
          ....
!$omp parallel do private(j)
      do j = 1, n
         call suba(j)
      end do
!$omp end parallel do
        ......



75

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

About global data
❑Global data is shared and requires special care

❑ A problem may arise in case multiple threads access the 
same memory section simultaneously:

● Read-only data is no problem

● Updates have to be checked for race conditions

❑ It is your responsibility to deal with this situation

❑ In general one can do the following:

● Split the global data into a part that is accessed in serial parts 
only and a part that is accessed in parallel

● Manually create thread private copies of the latter

● Use the thread ID to access these private copies

❑ Alternative: Use OpenMP's threadprivate directive



76

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The threadprivate directive

❑ Thread private copies of the designated global 
variables and common blocks are created

❑ Several restrictions and rules apply when doing this:

● The number of threads has to remain the same for all the 
parallel regions (i.e. no dynamic threads)

● Initial data is undefined, unless copyin is used

● ......

❑ Check the documentation when using threadprivate !

❑OpenMP's threadprivate directive

!$omp threadprivate (/cb/ [,/cb/] ...)

#pragma omp threadprivate (list)



77

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

common /work/a(m,n)
common /tprivate/b(m)
!$omp threadprivate(/tprivate/)

Example - Solution 2

subroutine suba(j)
  .....
include "global_ok2.h"
  .....

do i = 1, m
   b(i) = j
end do

do i = 1, m
   a(i,j) = func_call(b(i))
end do

return
end

file global_ok2.h

☞ The compiler creates thread private 
copies of array B, to give each thread 
unique access to it's storage area

☞ Note that the number of copies is 
automatically adjusted to the number 
of threads 

      program global_data
             ....
      include "global_ok2.h"
          ....
!$omp parallel do private(j)
      do j = 1, n
         call suba(j)
      end do
!$omp end parallel do
        ......
      stop
      end



78

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

The copyin clause

copyin (list)

✔ Applies to THREADPRIVATE common blocks only

✔ At the start of the parallel region, data of the master 
thread is copied to the thread private copies

      common /cblock/velocity
      common /fields/xfield, yfield, zfield

! create thread private common blocks

!$omp threadprivate (/cblock/, /fields/)

!$omp parallel          &
!$omp default (private) &
!$omp copyin ( /cblock/, zfield )

Example:



79

An Overview of OpenMP 2.5RvdP/V1

IWOMP 2008
Purdue 

University
May 12-14, 2008

Tutorial IWOMP 2008 - Purdue University, May 12, 2008

Wrap-up OpenMP 2.5
❑OpenMP provides for a small, but yet powerful, 

programming model

❑ It can be used on a shared memory system of any size

● This includes a single socket multicore system

❑ Compilers with OpenMP support are widely available

❑OpenMP 3.0 (briefly covered later):

● Extends the language with the tasking model

✔ This allows to parallelize less regular constructs
✔ Adds tremendous flexibility 

● Various additional features introduced

● Addresses several gaps in OpenMP 2.5 



1

What’s New in OpenMP 3.0
Particularly, the New OpenMP Tasking Model

Federico Massaioli (federico.massaioli@caspur.it)

CASPUR e Università degli Studi di Roma “La Sapienza”
Laurea Magistrale in Informatica
Anno accademico 2008-2009

F. Massaioli 2

OpenMP 3.0
• 2÷3 improvements

loop collapse, STATIC schedule reuse,
AUTO schedule (allows runtimes to dynamically adapt)

• 7 fixes
internal control variables, unsigned int in for
stack size control, thread wait policy,
storage reuse (forbidden!), constructor/destructor issues,
allocatable arrays and Fortran pointers

• 2÷3 new mistakes
AUTO schedule (will vendors care?),
an incredible amount of new API calls
a complex description of the memory model

• 1 new big thing: TASKS!!!



