

Last Revision Date: 3/18/14 Page 1

The OpenCL Specification

Version: 2.0

Document Revision: 22

Khronos OpenCL Working Group

Editor: Aaftab Munshi

Last Revision Date: 3/18/14 Page 2

1.	
 INTRODUCTION ... 10	

2.	
 GLOSSARY ... 12	

3.	
 THE OPENCL ARCHITECTURE .. 23	

3.1	
 Platform Model .. 23	

3.2	
 Execution Model .. 25	

3.2.1	
 Execution Model: Mapping work-items onto an NDRange ..28	

3.2.2	
 Execution Model: Execution of kernel-instances ..30	

3.2.3	
 Execution Model: Device-side enqueue ..31	

3.2.4	
 Execution Model: Synchronization ...32	

3.2.5	
 Execution Model: Categories of Kernels ..33	

3.3	
 Memory Model ... 34	

3.3.1	
 Memory Model: Fundamental Memory Regions ...34	

3.3.2	
 Memory Model: Memory Objects ...37	

3.3.3	
 Memory Model: Shared Virtual Memory ...39	

3.3.4	
 Memory Model: Memory Consistency Model ...40	

3.3.5	
 Memory Model: Overview of atomic and fence operations ..43	

3.3.6	
 Memory Model: Memory Ordering Rules ...44	

3.3.6.1	
 Memory Ordering Rules: Atomic Operations ... 47	

3.3.6.2	
 Memory Ordering Rules: Fence Operations ... 50	

3.3.6.3	
 Memory Ordering Rules: Work-group Functions ... 51	

3.3.6.4	
 Memory Ordering Rules: Host-side and Device-side Commands ... 52	

3.4	
 The OpenCL Framework .. 54	

3.4.1	
 OpenCL Framework: Mixed Version Support ..55	

4.	
 THE OPENCL PLATFORM LAYER .. 56	

4.1	
 Querying Platform Info ... 56	

4.2	
 Querying Devices ... 58	

4.3	
 Partitioning a Device ... 77	

4.4	
 Contexts .. 82	

5.	
 THE OPENCL RUNTIME ... 89	

5.1	
 Command Queues .. 89	

5.2	
 Buffer Objects .. 95	

5.2.1	
 Creating Buffer Objects ..95	

5.2.2	
 Reading, Writing and Copying Buffer Objects ...101	

5.2.3	
 Filling Buffer Objects ..113	

5.2.4	
 Mapping Buffer Objects ..115	

Last Revision Date: 3/18/14 Page 3

5.3	
 Image Objects ... 119	

5.3.1	
 Creating Image Objects ...119	

5.3.1.1	
 Image Format Descriptor ... 122	

5.3.1.2	
 Image Descriptor .. 124	

5.3.2	
 Querying List of Supported Image Formats ..126	

5.3.2.1	
 Minimum List of Supported Image Formats ... 128	

5.3.3	
 Reading, Writing and Copying Image Objects ...130	

5.3.4	
 Filling Image Objects ..137	

5.3.5	
 Copying between Image and Buffer Objects ..139	

5.3.6	
 Mapping Image Objects ..144	

5.3.7	
 Image Object Queries ..147	

5.4	
 Pipes .. 150	

5.4.1	
 Creating Pipe Objects ..150	

5.4.2	
 Pipe Object Queries ...151	

5.5	
 Querying, Unmapping, Migrating, Retaining and Releasing Memory Objects 153	

5.5.1	
 Retaining and Releasing Memory Objects ..153	

5.5.2	
 Unmapping Mapped Memory Objects ..155	

5.5.3	
 Accessing mapped regions of a memory object ..157	

5.5.4	
 Migrating Memory Objects ...158	

5.5.5	
 Memory Object Queries ..160	

5.6	
 Shared Virtual Memory .. 164	

5.6.1	
 SVM sharing granularity: coarse- and fine- grained sharing ...164	

5.6.2	
 Memory consistency for SVM allocations ..177	

5.7	
 Sampler Objects ... 179	

5.7.1	
 Creating Sampler Objects ..179	

5.7.2	
 Sampler Object Queries ..181	

5.8	
 Program Objects .. 183	

5.8.1	
 Creating Program Objects ...183	

5.8.2	
 Building Program Executables ..188	

5.8.3	
 Separate Compilation and Linking of Programs ...190	

5.8.4	
 Compiler Options ..196	

5.8.4.1	
 Preprocessor options .. 196	

5.8.4.2	
 Math Intrinsics Options .. 196	

5.8.4.3	
 Optimization Options ... 197	

5.8.4.4	
 Options to Request or Suppress Warnings ... 198	

5.8.4.5	
 Options Controlling the OpenCL C version .. 199	

5.8.4.6	
 Options for Querying Kernel Argument Information .. 199	

5.8.4.7	
 Options for debugging your program .. 200	

5.8.5	
 Linker Options ...200	

5.8.5.1	
 Library Linking Options .. 200	

5.8.5.2	
 Program Linking Options .. 200	

5.8.6	
 Unloading the OpenCL Compiler ...201	

5.8.7	
 Program Object Queries ..202	

5.9	
 Kernel Objects .. 209	

5.9.1	
 Creating Kernel Objects ..209	

5.9.2	
 Setting Kernel Arguments ...212	

5.9.3	
 Kernel Object Queries ...218	

5.10	
 Executing Kernels .. 225	

Last Revision Date: 3/18/14 Page 4

5.11	
 Event Objects ... 232	

5.12	
 Markers, Barriers and Waiting for Events ... 242	

5.13	
 Out-of-order Execution of Kernels and Memory Object Commands 245	

5.14	
 Profiling Operations on Memory Objects and Kernels ... 246	

5.15	
 Flush and Finish ... 249	

6.	
 THE OPENCL C PROGRAMMING LANGUAGE .. 251	

7.	
 OPENCL NUMERICAL COMPLIANCE .. 251	

8.	
 IMAGE ADDRESSING AND FILTERING ... 251	

9.	
 OPTIONAL EXTENSIONS ... 251	

10.	
 OPENCL EMBEDDED PROFILE .. 252	

APPENDIX A .. 261	

A.1	
 Shared OpenCL Objects .. 261	

A.2	
 Multiple Host Threads .. 262	

APPENDIX B — PORTABILITY .. 263	

APPENDIX C — APPLICATION DATA TYPES .. 268	

C.1	
 Shared Application Scalar Data Types ... 268	

C.2	
 Supported Application Vector Data Types ... 268	

C.3	
 Alignment of Application Data Types ... 269	

C.4	
 Vector Literals ... 269	

C.5	
 Vector Components .. 269	

C.5.1 Named vector components notation ...270	

C.5.2 High/Low vector component notation ..270	

C.5.3 Native vector type notation ..271	

C.6	
 Implicit Conversions ... 271	

C.7	
 Explicit Casts ... 271	

C.8	
 Other operators and functions ... 272	

Last Revision Date: 3/18/14 Page 5

C.9	
 Application constant definitions .. 272	

APPENDIX D — OPENCL C++ WRAPPER API .. 274	

APPENDIX E — CL_MEM_COPY_OVERLAP.. 275	

APPENDIX F – CHANGES ... 278	

F.1	
 Summary of changes from OpenCL 1.0 .. 278	

F.2	
 Summary of changes from OpenCL 1.1 .. 280	

F.3	
 Summary of changes from OpenCL 1.2 .. 281	

INDEX - APIS ... 283	

Last Revision Date: 3/18/14 Page 6

Copyright (c) 2008-2014 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the
Khronos Group, Inc. It or any components may not be reproduced, republished, distributed,
transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior
written permission of Khronos Group. You may use this specification for implementing the
functionality therein, without altering or removing any trademark, copyright or other notice from
the specification, but the receipt or possession of this specification does not convey any rights to
reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may
describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter
member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any
fashion, provided that NO CHARGE is made for the specification and the latest available update
of the specification for any version of the API is used whenever possible. Such distributed
specification may be re-formatted AS LONG AS the contents of the specification are not
changed in any way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link to the
current version of this specification on the Khronos Group web-site should be included whenever
possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or
implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual
property. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or representatives be
liable for any damages, whether direct, indirect, special or consequential damages for lost
revenues, lost profits, or otherwise, arising from or in connection with these materials.

Khronos, StreamInput, WebGL, COLLADA, OpenKODE, OpenVG, OpenWF, OpenSL ES,
OpenMAX, OpenMAX AL, OpenMAX IL and OpenMAX DL are trademarks and WebCL is a
certification mark of the Khronos Group Inc. OpenCL is a trademark of Apple Inc. and OpenGL
and OpenML are registered trademarks and the OpenGL ES and OpenGL SC logos are
trademarks of Silicon Graphics International used under license by Khronos. All other product
names, trademarks, and/or company names are used solely for identification and belong to their
respective owners.

Last Revision Date: 3/18/14 Page 7

Acknowledgements

The OpenCL specification is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following is a partial list of
the contributors, including the company that they represented at the time of their contribution:

Chuck Rose, Adobe
Eric Berdahl, Adobe
Shivani Gupta, Adobe
David Neto, Altera
Bill Licea Kane, AMD
Ed Buckingham, AMD
Jan Civlin, AMD
Laurent Morichetti, AMD
Lee Howes, AMD
Mark Fowler, AMD
Michael Mantor, AMD
Norm Rubin, AMD
Ofer Rosenberg, AMD
Victor Odintsov, AMD
Aaftab Munshi, Apple
Abe Stephens, Apple
Alexandre Namaan, Apple
Anna Tikhonova, Apple
Chendi Zhang, Apple
Eric Bainville, Apple
David Hayward, Apple
Giridhar Murthy, Apple
Ian Ollmann, Apple
Inam Rahman, Apple
James Shearer, Apple
MonPing Wang, Apple
Tanya Lattner, Apple
Mikael Bourges-Sevenier, Aptina
Anton Lokhmotov, ARM
Dave Shreiner, ARM
Hedley Francis, ARM
Robert Elliott, ARM
Scott Moyers, ARM
Tom Olson, ARM
Christopher Thompson-Walsh, Broadcom
Holger Waechtler, Broadcom
Norman Rink, Broadcom
Andrew Richards, Codeplay

Last Revision Date: 3/18/14 Page 8

Maria Rovatsou, Codeplay
Stephen Frye, Electronic Arts
Eric Schenk, Electronic Arts
Brian Horton, IBM
Brian Watt, IBM
Gordon Fossum, IBM
Greg Bellows, IBM
Joaquin Madruga, IBM
Mark Nutter, IBM
Mike Perks, IBM
Jon Parr, Imagination Technologies
Robert Quill, Imagination Technologies
James McCarthy, Imagination Technologies
Aaron Kunze, Intel
Aaron Lefohn, Intel
Adam Lake, Intel
Allen Hux, Intel
Andrew Brownsword, Intel
Andrew Lauritzen, Intel
Brian Lewis, Intel
Geoff Berry, Intel
Jayanth Rao, Intel
Josh Fryman, Intel
Hong Jiang, Intel
Larry Seiler, Intel
Mike MacPherson, Intel
Murali Sundaresan, Intel
Paul Lalonde, Intel
Stephen Junkins, Intel
Tim Foley, Intel
Timothy Mattson, Intel
Yariv Aridor, Intel
Jon Leech, Khronos
Benjamin Bergen, Los Alamos National Laboratory
Amit Rao, NVIDIA
Ashish Srivastava, NVIDIA
Bastiaan Aarts, NVIDIA
Chris Cameron, NVIDIA
Christopher Lamb, NVIDIA
Dibyapran Sanyal, NVIDIA
Guatam Chakrabarti, NVIDIA
Ian Buck, NVIDIA
Jaydeep Marathe, NVIDIA
Jian-Zhong Wang, NVIDIA

Last Revision Date: 3/18/14 Page 9

Karthik Raghavan Ravi, NVIDIA
Kedar Patil, NVIDIA
Manjunath Kudlur, NVIDIA
Mark Harris, NVIDIA
Michael Gold, NVIDIA
Neil Trevett, NVIDIA
Richard Johnson, NVIDIA
Sean Lee, NVIDIA
Tushar Kashalikar, NVIDIA
Vinod Grover, NVIDIA
Xiangyun Kong, NVIDIA
Yogesh Kini, NVIDIA
Yuan Lin, NVIDIA
Allan Tzeng, QUALCOMM
Alex Bourd, QUALCOMM
Anirudh Acharya, QUALCOMM
Andrew Gruber, QUALCOMM
Andrzej Mamona, QUALCOMM
Benedict Gaster, QUALCOMM
Bill Torzewski, QUALCOMM
Bob Rychlik, QUALCOMM
Chihong Zhang, QUALCOMM
Chris Mei, QUALCOMM
Colin Sharp, QUALCOMM
David Garcia, QUALCOMM
David Ligon, QUALCOMM
Jay Yun, QUALCOMM
Robert Simpson, QUALCOMM
Sumesh Udayakumaran, QUALCOMM
Vineet Goel, QUALCOMM
Tasneem Brutch, Samsung
Thierry Lepley, STMicroelectronics
Alan Ward, Texas Instruments
Simon McIntosh-Smith, University of Bristol
Brian Hutsell Vivante
Mike Cai, Vivante
Sumeet Kumar, Vivante
Jeff Fifield, Xilinx
Henry Styles, Xilinx
Ralph Wittig, Xilinx

Last Revision Date: 3/18/14 Page 10

1. Introduction

Modern processor architectures have embraced parallelism as an important pathway to increased
performance. Facing technical challenges with higher clock speeds in a fixed power envelope,
Central Processing Units (CPUs) now improve performance by adding multiple cores. Graphics
Processing Units (GPUs) have also evolved from fixed function rendering devices into
programmable parallel processors. As today’s computer systems often include highly parallel
CPUs, GPUs and other types of processors, it is important to enable software developers to take
full advantage of these heterogeneous processing platforms.

Creating applications for heterogeneous parallel processing platforms is challenging as
traditional programming approaches for multi-core CPUs and GPUs are very different. CPU-
based parallel programming models are typically based on standards but usually assume a shared
address space and do not encompass vector operations. General purpose GPU programming
models address complex memory hierarchies and vector operations but are traditionally
platform-, vendor- or hardware-specific. These limitations make it difficult for a developer to
access the compute power of heterogeneous CPUs, GPUs and other types of processors from a
single, multi-platform source code base. More than ever, there is a need to enable software
developers to effectively take full advantage of heterogeneous processing platforms – from high
performance compute servers, through desktop computer systems to handheld devices - that
include a diverse mix of parallel CPUs, GPUs and other processors such as DSPs and the
Cell/B.E. processor.

OpenCL (Open Computing Language) is an open royalty-free standard for general purpose
parallel programming across CPUs, GPUs and other processors, giving software developers
portable and efficient access to the power of these heterogeneous processing platforms.

OpenCL supports a wide range of applications, ranging from embedded and consumer software
to HPC solutions, through a low-level, high-performance, portable abstraction. By creating an
efficient, close-to-the-metal programming interface, OpenCL will form the foundation layer of a
parallel computing ecosystem of platform-independent tools, middleware and applications.
OpenCL is particularly suited to play an increasingly significant role in emerging interactive
graphics applications that combine general parallel compute algorithms with graphics rendering
pipelines.

OpenCL consists of an API for coordinating parallel computation across
heterogeneous processors; and a cross-platform programming language with a well-
specified computation environment. The OpenCL standard:

 Supports both data- and task-based parallel programming models
 Utilizes a subset of ISO C99 with extensions for parallelism
 Defines consistent numerical requirements based on IEEE 754
 Defines a configuration profile for handheld and embedded devices
 Efficiently interoperates with OpenGL, OpenGL ES and other graphics APIs

Last Revision Date: 3/18/14 Page 11

This document begins with an overview of basic concepts and the architecture of OpenCL,
followed by a detailed description of its execution model, memory model and synchronization
support. It then discusses the OpenCL platform and runtime API and is followed by a detailed
description of the OpenCL C programming language. Some examples are given that describe
sample compute use-cases and how they would be written in OpenCL. The specification is
divided into a core specification that any OpenCL compliant implementation must support; a
handheld/embedded profile which relaxes the OpenCL compliance requirements for handheld
and embedded devices; and a set of optional extensions that are likely to move into the core
specification in later revisions of the OpenCL specification.

Last Revision Date: 3/18/14 Page 12

2. Glossary

Application: The combination of the program running on the host and OpenCL devices.

Acquire semantics: One of the memory order semantics defined for synchronization operations.
Acquire semantics apply to atomic operations that load from memory. Given two units of
execution, A and B, acting on a shared atomic object M, if A uses an atomic load of M with
acquire semantics to synchronize-with an atomic store to M by B that used release semantics,
then A’s atomic load will occur before the effects of any subsequent operations by A are visible
to B. Note that the memory orders release, sequentially consistent, and acquire_release all
include release semantics and effectively pair with a load using acquire semantics.

Acquire release semantics: A memory order semantics for synchronization operations (such as
atomic operations) that has the properties of both acquire and release memory orders. It is used
with read-modify-write operations.

Atomic operations: Operations that at any point, and from any perspective, have either
occurred completely, or not at all. Memory orders associated with atomic operations may
constrain the visibility of loads and stores with respect to the atomic operations (see relaxed
semantics, acquire semantics, release semantics or acquire release semantics).

Blocking and Non-Blocking Enqueue API calls: A non-blocking enqueue API call places a
command on a command-queue and returns immediately to the host. The blocking-mode
enqueue API calls do not return to the host until the command has completed.

