Programmazione

di
Processori MultiCore:
Hough Transform

Federico Massaioli (federico.massaioli@caspur.it)
CASPUR e Università degli Studi di Roma "La Sapienza" Laurea Magistrale in Informatica
Anno accademico 2008-2009

E

Hough Transform

- A technique to identify features in signals and images
- Basic ideas
- You know the shape you are looking for
- Shape can be represented via parameters
- You build an histogram of all possible candidates in parameter space
- And select the histogram peaks (i.e. voting)
- The concept is much simpler than it appears

Back to Linear Algebra

- A straight line in a 2D space:
$y=m x+b$
- I.e. the point (m, b) in parameter space

System of Two Linear Equations

- Two straight lines map to two points
- And their intersection $\left(x_{0}, y_{0}\right)$ maps to the line $b=-x_{0} m+y_{0}$
- Thus a line in parameter space represents all straight lines through a point

A Linear System with no Solutions

- Two straight lines map to two points
- And if they are parallel, they have they are vertically aligned in parameter space

Line Detection using Hough Transform

- You have a B\&W raster image and want to identify straight lines in it

1. Take a zero-initialized array $h[B][M]$
2. For each pixel (\mathbf{i}, \mathbf{j}) in original image
3. If it's black, ignore it
4. Otherwise, assume it is part of a line you don't know the parameters of
5. And add $\mathbf{1}$ to all h elements "lying" on the line $b=-\mathbf{i}{ }^{*} m+\mathbf{j}$
6. Look for the "brightest spots" in \mathbf{h} !

Their coordinates are the parameters of the straight lines you are looking for

- Hints:
- Use Bresenham line algorithm for step 2.3
- Dimensions B and \mathbf{M} depend on image resolution

The Truth about d and θ

- Vertical lines have $m=\infty$
- And are annoying to cope with
- Thus it's more convenient to use the length d of shorter vector from the origin to the line, and its angle θ with the x axis
- And draw in parameter space the sinusoidal curve $d=x_{0} \cos \theta+y_{0} \sin \theta$ instead of a straight line...

Generalizing the Hough Transform

- The Hough Transform is by no means limited to detecting straight lines, or straight lines intersections
- Could be used for any curve in original space, as long as you can parameterize it
- And could be used for region of space, instead of curves
- And this is its most common usage in signal analysis
- And it has a lot of parallelism to exploit