2

F. Massaioli 3

Loop collapse

#pragma omp for collapse(3)
for(i = 1; k < nx(ib); ++i)
for(j = 1; j < ny(ib); ++j)
for(k = 1; k < nz(ib); ++k) {
…

}

• Multiblock, CFD code
• For many interposed blocks, one, two or all

directions have not enough points to
parallelize

• Changing from block to block

F. Massaioli 4

STATIC schedule reuse

#pragma omp parallel
{

#pragma omp for schedule(static)
for(i = 1; i < N; ++i)

//…
//…

#pragma omp for schedule(static)
for(i = 1; i < N; ++i)

//…
}
//…
#pragma omp parallel
{
#pragma omp for schedule(static)
for(i = 1; i < N; ++i)

//…
//…

}

will get the same schedule

in general, will get a different one



3

F. Massaioli 5

Why tasks?
• According to the Specs, OpenMP 1.0 – 2.5 “is

somewhat tailored for large array-based applications”
• Arrays: not the fanciest and coolest data structures, 

not even in STC and HPC
• Arrays

mostly regular forms of parallelism
• Lists, trees, …

frequently irregular forms of parallelism
• Lists of lists, hash tables, dequeues, btrees, …

lots of very well hidden concurrency

• “Threads are so 1990s! Geez!!!”

• But is this new tasking stuff really needed?

F. Massaioli 6

Pointer chasing in OpenMP 2.5?

for(p = list; p; p = p->next) {
process(p->item);

}

• Doesn’t suit an omp for: amount of iterations
not known in advance

• Transformation to a “canonical” loop can be
very labour-intensive/inefficient



4

F. Massaioli 7

omp single nowait is our friend

#pragma omp parallel private(p)
{

for(p = list; p; p = p->next)
#pragma omp single nowait
process(p->item);

}

• Each thread redundantly iterates through the loop
• For each single value of p, only one thread is allowed

to enter the single construct
• Very few people realize this
• Compiler/runtime developers sometimes among

them, unfortunately

F. Massaioli 8

Some experimental measurements

□ omp for
(including time to
build an array of
pointers)

+ omp single
nowait

×100 work per list element

×10 work per list element



5

F. Massaioli 9

LU factorization, dynamic lookahead

• aLAPACK + BLAS threads

Threads – no lookahead
Time for each component

Threads – dynamic lookahead

Actually implemented in OpenMP using just parallel constructs
and barriers (S. Salvini, NAG, EWOMP ’03)

(Images courtesy of
J. Dongarra)

F. Massaioli 10

Something unfeasible

void preorder(node *p) {
process(p->data);
#pragma omp parallel num_threads(2)
{
if (p->left)
#pragma omp single nowait
preorder(p->left);

if (p->right)
#pragma omp single nowait
preorder(p->right);

}
}

• Because worksharing constructs can’t be closely
nested

• And stressing nested parallelism so much is not
a good idea…



6

F. Massaioli 11

More good reasons
• Multiblock grids on complex topologies, 

multiresolution grids, immersed grids, AMR
• Fluid-structure interactions in presence of moving

parts

• Agent based models
– immunology
– financial markets simulations

• Complex bodies, hierarchical assemblies of moving
parts
– robotics
– manoeuvering

• Interaction of many different components
– SPICE3, T. Weng, R. Perng, B. Chapman, IWOMP ‘06

F. Massaioli 12

Enter OpenMP tasks

• Separation of threads and what threads
execute

• Threads are execution contexts

• Tasks are well defined units of work

• Threads execute tasks, from start to
end

• Add true concurrency to parallelism



7

F. Massaioli 13

First and foremost tasking construct

#pragma omp parallel [clauses]
{
// structured block

}

• Creates both threads and tasks
• These tasks are “implicit”
• Each one is immediately executed by one

thread
• Each of them is tied to the assigned thread

• Did you ever think of it this way?

F. Massaioli 14

New tasking construct

#pragma omp task [clauses]
{

// structured block
}

where clauses is zero or more of:

private, firstprivate, shared, default, if, untied

• Immediately creates a new task but no new thread
• This task is “explicit”
• It will be executed by a thread in the current team
• It can be deferred until a thread is available to execute
• The data environment is built at creation time

• It isn’t a worksharing construct!!



8

F. Massaioli 15

How many tasks are created?

#pragma omp parallel
{

// …
#pragma omp task
{

// …
}
//…

}

• A new one whenever a threads encounters a task construct
• In this case, as many as there are threads in the team
• Thus, # total tasks = 2*omp_get_thread_num() 
• It’s symmetrical with parallel directive
• It’s powerful

• It’s ovbious: it isn’t a worksharing construct!!