Barrier: There are two types of barriers – a command-queue barrier and a work-group barrier.

 The OpenCL API provides a function to enqueue a command-queue barrier command.
This barrier command ensures that all previously enqueued commands to a command-
queue have finished execution before any following commands enqueued in the
command-queue can begin execution.

 The OpenCL C programming language provides a built-in work-group barrier function.
This barrier built-in function can be used by a kernel executing on a device to perform
synchronization between work-items in a work-group executing the kernel. All the work-
items of a work-group must execute the barrier construct before any are allowed to
continue execution beyond the barrier.

Buffer Object: A memory object that stores a linear collection of bytes. Buffer objects are
accessible using a pointer in a kernel executing on a device. Buffer objects can be manipulated
by the host using OpenCL API calls. A buffer object encapsulates the following information:

 Size in bytes.

Last Revision Date: 3/18/14 Page 13

 Properties that describe usage information and which region to allocate from.
 Buffer data.

Built-in Kernel: A built-in kernel is a kernel that is executed on an OpenCL device or custom
device by fixed-function hardware or in firmware. Applications can query the built-in kernels
supported by a device or custom device. A program object can only contain kernels written in
OpenCL C or built-in kernels but not both. See also Kernel and Program.

Child kernel: see device-side enqueue.

Command: The OpenCL operations that are submitted to a command-queue for execution. For
example, OpenCL commands issue kernels for execution on a compute device, manipulate
memory objects, etc.

Command-queue: An object that holds commands that will be executed on a specific device.
The command-queue is created on a specific device in a context. Commands to a command-
queue are queued in-order but may be executed in-order or out-of-order. Refer to In-order
Execution and Out-of-order Execution.

Command-queue Barrier. See Barrier.

Command synchronization: Constraints on the order that commands are launched for execution
on a device defined in terms of the synchronization points that occur between commands in host
command-queues and between commands in device-side command-queues. See
synchronization points.

Complete: The final state in the six state model for the execution of a command. The transition
into this state occurs is signaled through event objects or callback functions associated with a
command.

Compute Device Memory: This refers to one or more memories attached to
the compute device.

Compute Unit: An OpenCL device has one or more compute units. A work-group executes on a
single compute unit. A compute unit is composed of one or more processing elements and local
memory. A compute unit may also include dedicated texture filter units that can be accessed by
its processing elements.

Concurrency: A property of a system in which a set of tasks in a system can remain active and
make progress at the same time. To utilize concurrent execution when running a program, a
programmer must identify the concurrency in their problem, expose it within the source code,
and then exploit it using a notation that supports concurrency.

Constant Memory: A region of global memory that remains constant during the execution of a
kernel. The host allocates and initializes memory objects placed into constant memory.

Last Revision Date: 3/18/14 Page 14

Context: The environment within which the kernels execute and the domain in which
synchronization and memory management is defined. The context includes a set of devices, the
memory accessible to those devices, the corresponding memory properties and one or more
command-queues used to schedule execution of a kernel(s) or operations on memory objects.

Control flow: The flow of instructions executed by a work-item. Multiple logically related work
items may or may not execute the same control flow. The control flow is said to be converged if
all the work-items in the set execution the same stream of instructions. In a diverged control
flow, the work-items in the set execute different instructions. At a later point, if a diverged
control flow becomes converged, it is said to be a re-converged control flow.

Converged control flow: see control flow.

Custom Device: An OpenCL device that fully implements the OpenCL Runtime but does not
support programs written in OpenCL C. A custom device may be specialized non-
programmable hardware that is very power efficient and performant for directed tasks or
hardware with limited programmable capabilities such as specialized DSPs. Custom devices are
not OpenCL conformant. Custom devices may support an online compiler. Programs for
custom devices can be created using the OpenCL runtime APIs that allow OpenCL programs to
be created from source (if an online compiler is supported) and/or binary, or from built-in kernels
supported by the device. See also Device.

Data Parallel Programming Model: Traditionally, this term refers to a programming model
where concurrency is expressed as instructions from a single program applied to multiple
elements within a set of data structures. The term has been generalized in OpenCL to refer to a
model wherein a set of instructions from a single program are applied concurrently to each point
within an abstract domain of indices.

Data race: The execution of a program contains a data race if it contains two actions in different
work items or host threads where (1) one action modifies a memory location and the other action
reads or modifies the same memory location, and (2) at least one of these actions is not atomic,
or the corresponding memory scopes are not inclusive, and (3) the actions are global actions
unordered by the global-happens-before relation or are local actions unordered by the local-
happens before relation.

Device: A device is a collection of compute units. A command-queue is used to queue
commands to a device. Examples of commands include executing kernels, or reading and writing
memory objects. OpenCL devices typically correspond to a GPU, a multi-core CPU, and other
processors such as DSPs and the Cell/B.E. processor.

Device-side enqueue: A mechanism whereby a kernel-instance is enqueued by a kernel-instance
running on a device without direct involvement by the host program. This produces nested
parallelism; i.e. additional levels of concurrency are nested inside a running kernel-instance.
The kernel-instance executing on a device (the parent kernel) enqueues a kernel-instance (the
child kernel) to a device-side command queue. Child and parent kernels execute asynchronously
though a parent kernel does not complete until all of its child-kernels have completed.

Last Revision Date: 3/18/14 Page 15

Diverged control flow: see control flow.

Ended: The fifth state in the six state model for the execution of a command. The transition into
this state occurs when execution of a command has ended. When a Kernel-enqueue command
ends, all of the work-groups associated with that command have finished their execution.

Event Object: An event object encapsulates the status of an operation such as a command. It
can be used to synchronize operations in a context.

Event Wait List: An event wait list is a list of event objects that can be used to control when a
particular command begins execution.

Fence: A memory ordering operation without an associated atomic object. A fence can use the
acquire semantics, release semantics, or acquire release semantics.

Framework: A software system that contains the set of components to support software
development and execution. A framework typically includes libraries, APIs, runtime systems,
compilers, etc.

Generic address space: An address space that include the private, local, and global address
spaces available to a device. The generic address space supports conversion of pointers to and
from private, local and global address spaces, and hence lets a programmer write a single
function that at compile time can take arguments from any of the three named address spaces.

Global Happens before: see happens before.

Global ID: A global ID is used to uniquely identify a work-item and is derived from the number
of global work-items specified when executing a kernel. The global ID is a N-dimensional value
that starts at (0, 0, … 0). See also Local ID.

Global Memory: A memory region accessible to all work-items executing in a context. It is
accessible to the host using commands such as read, write and map. Global memory is included
within the generic address space that includes the private and local address spaces.

GL share group: A GL share group object manages shared OpenGL or OpenGL ES resources
such as textures, buffers, framebuffers, and renderbuffers and is associated with one or more GL
context objects. The GL share group is typically an opaque object and not directly accessible.

Handle: An opaque type that references an object allocated by OpenCL. Any operation on an
object occurs by reference to that object’s handle.

Happens before: An ordering relationship between operations that execute on multiple units of
execution. If an operation A happens-before operation B then A must occur before B; in
particular, any value written by A will be visible to B.We define two separate happens before
relations: global-happens-before and local-happens-before. These are defined in section 3.3.6.

Last Revision Date: 3/18/14 Page 16

Host: The host interacts with the context using the OpenCL API.

Host-thread: the unit of execution that execute the statements in the Host program.

Host pointer: A pointer to memory that is in the virtual address space on the host.

Illegal: Behavior of a system that is explicitly not allowed and will be reported as an error when
encountered by OpenCL.

Image Object: A memory object that stores a two- or three- dimensional structured array.
Image data can only be accessed with read and write functions. The read functions use a
sampler.

The image object encapsulates the following information:

 Dimensions of the image.
 Description of each element in the image.
 Properties that describe usage information and which region to allocate from.
 Image data.

The elements of an image are selected from a list of predefined image formats.

Implementation Defined: Behavior that is explicitly allowed to vary between conforming
implementations of OpenCL. An OpenCL implementor is required to document the
implementation-defined behavior.

In-order Execution: A model of execution in OpenCL where the commands in a command-
queue are executed in order of submission with each command running to completion before the
next one begins. See Out-of-order Execution.

Kernel: A kernel is a function declared in a program and executed on an OpenCL device. A
kernel is identified by the __kernel or kernel qualifier applied to any function defined in a
program.

Kernel-instance: The work carried out by an OpenCL program occurs through the execution of
kernel-instances on devices. The kernel instance is the kernel object, the values associated with
the arguments to the kernel, and the parameters that define the NDRange index space.

Kernel Object: A kernel object encapsulates a specific __kernel function declared in a
program and the argument values to be used when executing this __kernel function.

Launch: The transition of a command from the submitted state to the ready state. See Ready.

Local ID: A local ID specifies a unique work-item ID within a given work-group that is
executing a kernel. The local ID is a N-dimensional value that starts at (0, 0, … 0). See also
Global ID.

Last Revision Date: 3/18/14 Page 17

Local Memory: A memory region associated with a work-group and accessible only by work-
items in that work-group. Local memory is included within the generic address space that
includes the private and global address spaces.

Marker: A command queued in a command-queue that can be used to tag all commands queued
before the marker in the command-queue. The marker command returns an event which can be
used by the application to queue a wait on the marker event i.e. wait for all commands queued
before the marker command to complete.

Memory Consistency Model: Rules that define which values are observed when multiple units
of execution load data from any shared memory plus the synchronization operations that
constrain the order of memory operations and define synchronization relationships. The memory
consistency model in OpenCL is based on the memory model from the ISO C11 programming
language.

Memory Objects: A memory object is a handle to a reference counted region of global memory.
Also see Buffer Object and Image Object.

Memory Regions (or Pools): A distinct address space in OpenCL. Memory regions may
overlap in physical memory though OpenCL will treat them as logically distinct. The memory
regions are denoted as private, local, constant, and global.

Memory Scopes: These memory scopes define a hierarchy of visibilities when analyzing the
ordering constraints of memory operations. They are defined by the values of the
memory_scope enumeration constant. Current values are memory_scope_work_item (memory
constraints only apply to a single work-item and in practice apply only to image operations),
memory_scope_work_group (memory-ordering constraints only apply to work-items executing
in a work-group), memory_scope_device (memory-ordering constraints only apply to work-
items executing on a single device) and memory_scope_all_svm_devices (memory-ordering
constraints only apply to work-items executing across multiple devices and when using shared
virtual memory).

Modification Order: All modifications to a particular atomic object M occur in some particular
total order, called the modification order of M. If A and B are modifications of an atomic
object M, and A happens-before B, then A shall precede B in the modification order of M. Note
that the modification order of an atomic object M is independent of whether M is in local or
global memory.

Nested Parallelism: See device-side enqueue.

Object: Objects are abstract representation of the resources that can be manipulated by the
OpenCL API. Examples include program objects, kernel objects, and memory objects.

Out-of-Order Execution: A model of execution in which commands placed in the work queue
may begin and complete execution in any order consistent with constraints imposed by event
wait lists and command-queue barrier. See In-order Execution.

Last Revision Date: 3/18/14 Page 18

Parent device: The OpenCL device which is partitioned to create sub-devices. Not all parent
devices are root devices. A root device might be partitioned and the sub-devices partitioned
again. In this case, the first set of sub-devices would be parent devices of the second set, but not
the root devices. Also see device, parent device and root device.

Parent kernel: see device-side enqueue.

Pipe: The pipe memory object conceptually is an ordered sequence of data items. A pipe has
two endpoints: a write endpoint into which data items are inserted, and a read endpoint from
which data items are removed. At any one time, only one kernel instance may write into a pipe,
and only one kernel instance may read from a pipe. To support the producer consumer design
pattern, one kernel instance connects to the write endpoint (the producer) while another kernel
instance connects to the reading endpoint (the consumer).

Platform: The host plus a collection of devices managed by the OpenCL framework that allow
an application to share resources and execute kernels on devices in the platform.

Private Memory: A region of memory private to a work-item. Variables defined in one work-
item’s private memory are not visible to another work-item.

Processing Element: A virtual scalar processor. A work-item may execute on one or more
processing elements.

Program: An OpenCL program consists of a set of kernels. Programs may also contain
auxiliary functions called by the __kernel functions and constant data.

Program Object: A program object encapsulates the following information:

 A reference to an associated context.
 A program source or binary.
 The latest successfully built program executable, the list of devices for which the program

executable is built, the build options used and a build log.
 The number of kernel objects currently attached.

Queued: The first state in the six state model for the execution of a command. The transition
into this state occurs when the command is enqueued into a command-queue.

Ready: The third state in the six state model for the execution of a command. The transition into
this state occurs when pre-requisites constraining execution of a command have been met; i.e.
the command has been launched. When a Kernel-enqueue command is launched, work-groups
associated with the command are placed in a device’s work-pool from which they are scheduled
for execution.

Re-converged Control Flow: see control flow.

Last Revision Date: 3/18/14 Page 19

Reference Count: The life span of an OpenCL object is determined by its reference count—an
internal count of the number of references to the object. When you create an object in OpenCL,
its reference count is set to one. Subsequent calls to the appropriate retain API (such as
clRetainContext, clRetainCommandQueue) increment the reference count. Calls to
the appropriate release API (such as clReleaseContext, clReleaseCommandQueue)
decrement the reference count. After the reference count reaches zero, the object’s resources are
deallocated by OpenCL.

Relaxed Consistency: A memory consistency model in which the contents of memory visible to
different work-items or commands may be different except at a barrier or other explicit
synchronization points.

Resource: A class of objects defined by OpenCL. An instance of a resource is an object. The
most common resources are the context, command-queue, program objects, kernel objects, and
memory objects. Computational resources are hardware elements that participate in the action
of advancing a program counter. Examples include the host, devices, compute units and
processing elements.

Retain, Release: The action of incrementing (retain) and decrementing (release) the reference
count using an OpenCL object. This is a book keeping functionality to make sure the system
doesn’t remove an object before all instances that use this object have finished. Refer to
Reference Count.

Relaxed Semantics: A memory order semantics for atomic operations that implies no order
constraints. The operation is atomic but it has no impact on the order of memory operations.

Release Semantics: One of the memory order semantics defined for synchronization operations.
Release semantics apply to atomic operations that store to memory. Given two units of
execution, A and B, acting on a shared atomic object M, if A uses an atomic store of M with
release semantics to synchronize-with an atomic load to M by B that used acquire semantics,
then A’s atomic store will occur after the effects of any previous operations by A are visible to
B. Note that the memory orders acquire, sequentialy consistent, and acquire_release all include
acquire semantics and effectively pair with a store using release semantics.

Remainder work-groups: When the work-groups associated with a kernel-instance are defined,
the sizes of a work-group in each dimension may not evenly divide the size of the NDRange in
the corresponding dimensions. The result is a collection of work-groups on the boundaries of the
NDRange that are smaller than the base work-group size. These are known as remainder work-
groups.

Running: The fourth state in the six state model for the execution of a command. The transition
into this state occurs when the execution of the command starts. When a Kernel-enqueue
command starts, one or more work-groups associated with the command start to execute.

Root device: A root device is an OpenCL device that has not been partitioned. Also see device,
parent device and root device.

Last Revision Date: 3/18/14 Page 20

Sampler: An object that describes how to sample an image when the image is read in the kernel.
The image read functions take a sampler as an argument. The sampler specifies the image
addressing-mode i.e. how out-of-range image coordinates are handled, the filter mode, and
whether the input image coordinate is a normalized or unnormalized value.

Scope inclusion: Two actions A and B are defined to have an inclusive scope if they have the
same scope P such that: (1) if P is memory_scope_work_group, and A and B are executed by
work-items within the same workgroup, or (2) if P is memory_scope_device, and A and B are
executed by work-items on the same device, or (3) if P is memory_scope_all_svm_devices, if A
and B are executed by host threads or by work-items on one or more devices that can share SVM
memory with each other and the host process.

Sequenced before: A relation between evaluations executed by a single unit of execution.
Sequenced-before is an asymmetric, transitive, pair-wise relation that induces a partial order
between evaluations. Given any two evaluations A and B, if A is sequenced-before B, then the
execution of A shall precede the execution of B.

Sequential consistency: Sequential consistency interleaves the steps executed by each unit of
execution. Each access to a memory location sees the last assignment to that location in that
interleaving.

Sequentially consistent semantics: One of the memory order semantics defined for
synchronization operations. When using sequentially-consistent synchronization operations, the
loads and stores within one unit of execution appear to execute in program order (i.e., the
sequenced-before order), and loads and stores from different units of execution appear to be
simply interleaved.

Shared Virtual Memory (SVM): An address space exposed to both the host and the devices
within a context. SVM causes addresses to be meaningful between the host and all of the devices
within a context and therefore supports the use of pointer based data structures in OpenCL
kernels. It logically extends a portion of the global memory into the host address space therefore
giving work-items access to the host address space. There are three types of SVM in OpenCL
Coarse-Grained buffer SVM: Sharing occurs at the granularity of regions of OpenCL buffer
memory objects. Fine-Grained buffer SVM: Sharing occurs at the granularity of individual
loads/stores into bytes within OpenCL buffer memory objects. Fine-Grained system SVM:
Sharing occurs at the granularity of individual loads/stores into bytes occurring anywhere within
the host memory.

SIMD: Single Instruction Multiple Data. A programming model where a kernel is executed
concurrently on multiple processing elements each with its own data and a shared program
counter. All processing elements execute a strictly identical set of instructions.

SPMD: Single Program Multiple Data. A programming model where a kernel is executed
concurrently on multiple processing elements each with its own data and its own program
counter. Hence, while all computational resources run the same kernel they maintain their own

Last Revision Date: 3/18/14 Page 21

instruction counter and due to branches in a kernel, the actual sequence of instructions can be
quite different across the set of processing elements.

Sub-device: An OpenCL device can be partitioned into multiple sub-devices. The new sub-
devices alias specific collections of compute units within the parent device, according to a
partition scheme. The sub-devices may be used in any situation that their parent device may be
used. Partitioning a device does not destroy the parent device, which may continue to be used
along side and intermingled with its child sub-devices. Also see device, parent device and root
device.

Subgroup: Subgroups are an implementation-dependent grouping of work-items within a
workgroup. The size and number of subgroups is implementation-defined and not exposed in
the core OpenCL 2.0 feature set. Implementations of OpenCL that expose the decomposition of a
workgroup into multiple subgroups can depend on these subgroups to make independent forward
progress. Hence, concurrent control structures such as spin locks can be used when they apply
between two subgroups of a single work-group.

Submitted: The second state in the six state model for the execution of a command. The
transition into this state occurs when the command is flushed from the command-queue and
submitted for execution on the device. Once submitted, a programmer can assume a command
will execute once its prerequisites have been met.

SVM Buffer: A memory allocation enabled to work with Shared Virtual Memory (SVM).
Depending on how the SVM buffer is created, it can be a coarse-grained or fine-grained SVM
buffer. Optionally it may be wrapped by a Buffer Object. See Shared Virtual Memory (SVM).

Synchronization: Synchronization refers to mechanisms that constrain the order of execution
and the visibility of memory operations between two or more units of execution.

Synchronization operations: Operations that define memory order constraints in a program.
They play a special role in controlling how memory operations in one unit of execution (such as
work-items or, when using SVM a host thread) are made visible to another. Synchronization
operations in OpenCL include atomic operations and fences.

Synchronization point: A synchronization point between a pair of commands (A and B)
assures that results of command A happens-before command B is launched (i.e. enters the ready
state) .

Synchronizes with: A relation between operations in two different units of execution that
defines a memory order constraint in global memory (global-synchronizes-with) or local memory
(local-synchronizes-with).

Task Parallel Programming Model: A programming model in which computations are
expressed in terms of multiple concurrent tasks executing in one or more command-queues. The
concurrent tasks can be running different kernels.

Last Revision Date: 3/18/14 Page 22

Thread-safe: An OpenCL API call is considered to be thread-safe if the internal state as
managed by OpenCL remains consistent when called simultaneously by multiple host threads.
OpenCL API calls that are thread-safe allow an application to call these functions in multiple
host threads without having to implement mutual exclusion across these host threads i.e. they are
also re-entrant-safe.

Undefined: The behavior of an OpenCL API call, built-in function used inside a kernel or
execution of a kernel that is explicitly not defined by OpenCL. A conforming implementation is
not required to specify what occurs when an undefined construct is encountered in OpenCL.
Unit of execution: a generic term for a process, OS managed thread running on the host (a host-
thread), kernel-instance, host program, work-item or any other executable agent that advances
the work associated with a program.

Work-group: A collection of related work-items that execute on a single compute unit. The
work-items in the group execute the same kernel-instance and share local memory and work-
group functions.

Work-group Barrier. See Barrier.

Work-group Function: A function that carries out collective operations across all the work-
items in a work-group. Available collective operations are a barrier, reduction, broadcast, prefix
sum, and evaluation of a predicate. A work-group function must occur within a converged
control flow; i.e. all work-items in the work-group must encounter precisely the same work-
group function.

Work-group Synchronization: Constraints on the order of execution for work-items in a single
work-group.

Work-pool: A logical pool associated with a device that holds commands and work-groups from
kernel-instances that are ready to execute. OpenCL does not constrain the order that commands
and work-groups are scheduled for execution from the work-pool; i.e. a programmer must
assume that they could be interleaved. There is one work-pool per device used by all command-
queues associated with that device. The work-pool may be implemented in any manner as long
as it assures that work-groups placed in the pool will eventually execute.

Work-item: One of a collection of parallel executions of a kernel invoked on a device by a
command. A work-item is executed by one or more processing elements as part of a work-group
executing on a compute unit. A work-item is distinguished from other work-items by its global
ID or the combination of its work-group ID and its local ID within a work-group.

Last Revision Date: 3/18/14 Page 23

3. The OpenCL Architecture

OpenCL is an open industry standard for programming a heterogeneous collection of CPUs,
GPUs and other discrete computing devices organized into a single platform. It is more than a
language. OpenCL is a framework for parallel programming and includes a language, API,
libraries and a runtime system to support software development. Using OpenCL, for example, a
programmer can write general purpose programs that execute on GPUs without the need to map
their algorithms onto a 3D graphics API such as OpenGL or DirectX.

The target of OpenCL is expert programmers wanting to write portable yet efficient code. This
includes library writers, middleware vendors, and performance oriented application
programmers. Therefore OpenCL provides a low-level hardware abstraction plus a framework to
support programming and many details of the underlying hardware are exposed.

To describe the core ideas behind OpenCL, we will use a hierarchy of models:

 Platform Model
 Memory Model
 Execution Model
 Programming Model

3.1 Platform Model
The Platform model for OpenCL is defined in figure 3.1. The model consists of a host
connected to one or more OpenCL devices. An OpenCL device is divided into one or more
compute units (CUs) which are further divided into one or more processing elements (PEs).
Computations on a device occur within the processing elements.

An OpenCL application is implemented as both host code and device kernel code. The host code
portion of an OpenCL application runs on a host processor according to the models native to the
host platform. The OpenCL application host code submits the kernel code as commands from the
host to OpenCL devices. An OpenCL device executes the command’s computation on the
processing elements within the device.

An OpenCL device has considerable latitude on how computations are mapped onto the device’s
processing elements. When processing elements within a compute unit execute the same
sequence of statements across the processing elements, the control flow is said to be converged.
Hardware optimized for executing a single stream of instructions over multiple processing
elements is well suited to converged control flows. When the control flow varies from one
processing element to another, it is said to be diverged. While a kernel always begins execution
with a converged control flow, due to branching statements within a kernel, converged and
diverged control flows may occur within a single kernel. This provides a great deal of flexibility
in the algorithms that can be implemented with OpenCL.

Last Revision Date: 3/18/14 Page 24

Programmers write device code in OpenCL C, a variant of C99. A platform provides a compiler
to translate an OpenCL C source program into an executable program object. The device code
compiler may be online or offline. An online compiler is available during host program
execution using standard APIs. An offline compiler is invoked outside of host program control,
using platform-specific methods. The OpenCL runtime allows developers to get a previously
compiled device program executable and be able to load and execute a previously compiled
device program executable.

OpenCL defines two kinds of platform profiles: a full profile and a reduced-functionality
embedded profile. A full profile platform must provide an online compiler for all its devices.
An embedded platform may provide an online compiler, but is not required to do so.

A device may expose special purpose functionality as a built-in function. The platform provides
APIs for enumerating and invoking the built-in functions offered by a device, but otherwise does
not define their construction or semantics. A custom device supports only built-in functions, and
cannot be programmed via OpenCL C.

All device types support the OpenCL execution model, the OpenCL memory model, and the
APIs used in OpenCL to manage devices.

The platform model is an abstraction describing how OpenCL views the hardware. The
relationship between the elements of the platform model and the hardware in a system may be a
fixed property of a device or it may be a dynamic feature of a program dependent on how a
compiler optimizes code to best utilize physical hardware.

Figure 3.1: Platform model … one host plus one or more compute devices each
with one or more compute units composed of one or more processing elements.

Last Revision Date: 3/18/14 Page 25

3.2 Execution Model

The OpenCL execution model is defined in terms of two distinct units of execution: kernels that
execute on one or more OpenCL devices and a host program that executes on the host. With
regard to OpenCL, the kernels are where the "work" associated with a computation occurs. This
work occurs through work-items that execute in groups (work-groups).

A kernel executes within a well-defined context managed by the host. The context defines the
environment within which kernels execute. It includes the following resources:

 Devices: One or more devices exposed by the OpenCL platform.
 Kernel Objects: The OpenCL functions with their associated argument values that run

on OpenCL devices.
 Program Objects: The program source and executable that implement the kernels.
 Memory Objects: Variables visible to the host and the OpenCL devices. Instances of

kernels operate on these objects as they execute.

The host program uses the OpenCL API to create and manage the context. Functions from the
OpenCL API enable the host to interact with a device through a command-queue. Each
command-queue is associated with a single device. The commands placed into the command-
queue fall into one of three types:

 Kernel-enqueue commands: Enqueue a kernel for execution on a device.
 Memory commands: Transfer data between the host and device memory, between

memory objects, or map and unmap memory objects from the host address space.
 Synchronization commands: Explicit synchronization points that define order

constraints between commands.

In addition to commands submitted from the host command-queue, a kernel running on a device
can enqueue commands to a device-side command queue. This results in child kernels enqueued
by a kernel executing on a device (the parent kernel). Regardless of whether the command-queue
resides on the host or a device, each command passes through six states.

1. Queued: The command is enqueued to a command-queue. A command may reside
in the queue until it is flushed either explicitly (a call to clFlush) or implicitly by
some other command.

2. Submitted: The command is flushed from the command-queue and submitted for
execution on the device. Once flushed from the command-queue, a command will
execute after any prerequisites for execution are met.

3. Ready: All prerequisites constraining execution of a command have been met. The
command, or for a kernel-enqueue command the collection of work groups associated
with a command, is placed in a device work-pool from which it is scheduled for
execution.

4. Running: Execution of the command starts. For the case of a kernel-enqueue
command, one or more work-groups associated with the command start to execute.

Last Revision Date: 3/18/14 Page 26

5. Ended: Execution of a command ends. When a Kernel-enqueue command ends, all of
the work-groups associated with that command have finished their execution.
Immediate side effects, i.e. those associated with the kernel but not necessarily with
its child kernels, are visible to other units of execution. These side effects include
updates to values in global memory.

6. Complete: The command and its child commands have finished execution and the
status of the event object, if any, associated with the command is set to
CL_COMPLETE.

The execution states and the transitions between them are summarized in Figure 3-2. These
states and the concept of a device work-pool are conceptual elements of the execution model.
An implementation of OpenCL has considerable freedom in how these are exposed to a program.
Five of the transitions, however, are directly observable through a profiling interface. These
profiled states are shown in Figure 3-2.

Figure 3-2: The states and transitions between states defined in the OpenCL execution model. A subset of
these transitions is exposed through the profiling interface (see section 5.14).

Commands communicate their status through Event objects. Successful completion is indicated
by setting the event status associated with a command to CL_COMPLETE. Unsuccessful
completion results in abnormal termination of the command which is indicated by setting the
event status to a negative value. In this case, the command-queue associated with the abnormally
terminated command and all other command-queues in the same context may no longer be
available and their behavior is implementation defined.

Last Revision Date: 3/18/14 Page 27

A command submitted to a device will not launch until prerequisites that constrain the order of
commands have been resolved. These prerequisites have two sources. First, they may arise from
commands submitted to a command-queue that constrain the order that commands are launched.
For example, commands that follow a command queue barrier will not launch until all
commands prior to the barrier are complete. The second source of prerequisites is dependencies
between commands expressed through events. A command may include an optional list of
events. The command will wait and not launch until all the events in the list are in the state
CL_COMPLETE. By this mechanism, event objects define order constraints between commands
and coordinate execution between the host and one or more devices.

Command execution can be blocking or non-blocking. Consider a sequence of OpenCL
commands. For blocking commands, the OpenCL API functions that enqueue commands don't
return until the command has completed. Alternatively, OpenCL functions that enqueue non-
blocking commands return immediately and require that a programmer defines dependencies
between enqueued commands to ensure that enqueued commands are not launched before
needed resources are available. In both cases, the actual execution of the command may occur
asynchronously with execution of the host program.

Commands within a single command-queue execute relative to each other in one of two modes:

 In-order Execution: Commands and any side effects associated with commands appear
to the OpenCL application as if they execute in the same order they are enqueued to a
command-queue.

 Out-of-order Execution: Commands execute in any order constrained only by explicit
synchronization points (e.g. through command queue barriers) or explicit dependencies
on events.

Multiple command-queues can be present within a single context. Multiple command-queues
execute commands independently. Event objects visible to the host program can be used to
define synchronization points between commands in multiple command queues. If such
synchronization points are established between commands in multiple command-queues, an
implementation must assure that the command-queues progress concurrently and correctly
account for the dependencies established by the synchronization points. For a detailed
explanation of synchronization points, see section 3.2.4.

The core of the OpenCL execution model is defined by how the kernels execute. When a kernel-
enqueue command submits a kernel for execution, an index space is defined. The kernel, the
argument values associated with the arguments to the kernel, and the parameters that define the
index space define a kernel-instance. When a kernel-instance executes on a device, the kernel
function executes for each point in the defined index space. Each of these executing kernel
functions is called a work-item. The work-items associated with a given kernel-instance are
managed by the device in groups called work-groups. These work-groups define a coarse
grained decomposition of the Index space.

Last Revision Date: 3/18/14 Page 28

Work-items have a global ID based on their coordinates within the Index space. They can also
be defined in terms of their work-group and the local ID within a work-group. The details of this
mapping are described in the following section.

3.2.1 Execution Model: Mapping work-items onto an
NDRange

The index space supported by OpenCL is called an NDRange. An NDRange is an N-dimensional
index space, where N is one, two or three. The NDRange is decomposed into work-groups
forming blocks that cover the Index space. An NDRange is defined by three integer arrays of
length N:

 The extent of the index space (or global size) in each dimension.
 An offset index F indicating the initial value of the indices in each dimension (zero by

default).
 The size of a work-group (local size) in each dimension.

Each work-item’s global ID is an N-dimensional tuple. The global ID components are values in
the range from F, to F plus the number of elements in that dimension minus one.

If a kernel is compiled as an OpenCL 2.0 kernel, the size of work-groups in an NDRange (the
local size) need not be the same for all work-groups. In this case, any single dimension for which
the global size is not divisible by the local size will be partitioned into two regions. One region
will have workgroups that have the same number of work items as was specified for that
dimension by the programmer (the local size). The other region will have workgroups with less
than the number of work items specified by the local size parameter in that dimension (the
remainder work-groups). Workgroup sizes could be non-uniform in multiple dimensions,
potentially producing workgroups of up to 4 different sizes in a 2D range and 8 different sizes in
a 3D range.

Each work-item is assigned to a work-group and given a local ID to represent its position within
the workgroup. A work-item's local ID is an N-dimensional tuple with components in the range
from zero to the size of the work-group in that dimension minus one.

Work-groups are assigned IDs similarly. The number of work-groups in each dimension is not
directly defined but is inferred from the local and global NDRanges provided when a kernel-
instance is enqueued. A work-group's ID is an N-dimensional tuple with components in the range
0 to the ceiling of the global size in that dimension divided by the local size in the same
dimension. As a result, the combination of a work-group ID and the local-ID within a work-
group uniquely defines a work-item. Each work-item is identifiable in two ways; in terms of a
global index, and in terms of a work-group index plus a local index within a work group.

For example, consider the 2-dimensional index space in figure 3-3. We input the index space for
the work-items (Gx, Gy), the size of each work-group (Sx, Sy) and the global ID offset (Fx, Fy).
The global indices define an Gx by Gy index space where the total number of work-items is the
product of Gx and Gy. The local indices define an Sx by Sy index space where the number of

Last Revision Date: 3/18/14 Page 29

work-items in a single work-group is the product of Sx and Sy. Given the size of each workgroup
and the total number of work-items we can compute the number of work-groups. A 2-
dimensional index space is used to uniquely identify a work-group. Each work-item is identified
by its global ID (gx, gy) or by the combination of the work-group ID (wx, wy), the size of each
work-group (Sx,Sy) and the local ID (sx, sy) inside the work-group such that

(gx , gy) = (wx * Sx + sx + Fx, wy * Sy + sy + Fy)

The number of work-groups can be computed as:

(Wx, Wy) = (ceil(Gx / Sx),ceil(Gy / Sy))

Given a global ID and the work-group size, the work-group ID for a work-item is computed as:

(wx, wy) = ((gx – sx – Fx) / Sx, (gy – sy – Fy) / Sy)

Figure 3-3: An example of an NDRange index space showing work-items, their global IDs and their mapping
onto the pair of work-group and local IDs. In this case, we assume that in each dimension, the size of the
work-group evenly divides the global NDRange size (i.e. all work-groups have the same size) and that the
offset is equal to zero.

An implementation of OpenCL may divide each work-group into one or more subgroups.
Subgroups make independent forward progress with respect to each other. There is no
guarantee, however, that work-items within a subgroup make independent forward progress with
respect to each other. The size and number of subgroups is implementation-defined and not
exposed in the core OpenCL 2.0 feature set.

Last Revision Date: 3/18/14 Page 30

3.2.2 Execution Model: Execution of kernel-instances

The work carried out by an OpenCL program occurs through the execution of kernel-instances
on compute devices. To understand the details of OpenCL’s execution model, we need to
consider how a kernel object moves from the kernel-enqueue command, into a command-queue,
executes on a device, and completes.