F. Massaioli 16

Load balancing on lists with tasks

#pragma omp parallel private (p)
{
#pragma omp for
for (i=0; i<num_lists; i++) {
p = listheads[i];
while(p) {
#pragma omp task firstprivate(p)
process(p);

p=next(p);
}

}
}

• sections will also do
• It’s possible: it isn’t a worksharing construct!!



9

F. Massaioli 17

And if you have a lonely list…

#pragma omp parallel
#pragma omp single
{

p = listhead;
while(p) {
#pragma omp task firstprivate(p)
process(p);

p=next(p);
}

}

• master will also do
• It can be done: it isn’t a worksharing construct!!

F. Massaioli 18

If you have recursive data structures

void preorder(node *p) {
process(p->data);
if (p->left)
#pragma omp task
preorder(p->left);

if (p->right)
#pragma omp task
preorder(p->right);

}

• It’s easy: it isn’t a worksharing construct!!

• But what about postorder traversal?



10

F. Massaioli 19

Postorder tree traversal

void postorder(node *p) {
if (p->left)
#pragma omp task
postorder(p->left);

if (p->right)
#pragma omp task
postorder(p->right);

#pragma omp taskwait

process(p->data);
}

• Parent task suspended until children tasks
complete

suspend point

F. Massaioli 20

Postorder or parallel tree traversal

void traverse(node *p, bool postorder) {
if (p->left)
#pragma omp task
traverse(p->left);

if (p->right)
#pragma omp task
traverse(p->right);

if (postorder) {
#pragma omp taskwait

}
process(p->data);

}

• Parent task suspended until children tasks complete
• Unstructured directive, trades optimization for

flexibility

suspend point



11

F. Massaioli 21

When/where explicit tasks complete?

• At #pragma omp taskwait
– applies only to tasks generated in the current task, 

not to “descendants”
– structured flavour (#pragma omp taskgroup) 

deferred to 3.1 release, in doubt it should be
“shallow” like taskwait, or “deep”

• At #pragma omp barrier
– applies to all tasks generated in the current

parallel region up to the barrier
– matches user expectation
– obviously applies to implicit barriers too

F. Massaioli 22

Data scoping in explicit tasks

• private and firstprivate: business as usual

• shared: same business, from a new perspective
– shared among all tasks (“horizontal”)
– shared among a task and a descendant (“vertical”)
– different synchronizations are required in the two cases

• Most implicitly determined variables: firstprivate!
– safety by default, programmers have full control
– spares programmers a lot of keystrokes
– can be altered with a default clause



12

F. Massaioli 23

“Vertical” sharing

void fibonacci(int n) {
int i, j;
if (n<2) return n;

#pragma omp task shared(i)
i = fibonacci(n-1);

#pragma omp task shared(j)
j = fibonacci(n-2);

#pragma omp taskwait

return i+j;
}

• Allow results to be returned to parent

synchronization

F. Massaioli 24

Enter task switching

• What: the ability of a thread to suspend a task and 
execute another one before resuming

• Where:
– at task scheduling points: task, taskwait, barrier

directives, and implicit barriers
– at a taskyield construct deferred to OpenMP 3.1

• When:
– whenever is needed or useful
– up to the implementation

• Why:
– to lift pressure on runtime data structures
– because it can’t be dispensed with completely

• Consequence: locks owned by tasks!



13

F. Massaioli 25

Lifting pressure on runtime

#pragma omp single
{
for (i=0; i<ONEZILLION; i++)
#pragma omp task
process(item[i]);

}

• Too many tasks generated in an eye-blink
• Generating task will have to suspend for a while
• With task switching, the executing thread can:

– execute an already generated task (draining the “task pool”)
– dive into the encountered task (could be very cache-friendly)

F. Massaioli 26

There’s no life without task switching

#pragma omp parallel
{

#pragma omp task
// first task

// …
#pragma omp task
// n-th task

#pragma omp taskwait
// some more tasks

}

• Without task switching, no threads available to
execute the tasks that are waited for

• Without task switching, a deadlock is granted
at taskwait!!!