A kernel-object is defined from a function within the program object and a collection of
arguments connecting the kernel to a set of argument values. The host program enqueues a
kernel-object to the command queue along with the NDRange, and the work-group
decomposition. These define a kernel-instance. In addition, an optional set of events may be
defined when the kernel is enqueued. The events associated with a particular kernel-instance are
used to constrain when the kernel-instance is launched with respect to other commands in the
queue or to commands in other queues within the same context.

A kernel-instance is submitted to a device. For an in-order command queue, the kernel instances
appear to launch and then execute in that same order; where we use the term “appear” to
emphasize that when there are no dependencies between commands and hence differences in the
order that commands execute cannot be observed in a program, an implementation can reorder
commands even in an in-order command queue. For an out of order command-queue, kernel-
instances wait to be launched until:

 Synchronization commands enqueued prior to the kernel-instance are satisfied.
 Each of the events in an optional event list defined when the kernel-instance was enqueued

are set to CL_COMPLETE.

Once these conditions are met, the kernel-instance is launched and the work-groups associated
with the kernel-instance are placed into a pool of “ready to execute” work-groups. This pool is
called a work-pool. The work-pool may be implemented in any manner as long as it assures that
work-groups placed in the pool will eventually execute. The device schedules work-groups
from the work-pool for execution on the compute units of the device. The kernel-enqueue
command is complete when all work-groups associated with the kernel-instance end their
execution, updates to global memory associated with a command are visible globally, and the
device signals successful completion by setting the event associated with the kernel-enqueue
command to CL_COMPLETE.

While a command-queue is associated with only one device, a single device may be associated
with multiple command-queues all feeding into the single work-pool. A device may also be
associated with command queues associated with different contexts within the same platform,
again all feeding into the single work-pool. The device will pull work-groups from the work-pool
and execute them on one or several compute units in any order; possibly interleaving execution
of work-groups from multiple commands. A conforming implementation may choose to serialize
the work-groups so a correct algorithm cannot assume that work-groups will execute in parallel.

Last Revision Date: 3/18/14 Page 31

There is no safe and portable way to synchronize across the independent execution of work-
groups since once in the work-pool, they can execute in any order.

The work-items within a single work-group execute concurrently but not necessarily in parallel
(i.e. they are not guaranteed to make independent forward progress). Therefore, only high-level
synchronization constructs (e.g. work-group functions such as barriers) that apply to all the
work-items in a work-group are well defined and included in OpenCL.

In the absence of work-group functions (e.g. a barrier), work-items within a workgroup may be
serialized. In the presence of work-group functions, work-items within a workgroup may be
serialized before any given work-group function, between dynamically encountered pairs of
work-group functions and between a work-group function and the end of the kernel.

The potential of the work-items within a workgroup to be serialized means that independent
forward progress of the work-items cannot be assumed; therefore, synchronization between
subsets of work-items within a work-group (e.g. using spin-locks) cannot portably be supported
in OpenCL.

Implementations of OpenCL that support the decomposition of a workgroup into multiple
subgroups can depend on these subgroups to make independent forward progress. Hence,
concurrent control structures such as spin locks can be used when they apply between two
subgroups of a single work-group. The existence of sub-groups and their sizes are highly
implementation dependent. Extreme care should be exercised when writing code that uses
subgroups if the goal is to write portable OpenCL applications.

3.2.3 Execution Model: Device-side enqueue

Algorithms may need to generate additional work as they execute. In many cases, this additional
work cannot be determined statically; so the work associated with a kernel only emerges at
runtime as the kernel-instance executes. This capability could be implemented in logic running
within the host program, but involvement of the host may add significant overhead and/or
complexity to the application control flow. A more efficient approach would be to nest kernel-
enqueue commands from inside other kernels. This nested parallelism can be realized by
supporting the enqueuing of kernels on a device without direct involvement by the host program;
so-called device-side enqueue.

Device-side kernel-enqueue commands are similar to host-side kernel-enqueue commands. The
kernel executing on a device (the parent kernel) enqueues a kernel-instance (the child kernel)
to a device-side command queue. This is an out-of-order command-queue and follows the same
behavior as the out-of-order command-queues exposed to the host program. Commands
enqueued to a device side command-queue generate and use events to enforce order constraints
just as for the command-queue on the host. These events, however, are only visible to the parent
kernel running on the device. When these prerequisite events take on the value CL_COMPLETE,
the work-groups associated with the child kernel are launched into the device’s work pool. The
device then schedules them for execution on the compute units of the device. Child and parent

Last Revision Date: 3/18/14 Page 32

kernels execute asynchronously. However, a parent will not indicate that it is complete by setting
its event to CL_COMPLETE until all child kernels have ended execution and have signaled
completion by setting any associated events to the value CL_COMPLETE. Should any child
kernel complete with an event status set to a negative value (i.e. abnormally terminate), the
parent kernel will abnormally terminate and propagate the child’s negative event value as the
value of the parent’s event. If there are multiple children that have an event status set to a
negative value, the selection of which child’s negative event value is propagated is
implementation-defined.

3.2.4 Execution Model: Synchronization

Synchronization refers to mechanisms that constrain the order of execution between two or more
units of execution. Consider the following two domains of synchronization in OpenCL:

 Work-group synchronization: Constraints on the order of execution for work-items in a
single work-group

 Command synchronization: Constraints on the order of commands launched for execution

Synchronization across all work-items within a single work-group is carried out using a work-
group function. These functions carry out collective operations across all the work-items in a
work-group. Available collective operations are: barrier, reduction, broadcast, prefix sum, and
evaluation of a predicate. A work-group function must occur within a converged control flow;
i.e. all work-items in the work-group must encounter precisely the same work-group function.
For example, if a work-group function occurs within a loop, the work-items must encounter the
same work-group function in the same loop iterations. All the work-items of a work-group must
execute the work-group function and complete reads and writes to memory before any are
allowed to continue execution beyond the work-group function. Work-group functions that apply
between work-groups are not provided in OpenCL since OpenCL does not define forward-
progress or ordering relations between work-groups, hence collective synchronization operations
are not well defined.

Command synchronization is defined in terms of distinct synchronization points. The
synchronization points occur between commands in host command-queues and between
commands in device-side command-queues. The synchronization points defined in OpenCL
include:

 Launching a command: A kernel-instance is launched onto a device after all events that
kernel is waiting-on have been set to CL_COMPLETE.

 Ending a command: Child kernels may be enqueued such that they wait for the parent
kernel to reach the end state before they can be launched. In this case, the ending of the
parent command defines a synchronization point.

 Completion of a command: A kernel-instance is complete after all of the work-groups in
the kernel and all of its child kernels have completed. This is signaled to the host, a parent

Last Revision Date: 3/18/14 Page 33

kernel or other kernels within command queues by setting the value of the event associated
with a kernel to CL_COMPLETE.

 Blocking Commands: A blocking command defines a synchronization point between the
unit of execution that calls the blocking API function and the enqueued command reaching
the complete state.

 Command-queue barrier: The command-queue barrier ensures that all previously
enqueued commands have completed before subsequently enqueued commands can be
launched.

 clFinish: This function blocks until all previously enqueued commands in the command
queue have completed after which clFinish defines a synchronization point and the clFinish
function returns.

A synchronization point between a pair of commands (A and B) assures that results of command
A happens-before command B is launched. This requires that any updates to memory from
command A complete and are made available to other commands before the synchronization
point completes. Likewise, this requires that command B waits until after the synchronization
point before loading values from global memory. The concept of a synchronization point works
in a similar fashion for commands such as a barrier that apply to two sets of commands. All the
commands prior to the barrier must complete and make their results available to following
commands. Furthermore, any commands following the barrier must wait for the commands prior
to the barrier before loading values and continuing their execution.

These happens-before relationships are a fundamental part of the OpenCL memory model.
When applied at the level of commands, they are straightforward to define at a language level in
terms of ordering relationships between different commands. Ordering memory operations
inside different commands, however, requires rules more complex than can be captured by the
high level concept of a synchronization point. These rules are described in detail in section
3.3.6.

3.2.5 Execution Model: Categories of Kernels

The OpenCL execution model supports three types of kernels:

 OpenCL kernels are managed by the OpenCL API as kernel-objects associated with kernel
functions within program-objects. They are typically written with the OpenCL C
programming language and compiled with the OpenCL C compiler. All OpenCL
implementations must support OpenCL kernels and the OpenCL C programming language.
Implementations may also support OpenCL programs through an external intermediate
representation. For example, SPIR is an optional extension to OpenCL that provides an
intermediate representation for OpenCL program objects. Through SPIR, any kernel
programming language that targets SPIR can be used to define an OpenCL kernel.

 Native kernels are accessed through a host function pointer. Native kernels are queued for
execution along with OpenCL kernels on a device and share memory objects with OpenCL
kernels. For example, these native kernels could be functions defined in application code or

Last Revision Date: 3/18/14 Page 34

exported from a library. The ability to execute native kernels is optional within OpenCL and
the semantics of native kernels are implementation-defined. The OpenCL API includes
functions to query capabilities of a device(s) and determine if this capability is supported.

 Built-in kernels are tied to particular device and are not built at runtime from source code in
a program object. The common use of built in kernels is to expose fixed-function hardware
or firmware associated with a particular OpenCL device or custom device. The semantics of
a built-in kernel may be defined outside of OpenCL and hence are implementation defined.

All three types of kernels are manipulated through the OpenCL command queues and must
conform to the synchronization points defined in the OpenCL execution model.

3.3 Memory Model

The OpenCL memory model describes the structure, contents, and behavior of the memory
exposed by an OpenCL platform as an OpenCL program runs. The model allows a programmer
to reason about values in memory as the host program and multiple kernel-instances execute.

An OpenCL program defines a context that includes a host, one or more devices, command-
queues, and memory exposed within the context. Consider the units of execution involved with
such a program. The host program runs as one or more host threads managed by the operating
system running on the host (the details of which are defined outside of OpenCL). There may be
multiple devices in a single context which all have access to memory objects defined by
OpenCL. On a single device, multiple work-groups may execute in parallel with potentially
overlapping updates to memory. Finally, within a single work-group, multiple work-items
concurrently execute, once again with potentially overlapping updates to memory.

The memory model must precisely define how the values in memory as seen from each of these
units of execution interact so a programmer can reason about the correctness of OpenCL
programs. We define the memory model in four parts.

 Memory regions: The distinct memories visible to the host and the devices that share a
context.

 Memory objects: The objects defined by the OpenCL API and their management by the host
and devices.

 Shared Virtual Memory: A virtual address space exposed to both the host and the devices
within a context.

 Consistency Model: Rules that define which values are observed when multiple units of
execution load data from memory plus the atomic/fence operations that constrain the order of
memory operations and define synchronization relationships.

3.3.1 Memory Model: Fundamental Memory Regions

Last Revision Date: 3/18/14 Page 35

Memory in OpenCL is divided into two parts.

 Host Memory: The memory directly available to the host. The detailed behavior of host
memory is defined outside of OpenCL. Memory objects move between the Host and the
devices through functions within the OpenCL API or through a shared virtual memory
interface.

 Device Memory: Memory directly available to kernels executing on OpenCL devices.

Device memory consists of four named address spaces or memory regions:

 Global Memory: This memory region permits read/write access to all work-items in all
work-groups running on any device within a context. Work-items can read from or write to
any element of a memory object. Reads and writes to global memory may be cached
depending on the capabilities of the device.

 Constant Memory: A region of global memory that remains constant during the execution
of a kernel-instance. The host allocates and initializes memory objects placed into constant
memory.

 Local Memory: A memory region local to a work-group. This memory region can be used to
allocate variables that are shared by all work-items in that work-group.

 Private Memory: A region of memory private to a work-item. Variables defined in one
work-item’s private memory are not visible to another work-item.

The memory regions and their relationship to the OpenCL Platform model are summarized in
figure 3-4. Local and private memories are always associated with a particular device. The
global and constant memories, however, are shared between all devices within a given context.
An OpenCL device may include a cache to support efficient access to these shared memories

To understand memory in OpenCL, it is important to appreciate the relationships between these
named address spaces. The four named address spaces available to a device are disjoint
meaning they do not overlap. This is a logical relationship, however, and an implementation
may choose to let these disjoint named address spaces share physical memory.

Programmers often need functions callable from kernels where the pointers manipulated by those
functions can point to multiple named address spaces. This saves a programmer from the error-
prone and wasteful practice of creating multiple copies of functions; one for each named address
space. Therefore the global, local and private address spaces belong to a single generic address
space. This is closely modeled after the concept of a generic address space used in the embedded
C standard (ISO/IEC 9899:1999). Since they all belong to a single generic address space, the
following properties are supported for pointers to named address spaces in device memory:

 A pointer to the generic address space can be cast to a pointer to a global, local or private
address space

 A pointer to a global, local or private address space can be cast to a pointer to the generic
address space.

 A pointer to a global, local or private address space can be implicitly converted to a pointer
to the generic address space, but the converse is not allowed.

Last Revision Date: 3/18/14 Page 36

The constant address space is disjoint from the generic address space.

The addresses of memory associated with memory objects in Global memory are not preserved
between kernel instances, between a device and the host, and between devices. In this regard
global memory acts as a global pool of memory objects rather than an address space. This
restriction is relaxed when shared virtual memory (SVM) is used.

SVM causes addresses to be meaningful between the host and all of the devices within a context
hence supporting the use of pointer based data structures in OpenCL kernels. It logically extends
a portion of the global memory into the host address space giving work-items access to the host
address space. On platforms with hardware support for a shared address space between the host
and one or more devices, SVM may also provide a more efficient way to share data between
devices and the host. Details about SVM are presented in section 3.3.3.

Figure 3-4: The named address spaces exposed in an OpenCL Platform. Global and Constant memories are
shared between the one or more devices within a context, while local and private memories are associated
with a single device. Each device may include an optional cache to support efficient access to their view of the
global and constant address spaces.

A programmer may use the features of the memory consistency model (section 3.3.4) to manage
safe access to global memory from multiple work-items potentially running on one or more
devices. In addition, when using shared virtual memory (SVM), the memory consistency model

Last Revision Date: 3/18/14 Page 37

may also be used to ensure that host threads safely access memory locations in the shared
memory region.

3.3.2 Memory Model: Memory Objects

The contents of global memory are memory objects. A memory object is a handle to a reference
counted region of global memory. Memory objects use the OpenCL type cl_mem and fall into
three distinct classes.

 Buffer: A memory object stored as a block of contiguous memory and used as a general
purpose object to hold data used in an OpenCL program. The types of the values within a
buffer may be any of the built in types (such as int, float), vector types, or user-defined
structures. The buffer can be manipulated through pointers much as one would with any
block of memory in C.

 Image: An image memory object holds one, two or three dimensional images. The formats
are based on the standard image formats used in graphics applications. An image is an
opaque data structure managed by functions defined in the OpenCL API. To optimize the
manipulation of images stored in the texture memories found in many GPUs, OpenCL
kernels have traditionally been disallowed from both reading and writing a single image. In
OpenCL 2.0, however, we have relaxed this restriction by providing synchronization and
fence operations that let programmers properly synchronize their code to safely allow a
kernel to read and write a single image.

 Pipe: The pipe memory object conceptually is an ordered sequence of data items. A pipe
has two endpoints: a write endpoint into which data items are inserted, and a read endpoint
from which data items are removed. At any one time, only one kernel instance may write
into a pipe, and only one kernel instance may read from a pipe. To support the producer
consumer design pattern, one kernel instance connects to the write endpoint (the producer)
while another kernel instance connects to the reading endpoint (the consumer).

Memory objects are allocated by host APIs. The host program can provide the runtime with a
pointer to a block of continuous memory to hold the memory object when the object is created
(CL_MEM_USE_HOST_PTR). Alternatively, the physical memory can be managed by the
OpenCL runtime and not be directly accessible to the host program.

Allocation and access to memory objects within the different memory regions varies between the
host and work-items running on a device. This is summarized in table 3.1 which describes
whether the kernel or the host can allocate from a memory region, the type of allocation (static at
compile time vs. dynamic at runtime) and the type of access allowed (i.e. whether the kernel or
the host can read and/or write to a memory region).

Last Revision Date: 3/18/14 Page 38

Once allocated, a memory object is made available to kernel-instances running on one or more
devices. In addition to shared virtual memory (section 3.3.3) there are three basic ways to
manage the contents of buffers between the host and devices.

 Read/Write/Fill commands: The data associated with a memory object is explicitly read
and written between the host and global memory regions using commands enqueued to an
OpenCL command queue.

 Map/Unmap commands: Data from the memory object is mapped into a contiguous block
of memory accessed through a host accessible pointer. The host program enqueues a map
command on block of a memory object before it can be safely manipulated by the host
program. When the host program is finished working with the block of memory, the host
program enqueues an unmap command to allow a kernel-instance to safely read and/or write
the buffer.

 Copy commands: The data associated with a memory object is copied between two buffers,
each of which may reside either on the host or on the device.

In both cases, the commands to transfer data between devices and the host can be blocking or
non-blocking operations. The OpenCL function call for a blocking memory transfer returns once
the associated memory resources on the host can be safely reused. For a non-blocking memory
transfer, the OpenCL function call returns as soon as the command is enqueued.

 Global Constant Local Private
Host Dynamic

Allocation
Dynamic
Allocation

Dynamic
Allocation

No allocation

Read/Write
access to
buffers and
images but not
pipes

Read/Write
access

No access No access

Kernel Static
Allocation for
program scope
variables

Static Allocation Static allocation.

Dynamic
allocation for
child kernel

Static Allocation

Read/Write
access

Read-only access Read/write
access.

No access to
child's local
memory.

Read/Write
access

Table 3-1: The different memory regions in OpenCL and how memory objects are allocated and accessed
by the host and by an executing instance of a kernel. For the case of kernels, we distinguish between the
behavior of local memory with respect to a kernel (self) and it’s child kernels.

Last Revision Date: 3/18/14 Page 39

Memory objects are bound to a context and hence can appear in multiple kernel-instances
running on more than one physical device. The OpenCL platform must support a large range of
hardware platforms including systems that do not support a single shared address space in
hardware; hence the ways memory objects can be shared between kernel-instances is restricted.
The basic principle is that multiple read operations on memory objects from multiple kernel-
instances that overlap in time are allowed, but mixing overlapping reads and writes into the same
memory objects from different kernel instances is only allowed when fine grained
synchronization is used with shared virtual memory (see section 3.3.3).

When global memory is manipulated by multiple kernel-instances running on multiple devices,
the OpenCL runtime system must manage the association of memory objects with a given
device. In most cases the OpenCL runtime will implicitly associate a memory object with a
device. A kernel instance is naturally associated with the command queue to which the kernel
was submitted. Since a command-queue can only access a single device, the queue uniquely
defines which device is involved with any given kernel-instance; hence defining a clear
association between memory objects, kernel-instances and devices. Programmers may anticipate
these associations in their programs and explicitly manage association of memory objects with
devices in order to improve performance.

3.3.3 Memory Model: Shared Virtual Memory

OpenCL extends the global memory region into the host memory region through a shared virtual
memory (SVM) mechanism. There are three types of SVM in OpenCL

 Coarse-Grained buffer SVM: Sharing occurs at the granularity of regions of OpenCL
buffer memory objects. Consistency is enforced at synchronization points and with
map/unmap commands to drive updates between the host and the device. This form of SVM
is similar to non-SVM use of memory; however, it lets kernel-instances share pointer-based
data structures (such as linked-lists) with the host program.

 Fine-Grained buffer SVM: Sharing occurs at the granularity of individual loads/stores into
bytes within OpenCL buffer memory objects. Loads and stores may be cached. This means
consistency is guaranteed at synchronization points. If the optional OpenCL atomics are
supported, they can be used to provide fine-grained control of memory consistency.

 Fine-Grained system SVM: Sharing occurs at the granularity of individual loads/stores into
bytes occurring anywhere within the host memory. Loads and stores may be cached so
consistency is guaranteed at synchronization points. If the optional OpenCL atomics are
supported, they can be used to provide fine-grained control of memory consistency.

Last Revision Date: 3/18/14 Page 40

Coarse-Grained buffer SVM is required in the core OpenCL specification. The two finer grained
approaches are optional features in OpenCL. The various SVM mechanisms to access host
memory from the work-items associated with a kernel instance are summarized in table 3-2.

3.3.4 Memory Model: Memory Consistency Model

The OpenCL memory model tells programmers what they can expect from an OpenCL
implementation; which memory operations are guaranteed to happen in which order and which
memory values each read operation will return. The memory model tells compiler writers which
restrictions they must follow when implementing compiler optimizations; which variables they
can cache in registers and when they can move reads or writes around a barrier or atomic
operation. The memory model also tells hardware designers about limitations on hardware
optimizations; for example, when they must flush or invalidate hardware caches.

The memory consistency model in OpenCL is based on the memory model from the ISO C11
programming language. To help make the presentation more precise and self-contained, we
include modified paragraphs taken verbatim from the ISO C11 international standard. When a
paragraph is taken or modified from the C11 standard, it is identified as such along with its
original location in the C11 standard.

For programmers, the most intuitive model is the sequential consistency memory model.
Sequential consistency interleaves the steps executed by each of the units of execution. Each
access to a memory location sees the last assignment to that location in that interleaving. While
sequential consistency is relatively straightforward for a programmer to reason about,
implementing sequential consistency is expensive. Therefore, OpenCL implements a relaxed

 Granularity of
sharing

Memory
Allocation

Mechanisms to
enforce

Consistency

Explicit updates
between host
and device?

Coarse-Grained
buffer SVM

OpenCL
Memory

objects (buffer)

clSVMAlloc Synchronization
points

yes, through
Map and
Unmap

commands.
Fine Grained
buffer SVM

Bytes within
OpenCL
Memory

objects (buffer)

clSVMAlloc Synchronization
points plus
atomics (if
supported)

No

Fine-Grained
system SVM

Bytes within
Host memory

(system)

Host memory
allocation

mechanisms
(e.g. malloc)

Synchronization
points plus
atomics (if
supported)

No

Table 3-2: A summary of shared virtual memory (SVM) options in OpenCL.

Last Revision Date: 3/18/14 Page 41

memory consistency model; i.e. it is possible to write programs where the loads from memory
violate sequential consistency. Fortunately, if a program does not contain any races and if the
program only uses atomic operations that utilize the sequentially consistent memory order (the
default memory ordering for OpenCL), OpenCL programs appear to execute with sequential
consistency.

Programmers can to some degree control how the memory model is relaxed by choosing the
memory order for synchronization operations. The precise semantics of synchronization and the
memory orders are formally defined in section 3.3.6. Here, we give a high level description of
how these memory orders apply to atomic operations on atomic objects shared between units of
execution. OpenCL memory_order choices are based on those from the ANSI C11 standard
memory model. They are specified in certain OpenCL functions through the following
enumeration constants:

 memory_order_relaxed: implies no order constraints. This memory order can be used
safely to increment counters that are concurrently incremented, but it doesn’t guarantee
anything about the ordering with respect to operations to other memory locations. It can also
be used, for example, to do ticket allocation and by expert programmers implementing lock-
free algorithms.

 memory_order_acquire: A synchronization operation (fence or atomic) that has acquire
semantics "acquires" side-effects from a release operation that synchronises with it: if an
acquire synchronises with a release, the acquiring unit of execution will see all side-effects
preceding that release (and possibly subsequent side-effects.) As part of carefully-designed
protocols, programmers can use an "acquire" to safely observe the work of another unit of
execution.

 memory_order_release: A synchronization operation (fence or atomic operation) that has
release semantics "releases" side effects to an acquire operation that synchronises with it. All
side effects that precede the release are included in the release. As part of carefully-designed
protocols, programmers can use a "release" to make changes made in one unit of execution
visible to other units of execution.

NOTE: In general, no acquire must always synchronise with any particular release. However,
synchronisation can be forced by certain executions. See 3.3.6.2 for detailed rules for when
synchronisation must occur.

 memory_order_acq_rel: A synchronization operation with acquire-release semantics has
the properties of both the acquire and release memory orders. It is typically used to order
read-modify-write operations.

 memory_order_seq_cst: The loads and stores of each unit of execution appear to execute in
program (i.e., sequenced-before) order, and the loads and stores from different units of
execution appear to be simply interleaved.

Regardless of which memory_order is specified, resolving constraints on memory operations
across a heterogeneous platform adds considerable overhead to the execution of a program. An
OpenCL platform may be able to optimize certain operations that depend on the features of the
memory consistency model by restricting the scope of the memory operations. Distinct memory
scopes are defined by the values of the memory_scope enumeration constant:

Last Revision Date: 3/18/14 Page 42

 memory_scope_work_item: memory-ordering constraints only apply within the work-item1.
 memory_scope_work_group: memory-ordering constraints only apply to work-items

executing within a single work-group.
 memory_scope_device: memory-ordering constraints only apply to work-items executing on

a single device
 memory_scope_all_svm_devices: memory-ordering constraints apply to work-items

executing across multiple devices and (when using SVM) the host. A release performed with
memory_scope_all_svm_devices to a buffer that does not have the
CL_MEM_SVM_ATOMICS flag set will commit to at least memory_scope_device visibility,
with full synchronization of the buffer at a queue synchronization point (e.g. an OpenCL
event).

These memory scopes define a hierarchy of visibilities when analyzing the ordering constraints
of memory operations. For example if a programmer knows that a sequence of memory
operations will only be associated with a collection of work-items from a single work-group (and
hence will run on a single device), the implementation is spared the overhead of managing the
memory orders across other devices within the same context. This can substantially reduce
overhead in a program. All memory scopes are valid when used on global memory. For local
memory, only memory_scope_work_group is valid and all visibility is constrained to within a
given work-group.

In the following subsections (leading up to section 3.4), we will explain the synchronization
constructs and detailed rules needed to use OpenCL’s relaxed memory models. It is important
to appreciate, however, that many programs do not benefit from relaxed memory models. Even
expert programmers have a difficult time using atomics and fences to write correct programs
with relaxed memory models. A large number of OpenCL programs can be written using a
simplified memory model. This is accomplished by following these guidelines.

 Write programs that manage safe sharing of global memory objects through the
synchronization points defined by the command queues.

 Restrict low level synchronization inside work-groups to the work-group functions such as
barrier.

 If you want sequential consistency behavior with system allocations or fine-grain SVM
buffers with atomics support, use only memory_order_seq_cst operations with the scope
memory_scope_all_svm_devices.

 If you want sequential consistency behavior when not using system allocations or fine-grain
SVM buffers with atomics support, use only memory_order_seq_cst operations with the
scope memory_scope_device.

 Ensure your program has no races.

If these guidelines are followed in your OpenCL programs, you can skip the detailed rules
behind the relaxed memory models and go directly to section 3.4.

1 This value for memory_scope can only be used with atomic_work_item_fence with flags set to
CLK_IMAGE_MEM_FENCE.

Last Revision Date: 3/18/14 Page 43

3.3.5 Memory Model: Overview of atomic and fence
operations

The OpenCL 2.0 specification defines a number of synchronization operations that are used to
define memory order constraints in a program. They play a special role in controlling how
memory operations in one unit of execution (such as work-items or, when using SVM a host
thread) are made visible to another. There are two types of synchronization operations in
OpenCL; atomic operations and fences.

Atomic operations are indivisible. They either occur completely or not at all. These operations
are used to order memory operations between units of execution and hence they are
parameterized with the memory_order and memory_scope parameters defined by the OpenCL
memory consistency model. The atomic operations for the OpenCL C kernel programming
language are similar to the corresponding operations defined by the C11 standard.

The OpenCL 2.0 atomic operations apply to variables of an atomic type (a subset of those in the
C11 standard) including atomic versions of the int, uint, long, ulong, float, double, half, intptr_t,
uintptr_t, size_t, and ptrdiff_t types. However, support for some of these atomic types depends
on support for the corresponding regular types.

An atomic operation on one or more memory locations is either an acquire operation, a release
operation, or both an acquire and release operation. An atomic operation without an associated
memory location is a fence and can be either an acquire fence, a release fence, or both an acquire
and release fence. In addition, there are relaxed atomic operations, which do not have
synchronization properties, and atomic read-modify-write operations, which have special
characteristics. [C11 standard, Section 5.1.2.4, paragraph 5, modified]

The orders memory_order_acquire (used for reads), memory_order_release (used for writes), and
memory_order_acq_rel (used for read-modify-write operations) are used for simple
communication between units of execution using shared variables. Informally, executing a
memory_order_release on an atomic object A makes all previous side effects visible to any unit
of execution that later executes a memory_order_acquire on A. The orders
memory_order_acquire, memory_order_release, and memory_order_acq_rel do not provide
sequential consistency for race-free programs because they will not ensure that atomic stores
followed by atomic loads become visible to other threads in that order.

The fence operation is atomic_work_item_fence, which includes a memory_order argument as
well as the memory_scope and cl_mem_fence_flags arguments. Depending on the
memory_order argument, this operation:

 has no effects, if memory_order_relaxed;
 is an acquire fence, if memory_order_acquire;
 is a release fence, if memory_order_release;
 is both an acquire fence and a release fence, if memory_order_acq rel;
 is a sequentially-consistent fence with both acquire and release semantics, if

memory_order_seq_cst.

Last Revision Date: 3/18/14 Page 44

If specified, the cl_mem_fence_flags argument must be CLK_IMAGE_MEM_FENCE,
CLK_GLOBAL_MEM_FENCE, CLK_LOCAL_MEM_FENCE, or CLK_GLOBAL_MEM_FENCE |
CLK_LOCAL_MEM_FENCE.

The synchronization operations in OpenCL can be parameterized by a memory_scope. Memory
scopes control the extent that an atomic operation or fence is visible with respect to the memory
model. These memory scopes may be used when performing atomic operations and fences on
global memory and local memory. When used on global memory visibility is bounded by the
capabilities of that memory. When used on a fine-grained non-atomic SVM buffer, a coarse-
grained SVM buffer, or a non-SVM buffer, operations parameterized with
memory_scope_all_svm_devices will behave as if they were parameterized with
memory_scope_device. When used on local memory, visibility is bounded by the work-group
and, as a result, memory_scope with wider visibility than memory_scope_work_group will be
reduced to memory_scope_work_group.

Two actions A and B are defined to have an inclusive scope if they have the same scope P such
that:

• P is memory_scope_work_group and A and B are executed by work-items within the
same workgroup.

• P is memory_scope_device and A and B are executed by work-items on the same
device.

• P is memory_scope_all_svm_devices if A and B are executed by host threads or by
work-items on one or more devices that can share SVM memory with each other and the
host process.

3.3.6 Memory Model: Memory Ordering Rules

Fundamentally, the issue in a memory model is to understand the orderings in time of
modifications to objects in memory. Modifying an object or calling a function that modifies an
object are side effects, i.e. changes in the state of the execution environment. Evaluation of an
expression in general includes both value computations and initiation of side effects. Value
computation for an lvalue expression includes determining the identity of the designated object.
[C11 standard, Section 5.1.2.3, paragraph 2, modified]

We assume that the OpenCL C kernel programming language and host programming languages
have a sequenced-before relation between the evaluations executed by a single unit of execution.
This sequenced-before relation is an asymmetric, transitive, pair-wise relation between those
evaluations, which induces a partial order among them. Given any two evaluations A and B, if A
is sequenced-before B, then the execution of A shall precede the execution of B. (Conversely, if
A is sequenced-before B, then B is sequenced-after A.) If A is not sequenced-before or
sequenced-after B, then A and B are unsequenced. Evaluations A and B are indeterminately
sequenced when A is either sequenced-before or sequenced-after B, but it is unspecified which.
[C11 standard, Section 5.1.2.3, paragraph 3, modified]

Last Revision Date: 3/18/14 Page 45

NOTE: sequenced-before is a partial order of the operations executed by a single unit of
execution (e.g. a host thread or work-item). It generally corresponds to the source program order
of those operations, and is partial because of the undefined argument evaluation order of
OpenCL’s kernel C language.

In the OpenCL C kernel programming language, the value of an object visible to a work-item W
at a particular point is the initial value of the object, a value stored in the object by W, or a value
stored in the object by another work-item or host thread, according to the rules below.
Depending on details of the host programming language, the value of an object visible to a host
thread may also be the value stored in that object by another work-item or host thread. [C11
standard, Section 5.1.2.4, paragraph 2, modified]

Two expression evaluations conflict if one of them modifies a memory location and the other
one reads or modifies the same memory location. [C11 standard, Section
5.1.2.4, paragraph 4]

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M, and A happens-
before B, then A shall precede B in the modification order of M, which is defined below. Note
that the modification order of an atomic object M is independent of whether M is in local or
global memory. [C11 standard, Section 5.1.2.4, paragraph 7, modified]

A release sequence begins with a release operation A on an atomic object M and is the maximal
contiguous sub-sequence of side effects in the modification order of M, where the first operation
is A and every subsequent operation either is performed by the same work-item or host thread
that performed the release or is an atomic read-modify-write operation. [C11 standard, Section
5.1.2.4, paragraph 10, modified]

OpenCL’s local and global memories are disjoint. Kernels may access both kinds of memory
while host threads may only access global memory. Furthermore, the flags argument of
OpenCL’s work_group_barrier function specifies which memory operations the function will
make visible: these memory operations can be, for example, just the ones to local memory, or the
ones to global memory, or both. Since the visibility of memory operations can be specified for
local memory separately from global memory, we define two related but independent relations,
global-synchronizes-with and local-synchronizes-with. Certain operations on global memory
may global-synchronize-with other operations performed by another work-item or host thread.
An example is a release atomic operation in one work- item that global-synchronizes-with an
acquire atomic operation in a second work-item. Similarly, certain atomic operations on local
objects in kernels can local-synchronize- with other atomic operations on those local objects.
[C11 standard, Section 5.1.2.4, paragraph 11, modified]

We define two separate happens-before relations: global-happens-before and local-happens-
before.

A global memory action A global-happens-before a global memory action B if

 A is sequenced before B, or	

Last Revision Date: 3/18/14 Page 46

 A global-synchronizes-with B, or
 For some global memory action C, A global-happens-before C and C global-happens-before

B.

A local memory action A local-happens-before a local memory action B if

 A is sequenced before B, or	

 A local-synchronizes-with B, or
 For some local memory action C, A local-happens-before C and C local-happens-before B.

An OpenCL implementation shall ensure that no program execution demonstrates a cycle in
either the “local-happens-before” relation or the “global-happens-before” relation.