14

F. Massaioli 27

Enter thread switching

#pragma omp single
{
#pragma omp task
for (i=0; i<ONEZILLION; i++)

#pragma omp task
process(item[i]);

}

• Eventually, too many tasks are generated
• Generating task is suspended and executing thread switches to

a long and boring task
• Other threads get rid of all already generated tasks, and start 

starving…
• With thread switching, the generating task can be resumed by a 

different thread, and starvation is over
• Too new to be the default, the programmer is responsible!
• Task/thread switching can happen anywhere in an untied task

untied

F. Massaioli 28

Who’s afraid of task switching?
int tp;
#pragma omp threadprivate(tp)
int var;
void work() {
#pragma omp task
{

// do work here…
#pragma omp task
{

tp = 1;
// do work here…
#pragma omp task

// no modification of tp here…
var = tp; //value of tp can be 1 or 2

}
tp = 2;

}
}

• If a thread switches task, a race among tasks could
happen

• Look at scheduling restrictions to understand if usage
is safe or not



15

F. Massaioli 29

The if clause

• When the if clause argument is false
– the encountered task is executed immediately by

the encountering thread, and the enclosing task is
suspended up to its end

– the data environment is still local to the new task
– and it’s still a different task wrt. synchronization

• It’s a user directed optimization
– when the cost of the task is comparable to the 

runtime overhead
– to control cache and memory affinity

F. Massaioli 30

And now for something more real…

• Writing a spec without experimental proof is
bad

• Our friends in Barcelona wrote a simplified
implementation
– no thread switching
– no if clause
– no task-specific optimizations

• Q#1: are tasks expressive enough?
– yes, but some problems with reductions and 

capturing pointees, good food for OpenMP 3.1
• Q#2: are tasks able to perform?

– let’s have a look



16

LCPC'07, October 11th 2007 F. Massaioli 31

Evaluation

• Run on a SGI Altix 4700 with 128 procs
• Comparison between:

– Worksharing version (using icc)
– Nested version (using icc)
– OpenMp tasks (using mcc+icc)
– Intel Taskqueues (using icc)
– Cilk (uses gcc)

• Baseline for speedups is serial time

LCPC'07, October 11th 2007 F. Massaioli 32

sparseLU

for (kk=0; kk<NB; kk++) {
lu0(A[kk][kk]);
for (jj=kk+1; jj<NB; jj++)

if (A[kk][jj] != NULL)
fwd(A[kk][kk], A[kk][jj]);

for (ii=kk+1; ii<NB; ii++)
if (A[ii][kk] != NULL)

bdiv (A[kk][kk], A[ii][kk]);
for (ii=kk+1; ii<NB; ii++) {

if (A[ii][kk] != NULL)
for (jj=kk+1; jj<NB; jj++)

if (A[kk][jj] != NULL) {
if (A[ii][jj]==NULL) A[ii][jj]=allocate_clean_block();
bmod(A[ii][kk], A[kk][jj], A[ii][jj]);

}
}

}

blocked matrix, blocks can be empty

Parallelize the inner loops
grain too small
high overhead

Parallelize the outer loops
heavy imbalance



17

LCPC'07, October 11th 2007 F. Massaioli 33

sparseLU, the tasking way
for (kk=0; kk<NB; kk++) {

lu0(A[kk][kk]);
for (jj=kk+1; jj<NB; jj++) 

if (A[kk][jj] != NULL)
#pragma omp task

fwd(A[kk][kk], A[kk][jj]);
for (ii=kk+1; ii<NB; ii++) 

if (A[ii][kk] != NULL)
#pragma omp task

bdiv (A[kk][kk], A[ii][kk]);
#pragma omp taskwait

for (ii=kk+1; ii<NB; ii++) {
if (A[ii][kk] != NULL)

for (jj=kk+1; jj<NB; jj++) 
if (A[kk][jj] != NULL) {

if (A[ii][jj]==NULL) A[ii][jj]=allocate_clean_block();
#pragma omp task

bmod(A[ii][kk], A[kk][jj], A[ii][jj]);
}

}
#pragma omp taskwait
}

Only spawn work for
non-empty blocks

better balance

Synchronization across
phases

They could be removed
if there was support for
explicit dependencies

between tasks

LCPC'07, October 11th 2007 F. Massaioli 34

SparseLU evaluation

sparseLU (50 blocks, 100x100 elements)