NOTE: The global- and local-happens-before relations are critical to defining what values are
read and when data races occur. The global-happens-before relation, for example, defines what
global memory operations definitely happen before what other global memory operations. If an
operation A global-happens-before operation B then A must occur before B; in particular, any
write done by A will be visible to B. The local-happens-before relation has similar properties for
local memory. Programmers can use the local- and global-happens-before relations to reason
about the order of program actions.

A visible side effect A on a global object M with respect to a value computation B of M satisfies
the conditions:

 A global-happens-before B, and
 there is no other side effect X to M such that A global-happens-before X and X global-

happens-before B.

We define visible side effects for local objects M similarly. The value of a non-atomic scalar
object M, as determined by evaluation B, shall be the value stored by the visible side effect A.
[C11 standard, Section 5.1.2.4, paragraph 19, modified]

The execution of a program contains a data race if it contains two conflicting actions A and B in
different units of execution, and

 (1) at least one of A or B is not atomic, or A and B do not have inclusive memory scope, and
 (2) the actions are global actions unordered by the global-happens-before relation or are local

actions unordered by the local-happens before relation.

Any such data race results in undefined behavior. [C11 standard, Section 5.1.2.4, paragraph 25,
modified]

We also define the visible sequence of side effects on local and global atomic objects. The
remaining paragraphs of this subsection define this sequence for a global atomic object M; the
visible sequence of side effects for a local atomic object is defined similarly by using the local-
happens-before relation.

Last Revision Date: 3/18/14 Page 47

The visible sequence of side effects on a global atomic object M, with respect to a value
computation B of M, is a maximal contiguous sub-sequence of side effects in the modification
order of M, where the first side effect is visible with respect to B, and for every side effect, it is
not the case that B global-happens-before it. The value of M, as determined by evaluation B,
shall be the value stored by some operation in the visible sequence of M with respect to B. [C11
standard, Section 5.1.2.4, paragraph 22, modified]

If an operation A that modifies an atomic object M global-happens before an operation B that
modifies M, then A shall be earlier than B in the modification order of M. This requirement is
known as write-write coherence.

If a value computation A of an atomic object M global-happens-before a value computation B of
M, and A takes its value from a side effect X on M, then the value computed by B shall either
equal the value stored by X, or be the value stored by a side effect Y on M, where Y follows X in
the modification order of M. This requirement is known as read-read coherence. [C11 standard,
Section 5.1.2.4, paragraph 22, modified]

If a value computation A of an atomic object M global-happens-before an operation B on M,
then A shall take its value from a side effect X on M, where X precedes B in the modification
order of M. This requirement is known as read-write coherence.

If a side effect X on an atomic object M global-happens-before a value computation B of M,
then the evaluation B shall take its value from X or from a side effect Y that follows X in the
modification order of M. This requirement is known as write-read coherence.

3.3.6.1 Memory Ordering Rules: Atomic Operations

This and following sections describe how different program actions in kernel C code and the host
program contribute to the local- and global-happens-before relations. This section discusses
ordering rules for OpenCL 2.0’s atomic operations.

Section 3.2.3 defined the enumerated type memory_order.

 For memory_order_relaxed, no operation orders memory.
 For memory_order_release, memory_order_acq_rel, and memory_order_seq_cst, a store

operation performs a release operation on the affected memory location.
 For memory_order_acquire, memory_order_acq_rel, and memory_order_seq_cst, a load

operation performs an acquire operation on the affected memory location. [C11 standard,
Section 7.17.3, paragraphs 2-4, modified]

Certain built-in functions synchronize with other built-in functions performed by another unit of
execution. This is true for pairs of release and acquire operations under specific circumstances.
An atomic operation A that performs a release operation on a global object M global-
synchronizes-with an atomic operation B that performs an acquire operation on M and reads a
value written by any side effect in the release sequence headed by A. A similar rule holds for

Last Revision Date: 3/18/14 Page 48

atomic operations on objects in local memory: an atomic operation A that performs a release
operation on a local object M local-synchronizes-with an atomic operation B that performs an
acquire operation on M and reads a value written by any side effect in the release sequence
headed by A. [C11 standard, Section 5.1.2.4, paragraph 11, modified]

NOTE: Atomic operations specifying memory_order_relaxed are relaxed only with respect to
memory ordering. Implementations must still guarantee that any given atomic access to a
particular atomic object be indivisible with respect to all other atomic accesses to that object.
[C11 standard, Section 7.17.3, paragraph 8]

If one of the following two conditions holds:

 All memory_order_seq_cst operations have the scope memory_scope_all_svm_devices and
all affected memory locations are contained in system allocations or fine grain SVM buffers
with atomics support

 All memory_order_seq_cst operations have the scope memory_scope_device and all affected
memory locations are not located in system allocated regions or fine-grain SVM buffers with
atomics support

then there shall exist a single total order S for all memory_order_seq_cst operations that is
consistent with the modification orders for all affected locations, as well as the appropriate
global-happens-before and local-happens-before orders for those locations, such that each
memory_order_seq operation B that loads a value from an atomic object M in global or local
memory observes one of the following values:

 the result of the last modification A of M that precedes B in S, if it exists, or
 if A exists, the result of some modification of M in the visible sequence of side effects with

respect to B that is not memory_order_seq_cst and that does not happen before A, or
 if A does not exist, the result of some modification of M in the visible sequence of side

effects with respect to B that is not memory_order_seq_cst. [C11 standard, Section 7.17.3,
paragraph 6, modified]

Let X and Y be two memory_order_seq_cst operations. If X local-synchronizes-with or global-
synchronizes-with Y then X both local-synchronizes-with Y and global-synchronizes-with Y.

If the total order S exists, the following rules hold:

 For an atomic operation B that reads the value of an atomic object M, if there is a
memory_order_seq_cst fence X sequenced-before B, then B observes either the last
memory_order_seq_cst modification of M preceding X in the total order S or a later
modification of M in its modification order. [C11 standard, Section 7.17.3, paragraph 9]

 For atomic operations A and B on an atomic object M, where A modifies M and B takes
its value, if there is a memory_order_seq_cst fence X such that A is sequenced-before X
and B follows X in S, then B observes either the effects of A or a later modification of M
in its modification order. [C11 standard, Section 7.17.3, paragraph 10]

Last Revision Date: 3/18/14 Page 49

 For atomic operations A and B on an atomic object M, where A modifies M and B takes

its value, if there are memory_order_seq_cst fences X and Y such that A is sequenced-
before X, Y is sequenced-before B, and X precedes Y in S, then B observes either the
effects of A or a later modification of M in its modification order. [C11 standard, Section
7.17.3, paragraph 11]

 For atomic operations A and B on an atomic object M, if there are

memory_order_seq_cst fences X and Y such that A is sequenced-before X, Y is
sequenced-before B, and X precedes Y in S, then B occurs later than A in the
modification order of M.

NOTE: memory_order_seq_cst ensures sequential consistency only for a program that is (1) free
of data races, (2) exclusively uses memory_order_seq_cst synchronization operations, and (3)
the memory_order_seq_cst operations satisfy one of the two conditions for the existency of a
single total order S mentioned earlier in this section. Any use of weaker ordering will invalidate
this guarantee unless extreme care is used. In particular, memory_order_seq_cst fences ensure a
total order only for the fences themselves and not using memory_scope_svm_all_devices is
undefined. Fences cannot, in general, be used to restore sequential consistency for atomic
operations with weaker ordering specifications.

Atomic read-modify-write operations should always read the last value (in the modification
order) stored before the write associated with the read-modify-write operation. [C11 standard,
Section 7.17.3, paragraph 12]

Implementations should ensure that no "out-of-thin-air" values are computed that circularly
depend on their own computation.

Note: Under the rules described above, and independent to the previously footnoted C++ issue, it
is known that x == y == 42 is a valid final state in the following problematic example:

global atomic_int x = ATOMIC_VAR_INIT(0);
local atomic_int y = ATOMIC_VAR_INIT(0);

unit_of_execution_1:
... [execution not reading or writing x or y, leading up to:]
int t = atomic_load(&y, memory_order_acquire);
atomic_store(&x, t, memory_order_release)

unit_of_execution_2:
... [execution not reading or writing x or y, leading up to:]
int t = atomic_load(&x, memory_order_acquire);
atomic_store(&y, memory_order_release);

This outcome is justified by a cycle that is "split" between the local-happens-before and global-
happens-before relations.

Last Revision Date: 3/18/14 Page 50

This is not useful behavior and implementations should not exploit this phenomenon. It should
be expected that in the future this may be disallowed by appropriate updates to the memory
model description by the OpenCL committee.

Implementations should make atomic stores visible to atomic loads within a reasonable amount
of time. [C11 standard, Section 7.17.3, paragraph 16]

3.3.6.2 Memory Ordering Rules: Fence Operations

This section describes how the OpenCL 2.0 fence operations contribute to the local- and global-
happens-before relations.

Earlier, we introduced synchronization primitives called fences. Fences can utilize the acquire
memory_order, release memory_order, or both. A fence with acquire semantics is called an
acquire fence; a fence with release semantics is called a release fence.

A global release fence A global-synchronizes-with a global acquire fence B if there exist atomic
operations X and Y, both operating on some global atomic object M, such that A is sequenced-
before X, X modifies M, Y is sequenced-before B, Y reads the value written by X or a value
written by any side effect in the hypothetical release sequence X would head if it were a release
operation, and that the scopes of A, B are inclusive. [C11 standard, Section 7.17.4, paragraph 2,
modified.]

A global release fence A global-synchronizes-with an atomic operation B that performs an
acquire operation on a global atomic object M if there exists an atomic operation X such that A
is sequenced-before X, X modifies M, B reads the value written by X or a value written by any
side effect in the hypothetical release sequence X would head if it were a release operation, and
the scopes of A and B are inclusive. [C11 standard, Section 7.17.4, paragraph 3, modified.]

An atomic operation A that is a release operation on a global atomic object M global-
synchronizes-with a global acquire fence B if there exists some atomic operation X on M such
that X is sequenced-before B and reads the value written by A or a value written by any side
effect in the release sequence headed by A, and the scopes of A and B are inclusive. [C11
standard, Section 7.17.4, paragraph 4, modified].

A local release fence A local-synchronizes-with a local acquire fence B if there exist atomic
operations X and Y, both operating on some local atomic object M, such that A is sequenced-
before X, X modifies M, Y is sequenced-before B, and Y reads the value written by X or a value
written by any side effect in the hypothetical release sequence X would head if it were a
release operation, and the scopes of A and B are inclusive. [C11 standard, Section 7.17.4,
paragraph 2, modified.]

A local release fence A local-synchronizes-with an atomic operation B that performs an acquire
operation on a local atomic object M if there exists an atomic operation X such that A is

Last Revision Date: 3/18/14 Page 51

sequenced-before X, X modifies M, and B reads the value written by X or a value written by any
side effect in the hypothetical release sequence X would head if it were a release operation, and
the scopes of A and B are inclusive. [C11 standard, Section 7.17.4, paragraph 3, modified.]

An atomic operation A that is a release operation on a local atomic object M local-synchronizes-
with a local acquire fence B if there exists some atomic operation X on M such that X is
sequenced-before B and reads the value written by A or a value written by any side effect in the
release sequence headed by A, and the scopes of A and B are inclusive. [C11 standard, Section
7.17.4, paragraph 4, modified].

Let X and Y be two work item fences that each have both the CLK_GLOBAL_MEM_FENCE
and CLK_LOCAL_MEM_FENCE flags set. If X either local-synchronizes-with or global-
synchronizes-with Y, then X both local-synchronizes-with Y and global-synchronizes-with Y.

3.3.6.3 Memory Ordering Rules: Work-group Functions

The OpenCL C programming language includes collective operations across the work-items
within a single work-group. These are called work-group functions. Besides the work-group
barrier function, they include the scan, reduction and pipe work-group functions described in
Section 6.13.15. We will first discuss the work-group barrier. The other work group functions are
discussed afterwards.

The barrier function provides a mechanism for a kernel to synchronize the work-items within a
single work-group: informally, each work-item of the work-group must execute the barrier
before any are allowed to proceed. It also orders memory operations to a specified combination
of one or more address spaces such as local memory or global memory, in a similar manner to a
fence.

To precisely specify the memory ordering semantics for barrier, we need to distinguish between
a dynamic and a static instance of the call to a barrier. A call to a barrier can appear in a loop, for
example, and each execution of the same static barrier call results in a new dynamic instance of
the barrier that will independently synchronize a work-group’s work-items.

A work-item executing a dynamic instance of a barrier results in two operations, both fences,
that are called the entry and exit fences. These fences obey all the rules for fences specified
elsewhere in this chapter as well as the following:

 The entry fence is a release fence with the same flags and scope as requested for the
barrier.

 The exit fence is an acquire fence with the same flags and scope as requested for the
barrier.

 For each work-item the entry fence is sequenced before the exit fence.
 If the flags have CLK_GLOBAL_MEM_FENCE set then for each work-item the entry

fence global-synchronizes-with the exit fence of all other work-items in the same work-
group.

Last Revision Date: 3/18/14 Page 52

 If the flags have CLK_LOCAL_MEM_FENCE set then for each work-item the entry
fence local-synchronizes-with the exit fence of all other work-items in the same work-
group.

The other work-group functions include such functions as work_group_all() and
work_group_broadcast() and are described in Section 6.13.15. The use of these workgroup
functions implies sequenced-before relationships between statements within the execution of a
single work-item in order to satisfy data dependencies. For example, a work item that provides a
value to a workgroup function must behave as if it generates that value before beginning
execution of that workgroup function. Furthermore, the programmer must ensure that all work
items in a work group must execute the same workgroup function call site, or dynamic
workgroup function instance.

3.3.6.4 Memory Ordering Rules: Host-side and Device-side Commands

This section describes how the OpenCL API functions associated with command-queues
contribute to happens-before relations. There are two types of command queues and associated
API functions in OpenCL 2.0; host command-queues and device command-queues. The
interaction of these command queues with the memory model are for the most part equivalent.
In a few cases, the rules only applies to the host command-queue. We will indicate these special
cases by specifically denoting the host command-queue in the memory ordering rule. SVM
memory consistency in such instances is implied only with respect to synchronizing host
commands.

In the remainder of this section, we assume that each command C enqueued onto a command-
queue has an associated event object E that signals its execution status, regardless of whether E
was returned to the unit of execution that enqueued C. We also distinguish between the API
function call that enqueues a command C and creates an event E, the execution of C, and the
completion of C (which marks the event E as complete).

The ordering and synchronization rules for API commands are defined as following:

1. If an API function call X enqueues a command C, then X global-synchronizes-with
C. For example, a host API function to enqueue a kernel global-synchronizes-with the
start of that kernel-instance’s execution, so that memory updates sequenced-before
the enqueue kernel function call will global-happen-before any kernel reads or writes
to those same memory locations. For a device-side enqueue, global memory updates
sequenced before X happens-before C reads or writes to those memory locations only
in the case of fine-grained SVM.

2. If E is an event upon which a command C waits, then E global-synchronizes-with C.
In particular, if C waits on an event E that is tracking the execution status of the
command C1, then memory operations done by C1 will global-happen-before
memory operations done by C. As an example, assume we have an OpenCL program
using coarse-grain SVM sharing that enqueues a kernel to a host command-queue to
manipulate the contents of a region of a buffer that the host thread then accesses after
the kernel completes. To do this, the host thread can call clEnqueueMapBuffer to

Last Revision Date: 3/18/14 Page 53

enqueue a blocking-mode map command to map that buffer region, specifying that
the map command must wait on an event signaling the kernel’s completion. When
clEnqueueMapBuffer returns, any memory operations performed by the kernel to that
buffer region will global- happen-before subsequent memory operations made by the
host thread.

3. If a command C has an event E that signals its completion, then C global-
synchronizes-with E.

4. For a command C enqueued to a host-side command queue, if C has an event E that
signals its completion, then E global- synchronizes-with an API call X that waits on
E. For example, if a host thread or kernel-instance calls the wait-for-events function
on E (e.g. the clWaitForEvents function called from a host thread), then E global-
synchronizes-with that wait-for-events function call.

5. If commands C and C1 are enqueued in that sequence onto an in-order command-
queue, then the event (including the event implied between C and C1 due to the in-
order queue) signaling C’s completion global-synchronizes-with C1. Note that in
OpenCL 2.0, only a host command-queue can be configured as an in-order queue.

6. If an API call enqueues a marker command C with an empty list of events upon
which C should wait, then the events of all commands enqueued prior to C in the
command-queue global-synchronize-with C.

7. If a host API call enqueues a command-queue barrier command C with an empty list
of events on which C should wait, then the events of all commands enqueued prior to
C in the command-queue global-synchronize-with C. In addition, the event signaling
the completion of C global-synchronizes-with all commands enqueued after C in the
command-queue.

8. If a host thread executes a clFinish call X, then the events of all commands enqueued
prior to X in the command-queue global-synchronizes-with X.

9. The start of a kernel-instance K global-synchronizes-with all operations in the work
items of K. Note that this includes the execution of any atomic operations by the
work items in a program using fine-grain SVM.

10. All operations of all work items of a kernel-instance K global-synchronizes-with the
event signaling the completion of K. Note that this also includes the execution of any
atomic operations by the work items in a program using fine-grain SVM.

11. If a callback procedure P is registered on an event E, then E global-synchronizes-with
all operations of P. Note that callback procedures are only defined for commands
within host command-queues.

12. If C is a command that waits for an event E’s completion, and API function call X
sets the status of a user event E’s status to CL_COMPLETE (for example, from a host
thread using a clSetUserEventStatus function), then X global-synchronizes-with C.

13. If a device enqueues a command C with the
CLK_ENQUEUE_FLAGS_WAIT_KERNEL flag, then the end state of the parent kernel
instance global-synchronizes with C.

Last Revision Date: 3/18/14 Page 54

14. If a work-group enqueues a command C with the
CLK_ENQUEUE_FLAGS_WAIT_WORK_GROUP flag, then the end state of the work-
group global-synchronizes with C.

When using an out-of-order command queue, a wait on an event or a marker or command-queue
barrier command can be used to ensure the correct ordering of dependent commands. In those
cases, the wait for the event or the marker or barrier command will provide the necessary global-
synchronizes-with relation.

In the remainder of this section, we discuss a few points regarding the ordering rules for
commands with a host command queue.

The OpenCL 1.2 standard describes a synchronization point as a kernel-instance or host program
location where the contents of memory visible to different work-items or command-queue
commands are the same. It also says that waiting on an event and a command-queue barrier are
synchronization points between commands in command- queues. Four of the rules listed above
(2, 4, 7, and 8) cover these OpenCL synchronization points.

A map operation (clEnqueueMapBuffer or clEnqueueMapImage) performed on a non-SVM
buffer or a coarse-grained SVM buffer is allowed to overwrite the entire target region with the
latest runtime view of the data as seen by the command with which the map operation
synchronizes, whether the values were written by the executing kernels or nor. Any values that
were changed within this region by another kernel or host thread while the kernel synchronizing
with the map operation was executing may be overwritten by the map operation.

If fine-grain SVM is used but without support for the OpenCL 2.0 atomic operations, then the
host and devices can concurrently read the same memory locations and can concurrently update
non-overlapping memory regions, but attempts to update the same memory locations are
undefined. Memory consistency is guaranteed at the OpenCL synchronization points without the
need for calls to clEnqueueMapBuffer and clEnqueueUnmapMemObject. For fine-grained SVM
buffers it is guaranteed that at synchronization points only values written by the kernel will be
updated. No writes to fine-grained SVM buffers can be introduced that were not in the original
program.

3.4 The OpenCL Framework
The OpenCL framework allows applications to use a host and one or more OpenCL devices as a
single heterogeneous parallel computer system. The framework contains the following
components:

 OpenCL Platform layer: The platform layer allows the host program to discover OpenCL
devices and their capabilities and to create contexts.

Last Revision Date: 3/18/14 Page 55

 OpenCL Runtime: The runtime allows the host program to manipulate contexts once they
have been created.

 OpenCL Compiler: The OpenCL compiler creates program executables that contain
OpenCL kernels. The OpenCL C programming language implemented by the compiler
supports a subset of the ISO C99 language with extensions for parallelism.

3.4.1 OpenCL Framework: Mixed Version Support

OpenCL supports devices with different capabilities under a single platform. This includes
devices which conform to different versions of the OpenCL specification. There are three version
identifiers to consider for an OpenCL system: the platform version, the version of a device, and
the version(s) of the OpenCL C programming language supported on a device.

The platform version indicates the version of the OpenCL runtime that is supported. This
includes all of the APIs that the host can use to interact with resources exposed by the OpenCL
runtime; including contexts, memory objects, devices, and command queues.

The device version is an indication of the device's capabilities separate from the runtime and
compiler as represented by the device info returned by clGetDeviceInfo. Examples of attributes
associated with the device version are resource limits (e.g., minimum size of local memory per
compute unit) and extended functionality (e.g., list of supported KHR extensions). The version
returned corresponds to the highest version of the OpenCL specification for which the device is
conformant, but is not higher than the platform version.

The language version for a device represents the OpenCL programming language features a
developer can assume are supported on a given device. The version reported is the highest
version of the language supported.

Backwards compatibility is an important goal for the OpenCL C programming language, hence a
device is not required to support more than a single language version to be considered
conformant. If multiple language versions are supported, the compiler defaults to using the
highest OpenCL 1.x language version supported for the device (typically OpenCL 1.2). To
utilize the OpenCL 2.0 Kernel programming language, a programmer must specifically set the
appropriate compiler flag (-cl-std=CL2.0). The language version is not higher than the platform
version, but may exceed the device version (see section 5.6.4.5).

Last Revision Date: 3/18/14 Page 56

4. The OpenCL Platform Layer

This section describes the OpenCL platform layer which implements platform-specific features
that allow applications to query OpenCL devices, device configuration information, and to create
OpenCL contexts using one or more devices.

4.1 Querying Platform Info

The list of platforms available can be obtained using the following function.

cl_int clGetPlatformIDs (cl_uint num_entries,
 cl_platform_id *platforms,
 cl_uint *num_platforms)

num_entries is the number of cl_platform_id entries that can be added to platforms. If platforms
is not NULL, the num_entries must be greater than zero.

platforms returns a list of OpenCL platforms found. The cl_platform_id values returned in
platforms can be used to identify a specific OpenCL platform. If platforms argument is NULL,
this argument is ignored. The number of OpenCL platforms returned is the minimum of the
value specified by num_entries or the number of OpenCL platforms available.

num_platforms returns the number of OpenCL platforms available. If num_platforms is NULL,
this argument is ignored.

clGetPlatformIDs returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if num_entries is equal to zero and platforms is not NULL or if
both num_platforms and platforms are NULL.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

cl_int clGetPlatformInfo (cl_platform_id platform,
 cl_platform_info param_name,

 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

Last Revision Date: 3/18/14 Page 57

gets specific information about the OpenCL platform. The information that can be queried
using clGetPlatformInfo is specified in table 4.1.

platform refers to the platform ID returned by clGetPlatformIDs or can be NULL. If platform
is NULL, the behavior is implementation-defined.

param_name is an enumeration constant that identifies the platform information being queried.
It can be one of the following values as specified in table 4.1.

param_value is a pointer to memory location where appropriate values for a given param_name
as specified in table 4.1 will be returned. If param_value is NULL, it is ignored.

param_value_size specifies the size in bytes of memory pointed to by param_value. This size in
bytes must be >= size of return type specified in table 4.1.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

cl_platform_info Return Type Description
CL_PLATFORM_PROFILE char[]2 OpenCL profile string. Returns the

profile name supported by the
implementation. The profile name
returned can be one of the following
strings:

FULL_PROFILE – if the implementation
supports the OpenCL specification
(functionality defined as part of the core
specification and does not require any
extensions to be supported).

EMBEDDED_PROFILE - if the
implementation supports the OpenCL
embedded profile. The embedded profile
is defined to be a subset for each version
of OpenCL. The embedded profile for
OpenCL 2.0 is described in section 10.

CL_PLATFORM_VERSION char[] OpenCL version string. Returns the
OpenCL version supported by the
implementation. This version string has
the following format:

2 A null terminated string is returned by OpenCL query function calls if the return type of the information being
queried is a char[].

Last Revision Date: 3/18/14 Page 58

OpenCL<space><major_version.minor_
version><space><platform-specific
information>

The major_version.minor_version value
returned will be 2.0.

CL_PLATFORM_NAME char[] Platform name string.
CL_PLATFORM_VENDOR char[] Platform vendor string.
CL_PLATFORM_EXTENSIONS char[] Returns a space separated list of extension

names (the extension names themselves
do not contain any spaces) supported by
the platform. Extensions defined here
must be supported by all devices
associated with this platform.

Table 4.1. OpenCL Platform Queries

clGetPlatformInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors3:

 CL_INVALID_PLATFORM if platform is not a valid platform.

 CL_INVALID_VALUE if param_name is not one of the supported values or if size in
bytes specified by param_value_size is < size of return type as specified in table 4.1 and
param_value is not a NULL value.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

4.2 Querying Devices

The list of devices available on a platform can be obtained using the following function.

 cl_int clGetDeviceIDs4 (cl_platform_id platform,

 cl_device_type device_type,
 cl_uint num_entries,
 cl_device_id *devices,

 cl_uint *num_devices)

3 The OpenCL specification does not describe the order of precedence for error codes returned by API calls.
4 clGetDeviceIDs may return all or a subset of the actual physical devices present in the platform and that match
device_type.

Last Revision Date: 3/18/14 Page 59

platform refers to the platform ID returned by clGetPlatformIDs or can be NULL. If platform
is NULL, the behavior is implementation-defined.

device_type is a bitfield that identifies the type of OpenCL device. The device_type can be used
to query specific OpenCL devices or all OpenCL devices available. The valid values for
device_type are specified in table 4.2.

cl_device_type Description

CL_DEVICE_TYPE_CPU An OpenCL device that is the host processor. The
host processor runs the OpenCL implementations
and is a single or multi-core CPU.

CL_DEVICE_TYPE_GPU An OpenCL device that is a GPU. By this we mean
that the device can also be used to accelerate a 3D
API such as OpenGL or DirectX.

CL_DEVICE_TYPE_ACCELERATOR Dedicated OpenCL accelerators (for example the
IBM CELL Blade). These devices communicate
with the host processor using a peripheral
interconnect such as PCIe.

CL_DEVICE_TYPE_CUSTOM Dedicated accelerators that do not support programs
written in OpenCL C.

CL_DEVICE_TYPE_DEFAULT The default OpenCL device in the system. The
default device cannot be a
CL_DEVICE_TYPE_CUSTOM device.

CL_DEVICE_TYPE_ALL All OpenCL devices available in the system except
CL_DEVICE_TYPE_CUSTOM devices..

 Table 4.2. List of OpenCL Device Categories

num_entries is the number of cl_device_id entries that can be added to devices. If devices is not
NULL, the num_entries must be greater than zero.

devices returns a list of OpenCL devices found. The cl_device_id values returned in devices can
be used to identify a specific OpenCL device. If devices argument is NULL, this argument is
ignored. The number of OpenCL devices returned is the minimum of the value specified by
num_entries or the number of OpenCL devices whose type matches device_type.

num_devices returns the number of OpenCL devices available that match device_type. If
num_devices is NULL, this argument is ignored.

clGetDeviceIDs returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_PLATFORM if platform is not a valid platform.

Last Revision Date: 3/18/14 Page 60

 CL_INVALID_DEVICE_TYPE if device_type is not a valid value.

 CL_INVALID_VALUE if num_entries is equal to zero and devices is not NULL or if both
num_devices and devices are NULL.

 CL_DEVICE_NOT_FOUND if no OpenCL devices that matched device_type were found.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The application can query specific capabilities of the OpenCL device(s) returned by
clGetDeviceIDs. This can be used by the application to determine which device(s) to use.

The function

 cl_int clGetDeviceInfo (cl_device_id device,

 cl_device_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

gets specific information about an OpenCL device. device may be a device returned by
clGetDeviceIDs or a sub-device created by clCreateSubDevices. If device is a sub-device, the
specific information for the sub-device will be returned. The information that can be queried
using clGetDeviceInfo is specified in table 4.3.

device is a device returned by clGetDeviceIDs.

param_name is an enumeration constant that identifies the device information being queried. It
can be one of the following values as specified in table 4.3.

param_value is a pointer to memory location where appropriate values for a given param_name
as specified in table 4.3 will be returned. If param_value is NULL, it is ignored.

param_value_size specifies the size in bytes of memory pointed to by param_value. This size in
bytes must be >= size of return type specified in table 4.3.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

Last Revision Date: 3/18/14 Page 61

cl_device_info Return Type Description
CL_DEVICE_TYPE cl_device_type The OpenCL device type. Currently

supported values are:

CL_DEVICE_TYPE_CPU,
CL_DEVICE_TYPE_GPU,
CL_DEVICE_TYPE_ACCELERATOR,
CL_DEVICE_TYPE_DEFAULT, a combination
of the above types or
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_VENDOR_ID cl_uint A unique device vendor identifier. An
example of a unique device identifier could
be the PCIe ID.

CL_DEVICE_MAX_COMPUTE_UNITS cl_uint The number of parallel compute units on
the OpenCL device. A work-group
executes on a single compute unit. The
minimum value is 1.

CL_DEVICE_MAX_WORK_ITEM_
DIMENSIONS

cl_uint Maximum dimensions that specify the
global and local work-item IDs used by the
data parallel execution model. (Refer to
clEnqueueNDRangeKernel). The minimum
value is 3 for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_WORK_ITEM_SIZES size_t [] Maximum number of work-items that can
be specified in each dimension of the
work-group to
clEnqueueNDRangeKernel.

Returns n size_t entries, where n is the
value returned by the query for
CL_DEVICE_MAX_WORK_ITEM_DIMEN
SIONS.

The minimum value is (1, 1, 1) for devices
that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_WORK_GROUP_SIZE size_t Maximum number of work-items in a
work-group executing a kernel on a single
compute unit, using the data parallel
execution model. (Refer to
clEnqueueNDRangeKernel).
The minimum value is 1.

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_CHAR

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_SHORT

cl_uint Preferred native vector width size for built-
in scalar types that can be put into vectors.
The vector width is defined as the number
of scalar elements that can be stored in the

Last Revision Date: 3/18/14 Page 62

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_INT

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_LONG

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_FLOAT

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_DOUBLE

 CL_DEVICE_PREFERRED_
VECTOR_WIDTH_HALF

vector.

If double precision is not supported,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_
DOUBLE must return 0.

If the cl_khr_fp16 extension is not supported,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_
HALF must return 0.

CL_DEVICE_NATIVE_
VECTOR_WIDTH_CHAR

CL_DEVICE_NATIVE_
VECTOR_WIDTH_SHORT

CL_DEVICE_NATIVE_
VECTOR_WIDTH_INT

CL_DEVICE_NATIVE_
VECTOR_WIDTH_LONG

CL_DEVICE_NATIVE_
VECTOR_WIDTH_FLOAT

CL_DEVICE_NATIVE_
VECTOR_WIDTH_DOUBLE

CL_DEVICE_NATIVE_
VECTOR_WIDTH_HALF

cl_uint Returns the native ISA vector width. The
vector width is defined as the number of
scalar elements that can be stored in the
vector.

If double precision is not supported,
CL_DEVICE_NATIVE_VECTOR_WIDTH_DOU
BLE must return 0.

If the cl_khr_fp16 extension is not supported,
CL_DEVICE_NATIVE_VECTOR_WIDTH_HAL
F must return 0.

CL_DEVICE_MAX_CLOCK_FREQUENCY cl_uint Maximum configured clock frequency of
the device in MHz.

CL_DEVICE_ADDRESS_BITS cl_uint The default compute device address space
size of the global address space specified
as an unsigned integer value in bits.
Currently supported values are 32 or 64
bits.

CL_DEVICE_MAX_MEM_ALLOC_SIZE cl_ulong Max size of memory object allocation in

bytes. The minimum value is max
(min(1024*1024*1024, 1/4th of
CL_DEVICE_GLOBAL_MEM_SIZE),
32*1024*1024) for devices that are not of
type CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_IMAGE_SUPPORT cl_bool Is CL_TRUE if images are supported by the

OpenCL device and CL_FALSE otherwise.
CL_DEVICE_MAX_READ_IMAGE_ARGS cl_uint Max number of image objects arguments

of a kernel declared with the read_only
qualifier. The minimum value is 128 if

Last Revision Date: 3/18/14 Page 63

CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_WRITE_IMAGE_ARGS cl_uint Max number of image objects arguments
of a kernel declared with the
write_only qualifier. The minimum
value is 64 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_READ_WRITE_IMAGE
_ARGS5

cl_uint Max number of image objects arguments
of a kernel declared with the
write_only or read_write qualifier.
The minimum value is 64 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE2D_MAX_WIDTH size_t Max width of 2D image or 1D image not
created from a buffer object in pixels.

The minimum value is 16384 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE2D_MAX_HEIGHT size_t Max height of 2D image in pixels.

The minimum value is 16384 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE3D_MAX_WIDTH size_t Max width of 3D image in pixels.

The minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE3D_MAX_HEIGHT size_t Max height of 3D image in pixels.

The minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE3D_MAX_DEPTH size_t Max depth of 3D image in pixels.

The minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE_MAX_BUFFER_SIZE size_t Max number of pixels for a 1D image
created from a buffer object.

5 NOTE: CL_DEVICE_MAX_WRITE_IMAGE_ARGS is only there for backward compatibility.
CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS should be used instead.

Last Revision Date: 3/18/14 Page 64

The minimum value is 65536 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE_MAX_ARRAY_SIZE size_t Max number of images in a 1D or 2D
image array.

The minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_SAMPLERS cl_uint Maximum number of samplers that can be
used in a kernel.

The minimum value is 16 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE_PITCH_ALIGNMENT cl_uint The row pitch alignment size in pixels for
2D images created from a buffer. The
value returned must be a power of 2.

If the device does not support images, this
value must be 0.

CL_DEVICE_IMAGE_BASE_ADDRESS_
ALIGNMENT

cl_uint This query should be used when a 2D
image is created from a buffer which was
created using CL_MEM_USE_HOST_PTR.
The value returned must be a power of 2.

This query specifies the minimum
alignment in pixels of the host_ptr
specified to clCreateBuffer.

If the device does not support images, this
value must be 0.

CL_DEVICE_MAX_PIPE_ARGS cl_uint The maximum number of pipe objects that

can be passed as arguments to a kernel.
The minimum value is 16.

CL_DEVICE_PIPE_MAX_ACTIVE_
RESERVATIONS

cl_uint The maximum number of reservations that
can be active for a pipe per work-item in a
kernel. A work-group reservation is
counted as one reservation per work-item.
The minimum value is 1.