1 2 4 8 12 16 20 24 28 32

0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

25
OMP work-sharing

OMP nested

OMP tasks

Intel work-queue

Cilk

# cpus

sp
ee

d-
up



18

LCPC'07, October 11th 2007 F. Massaioli 35

Protein sequences alignment

for ( si = 0 ; si < nseqs ; si+) {
len1 = compute_sequence_length( si +1);
/∗ compa re to the other sequences ∗/
for ( sj = si +1 ; sj < nseqs ; sj++ ) {

len2 = compute_sequence_length ( sj +1);
compute_score_penalties ( . . . ) ;
forward_pass ( . . . ) ;
reverse_pass ( . . . ) ;
diff ( . .. ) ;
mm_score = trace_path ( . . . ) ;
i f ( len1 == 0 | | len2 == 0 ) mm_score=0.0 ;
else mm_score /= ( double ) MIN( len1 , len2 ) ;
print_score();

}
}

blocks can be empty

Parallelize the outer loops
phases depend on the 

length of sequences
heavy imbalance

Parallelize the inner loop
higher overhead

LCPC'07, October 11th 2007 F. Massaioli 36

Protein alignment
#pragma omp parallel for
for ( si = 0 ; si < nseqs ; si+) {

len1 = compute_sequence_length( si +1);
/∗ compa re to the other sequences ∗/
for ( sj = si +1 ; sj < nseqs ; sj++ ) {

#pragma omp task {
len2 = compute_sequence_length ( sj +1);
compute_score_penalties ( . . . ) ;
forward_pass ( . . . ) ;
reverse_pass ( . . . ) ;
diff ( . .. ) ;
mm_score = trace_path ( . . . ) ;
i f ( len1 == 0 | | len2 == 0 ) mm_score=0.0 ;
else mm_score /= ( double ) MIN( len1 , len2 ) ;
print_score();

}
}

}

Combines data and task 
parallelism



19

LCPC'07, October 11th 2007 F. Massaioli 37

Protein alignment: evaluation

1 2 4 8 12 16 20 24 28 32
0

2,5

5

7,5

10

12,5

15

17,5

20

22,5
25

27,5

30

32,5
OMP work-sharing

OMP nested

OMP tasks

# cpus

sp
ee

d-
up

protein alignment (100 sequences) 

LCPC'07, October 11th 2007 F. Massaioli 38

N-Queens: evaluation

nqueens (14x14 board)

1 2 4 8 12 16 20 24 28 32

0

2,5

5

7,5
10

12,5

15

17,5

20

22,5

25

27,5

30

32,5
OMP nested

OMP tasks

Intel workqueueing

Cilk

# cpus

sp
ee

d-
up



20

LCPC'07, October 11th 2007 F. Massaioli 39

Other experiments

1 2 4 8 12 16 20 24 28 32

0

2,5

5

7,5

10

12,5

15

17,5

20
OMP nested

OMP tasks

Intel workqueueing

Cilk

# cpus

sp
ee

d-
up

multisort  (32MB of ints)

FFT (32MB of complex)

1 2 4 8 12 16 20 24 28 32

0

2,5

5

7,5

10

12,5

15

17,5

20
OMP tasks

Intel workqueueing

# cpus

sp
ee

d-
up

strassen (1280x1280 matrix) 

1 2 4 8 12 16 20 24 28 32

0

1

2

3

4

5

6

7

8

9

10

11
OMP nested
OMP tasks

Intel workqueueing

Cilk

# cpus

sp
ee

d-
up

LCPC'07, October 11th 2007 F. Massaioli 40

An unfortunate case

1 2 4 8 12 16 20 24 28 32

0

1

2

3

4

5

6

7

8

9

10

11

12
Omp nested

OMP tasks

Intel work-queue

# cpus

sp
ee

d-
up

floorplan (20 cells)

connected components 
(500000 nodes,100000 edges)

Very big slowdown
we couldn't complete most 
runs

Granularity is very fine



21

LCPC'07, October 11th 2007 F. Massaioli 41

Conclusions

• The new OpenMP tasks allow to 
express a lot of irregular parallelism

• Some issues can be improved in the 
language
– reductions, data capturing, dependencies, 

...
• Performance-wise, with a prototype, 

surpasses all 2.5 versions
– encouraging results against similar models


	MultiCore08-09-5.pdf
	OpenMP-in-8-slides
	OpenMP 2.5 Overview
	OpenMP-3.0-Overview