CL_DEVICE_PIPE_MAX_PACKET_SIZE cl_uint The maximum size of pipe packet in bytes.
The minimum value is 1024 bytes.

CL_DEVICE_MAX_PARAMETER_SIZE size_t Max size in bytes of all arguments that can

Last Revision Date: 3/18/14 Page 65

be passed to a kernel.

The minimum value is 1024 for devices
that are not of type
CL_DEVICE_TYPE_CUSTOM. For this
minimum value, only a maximum of 128
arguments can be passed to a kernel.

CL_DEVICE_MEM_BASE_ADDR_ALIGN cl_uint The minimum value is the size (in bits) of

the largest OpenCL built-in data
type supported by the device (long16 in
FULL profile, long16 or int16 in
EMBEDDED profile) for devices that are
not of type CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_SINGLE_FP_CONFIG6 cl_device_

fp_config
Describes single precision floating-point
capability of the device. This is a bit-field
that describes one or more of the following
values:

CL_FP_DENORM – denorms are supported

CL_FP_INF_NAN – INF and quiet NaNs are
supported.

CL_FP_ROUND_TO_NEAREST– round to
nearest even rounding mode supported

CL_FP_ROUND_TO_ZERO – round to zero
rounding mode supported

CL_FP_ROUND_TO_INF – round to positive
and negative infinity rounding modes
supported

CL_FP_FMA – IEEE754-2008 fused multiply-
add is supported.

CL_FP_CORRECTLY_ROUNDED_DIVIDE
_SQRT – divide and sqrt are correctly rounded
as defined by the IEEE754 specification.

CL_FP_SOFT_FLOAT – Basic floating-point
operations (such as addition, subtraction,
multiplication) are implemented in software.

6 The optional rounding modes should be included as a device capability only if it is supported natively. All explicit
conversion functions with specific rounding modes must still operate correctly.

Last Revision Date: 3/18/14 Page 66

For the full profile, the mandated minimum
floating-point capability for devices that
are not of type
CL_DEVICE_TYPE_CUSTOM is:
CL_FP_ROUND_TO_NEAREST |
CL_FP_INF_NAN.

For the embedded profile, see section 10.

CL_DEVICE_DOUBLE_FP_CONFIG7 cl_device_
fp_config

Describes double precision floating-point
capability of the OpenCL device. This is a
bit-field that describes one or more of the
following values:

CL_FP_DENORM – denorms are supported

CL_FP_INF_NAN – INF and NaNs are
supported.

CL_FP_ROUND_TO_NEAREST – round to
nearest even rounding mode supported.

CL_FP_ROUND_TO_ZERO – round to zero
rounding mode supported.

CL_FP_ROUND_TO_INF – round to
positive and negative infinity rounding
modes supported.

CP_FP_FMA – IEEE754-2008 fused
multiply-add is supported.

CL_FP_SOFT_FLOAT – Basic floating-point
operations (such as addition, subtraction,
multiplication) are implemented in software.

Double precision is an optional feature so
the mandated minimum double precision
floating-point capability is 0.

If double precision is supported by the
device, then the minimum double precision
floating-point capability must be:
CL_FP_FMA |

7 The optional rounding modes should be included as a device capability only if it is supported natively. All explicit
conversion functions with specific rounding modes must still operate correctly.

Last Revision Date: 3/18/14 Page 67

CL_FP_ROUND_TO_NEAREST |
CL_FP_INF_NAN |
CL_FP_DENORM.

CL_DEVICE_GLOBAL_MEM_CACHE_
TYPE

cl_device_mem_
cache_type

Type of global memory cache supported.
Valid values are:
CL_NONE,
CL_READ_ONLY_CACHE and
CL_READ_WRITE_CACHE.

CL_DEVICE_GLOBAL_MEM_CACHELINE
_SIZE

cl_uint Size of global memory cache line in bytes.
CL_DEVICE_GLOBAL_MEM_CACHE_
SIZE

cl_ulong Size of global memory cache in bytes.
CL_DEVICE_GLOBAL_MEM_SIZE cl_ulong Size of global device memory in bytes.

CL_DEVICE_MAX_CONSTANT_
BUFFER_SIZE

cl_ulong Max size in bytes of a constant buffer
allocation. The minimum value is 64 KB
for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_CONSTANT_ARGS cl_uint Max number of arguments declared with
the __constant qualifier in a kernel. The
minimum value is 8 for devices that are not
of type CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_GLOBAL_VARIABLE_
SIZE

size_t The maximum number of bytes of storage
that may be allocated for any single
variable in program scope or inside a
function in OpenCL C declared in the
global address space. This value is also
provided inside OpenCL C as a
preprocessor macro by the same name.

The minimum value is 64 KB.

CL_DEVICE_GLOBAL_VARIABLE_PREFE
RRED_TOTAL_SIZE

size_t Maximum preferred total size, in bytes, of
all program variables in the global address
space. This is a performance hint. An
implementation may place such variables
in storage with optimized device access.
This query returns the capacity of such
storage. The minimum value is 0.

CL_DEVICE_LOCAL_MEM_TYPE cl_device_local_

mem_type
Type of local memory supported. This can
be set to CL_LOCAL implying dedicated
local memory storage such as SRAM, or
CL_GLOBAL.

For custom devices, CL_NONE can also be

Last Revision Date: 3/18/14 Page 68

returned indicating no local memory
support.

CL_DEVICE_LOCAL_MEM_SIZE cl_ulong Size of local memory region in bytes. The
minimum value is 32 KB for devices that
are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_ERROR_CORRECTION_
SUPPORT

cl_bool Is CL_TRUE if the device implements error
correction for all accesses to compute
device memory (global and constant). Is
CL_FALSE if the device does not
implement such error correction.

CL_DEVICE_PROFILING_TIMER_
RESOLUTION

size_t Describes the resolution of device timer.
This is measured in nanoseconds. Refer to
section 5.14 for details.

CL_DEVICE_ENDIAN_LITTLE cl_bool Is CL_TRUE if the OpenCL device is a

little endian device and CL_FALSE
otherwise.

CL_DEVICE_AVAILABLE cl_bool Is CL_TRUE if the device is available and
CL_FALSE otherwise. A device is
considered to be available if the device can
be expected to successfully execute
commands enqueued to the device.

CL_DEVICE_COMPILER_AVAILABLE cl_bool Is CL_FALSE if the implementation does

not have a compiler available to compile
the program source.
Is CL_TRUE if the compiler is available.

This can be CL_FALSE for the embedded
platform profile only.

CL_DEVICE_LINKER_AVAILABLE cl_bool Is CL_FALSE if the implementation does
not have a linker available.
Is CL_TRUE if the linker is available.

This can be CL_FALSE for the embedded
platform profile only.

This must be CL_TRUE if
CL_DEVICE_COMPILER_AVAILABLE is
CL_TRUE.

CL_DEVICE_EXECUTION_CAPABILITIES cl_device_exec_ Describes the execution capabilities of the

Last Revision Date: 3/18/14 Page 69

capabilities device. This is a bit-field that describes
one or more of the following values:

CL_EXEC_KERNEL – The OpenCL device
can execute OpenCL kernels.

CL_EXEC_NATIVE_KERNEL – The OpenCL
device can execute native kernels.

The mandated minimum capability is:
CL_EXEC_KERNEL.

CL_DEVICE_QUEUE_ON_HOST_
PROPERTIES8

cl_command_
queue_properties

Describes the on host command-queue
properties supported by the device. This is
a bit-field that describes one or more of the
following values:

CL_QUEUE_OUT_OF_ORDER_EXEC_
MODE_ENABLE

CL_QUEUE_PROFILING_ENABLE

These properties are described in table 5.1.

The mandated minimum capability is:
CL_QUEUE_PROFILING_ENABLE.

CL_DEVICE_QUEUE_ON_DEVICE_
PROPERTIES

cl_command_
queue_properties

Describes the on device command-queue
properties supported by the device. This is
a bit-field that describes one or more of the
following values:

CL_QUEUE_OUT_OF_ORDER_EXEC_
MODE_ENABLE

CL_QUEUE_PROFILING_ENABLE

These properties are described in table 5.1.

The mandated minimum capability is:
CL_QUEUE_OUT_OF_ORDER_EXEC_
MODE_ENABLE |
CL_QUEUE_PROFILING_ENABLE.

CL_DEVICE_QUEUE_ON_DEVICE_
PREFERRED_SIZE

cl_uint The size of the device queue in bytes
preferred by the implementation.
Applications should use this size for the
device queue to ensure good performance.

8 CL_DEVICE_QUEUE_PROPERTIES is deprecated and replaced by
CL_DEVICE_QUEUE_ON_HOST_PROPERTIES.

Last Revision Date: 3/18/14 Page 70

The minimum value is 16 KB

CL_DEVICE_QUEUE_ON_DEVICE_
MAX_SIZE

cl_uint The max. size of the device queue in bytes.

The minimum value is 256 KB for the full
profile and 64 KB for the embedded profile

CL_DEVICE_MAX_ON_DEVICE_QUEUES cl_uint The maximum number of device queues
that can be created per context.

The minimum value is 1.

CL_DEVICE_MAX_ON_DEVICE_EVENTS cl_uint The maximum number of events in use by
a device queue. These refer to events
returned by the enqueue_ built-in
functions to a device queue or user events
returned by the create_user_event
built-in function that have not been
released.

The minimum value is 1024.

CL_DEVICE_BUILT_IN_KERNELS char[] A semi-colon separated list of built-in

kernels supported by the device. An empty
string is returned if no built-in kernels are
supported by the device.

CL_DEVICE_PLATFORM cl_platform_id The platform associated with this device.

CL_DEVICE_NAME char[] Device name string.
CL_DEVICE_VENDOR char[] Vendor name string.
CL_DRIVER_VERSION char[] OpenCL software driver version string in

the form
major_number.minor_number

CL_DEVICE_PROFILE9 char[] OpenCL profile string. Returns the profile
name supported by the device. The profile
name returned can be one of the following
strings:

FULL_PROFILE – if the device supports
the OpenCL specification (functionality
defined as part of the core specification and

9 The platform profile returns the profile that is implemented by the OpenCL framework. If the platform profile
returned is FULL_PROFILE, the OpenCL framework will support devices that are FULL_PROFILE and may also
support devices that are EMBEDDED_PROFILE. The compiler must be available for all devices i.e.
CL_DEVICE_COMPILER_AVAILABLE is CL_TRUE. If the platform profile returned is
EMBEDDED_PROFILE, then devices that are only EMBEDDED_PROFILE are supported.

Last Revision Date: 3/18/14 Page 71

does not require any extensions to be
supported).

EMBEDDED_PROFILE - if the device
supports the OpenCL embedded profile.

CL_DEVICE_VERSION char[] OpenCL version string. Returns the
OpenCL version supported by the device.
This version string has the following
format:

OpenCL<space><major_version.minor_v
ersion><space><vendor-specific
information>

The major_version.minor_version value
returned will be 2.0.

CL_DEVICE_OPENCL_C_VERSION char[] OpenCL C version string. Returns the
highest OpenCL C version supported by
the compiler for this device that is not of
type CL_DEVICE_TYPE_CUSTOM. This
version string has the following format:

OpenCL<space>C<space><major_versio
n.minor_version><space><vendor-
specific information>

The major_version.minor_version value
returned must be 2.0 if
CL_DEVICE_VERSION is OpenCL 2.0.

The major_version.minor_version value
returned must be 1.2 if
CL_DEVICE_VERSION is OpenCL 1.2.

The major_version.minor_version value
returned must be 1.1 if
CL_DEVICE_VERSION is OpenCL 1.1.

The major_version.minor_version value
returned can be 1.0 or 1.1 if
CL_DEVICE_VERSION is OpenCL 1.0.

CL_DEVICE_EXTENSIONS char[] Returns a space separated list of extension
names (the extension names themselves do
not contain any spaces) supported by the
device. The list of extension names
returned can be vendor supported extension

Last Revision Date: 3/18/14 Page 72

names and one or more of the following
Khronos approved extension names:

cl_khr_int64_base_atomics
cl_khr_int64_extended_atomics
cl_khr_fp16
cl_khr_gl_sharing
cl_khr_gl_event
cl_khr_d3d10_sharing
cl_khr_dx9_media_sharing
cl_khr_d3d11_sharing
cl_khr_gl_depth_images
cl_khr_gl_msaa_sharing
cl_khr_initialize_memory
cl_khr_context_abort
cl_khr_spir
cl_khr_srgb_image_writes

The following approved Khronos extension
names must be returned by all device that
support OpenCL C 2.0:

cl_khr_byte_addressable_store
cl_khr_fp64 (for backward compatibility if
double precision is supported)
cl_khr_3d_image_writes
cl_khr_image2d_from_buffer
cl_khr_depth_images

Please refer to the OpenCL 2.0 Extension
Specification for a detailed description of
these extensions.

CL_DEVICE_PRINTF_BUFFER_SIZE size_t Maximum size in bytes of the internal

buffer that holds the output of printf calls
from a kernel. The minimum value for the
FULL profile is 1 MB.

CL_DEVICE_PREFERRED_INTEROP_
USER_SYNC

cl_bool Is CL_TRUE if the device’s preference is
for the user to be responsible for
synchronization, when sharing memory
objects between OpenCL and other APIs
such as DirectX, CL_FALSE if the device /
implementation has a performant path for
performing synchronization of memory
object shared between OpenCL and other
APIs such as DirectX.

Last Revision Date: 3/18/14 Page 73

CL_DEVICE_PARENT_DEVICE cl_device_id Returns the cl_device_id of the parent
device to which this sub-device belongs. If
device is a root-level device, a NULL value
is returned.

CL_DEVICE_PARTITION_MAX_SUB_DEVI
CES

cl_uint Returns the maximum number of sub-
devices that can be created when a device
is partitioned.

The value returned cannot exceed
CL_DEVICE_MAX_COMPUTE_UNITS.

CL_DEVICE_PARTITION_
PROPERTIES

cl_device_
partition_
property[]

Returns the list of partition types supported
by device. The is an array of
cl_device_partition_property values drawn
from the following list:

CL_DEVICE_PARTITION_EQUALLY
CL_DEVICE_PARTITION_BY_COUNTS
CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN

If the device cannot be partitioned (i.e.
there is no partitioning scheme supported
by the device that will return at least two
subdevices), a value of 0 will be returned.

CL_DEVICE_PARTITION_AFFINITY_
DOMAIN

cl_device_
affinity_domain

Returns the list of supported affinity
domains for partitioning the device using
CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN.
This is a bit-field that describes one or
more of the following values:

CL_DEVICE_AFFINITY_DOMAIN_NUMA
CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE
CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITI
ONABLE

If the device does not support any affinity
domains, a value of 0 will be returned.

CL_DEVICE_PARTITION_TYPE cl_device_
partition_
property[]

Returns the properties argument specified
in clCreateSubDevices if device is a sub-
device. In the case where the properties
argument to clCreateSubDevices is
CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN,
CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITI
ONABLE, the affinity domain used to
perform the partition will be returned. This
can be one of the following values:

Last Revision Date: 3/18/14 Page 74

CL_DEVICE_AFFINITY_DOMAIN_NUMA
CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE

Otherwise the implementation may either
return a param_value_size_ret of 0 i.e.
there is no partition type associated with
device or can return a property value of 0
(where 0 is used to terminate the partition
property list) in the memory that
param_value points to.

CL_DEVICE_REFERENCE_COUNT cl_uint Returns the device reference count. If the

device is a root-level device, a reference
count of one is returned.

CL_DEVICE_SVM_CAPABILITIES cl_device_svm_

capabilities
Describes the various shared virtual
memory (a.k.a. SVM) memory allocation
types the device supports. Coarse-grain
SVM allocations are required to be
supported by all OpenCL 2.0 devices. This
is a bit-field that describes a combination
of the following values:

CL_DEVICE_SVM_COARSE_GRAIN_
BUFFER – Support for coarse-grain buffer
sharing using clSVMAlloc. Memory
consistency is guaranteed at
synchronization points and the host must
use calls to clEnqueueMapBuffer and
clEnqueueUnmapMemObject.

CL_DEVICE_SVM_FINE_GRAIN_BUFFER
– Support for fine-grain buffer sharing
using clSVMAlloc. Memory consistency
is guaranteed at synchronization points
without need for clEnqueueMapBuffer
and clEnqueueUnmapMemObject.

CL_DEVICE_SVM_FINE_GRAIN_SYSTEM
– Support for sharing the host’s entire
virtual memory including memory
allocated using malloc. Memory
consistency is guaranteed at
synchronization points.

Last Revision Date: 3/18/14 Page 75

CL_DEVICE_SVM_ATOMICS – Support
for the OpenCL 2.0 atomic operations that
provide memory consistency across the
host and all OpenCL devices supporting
fine-grain SVM allocations.

The mandated minimum capability is
CL_DEVICE_SVM_COARSE_GRAIN_
BUFFER.

CL_DEVICE_PREFERRED_PLATFORM_
ATOMIC_ALIGNMENT

cl_uint Returns the value representing the
preferred alignment in bytes for OpenCL
2.0 fine-grained SVM atomic types. This
query can return 0 which indicates that the
preferred alignment is aligned to the
natural size of the type.

CL_DEVICE_PREFERRED_
GLOBAL_ATOMIC_ALIGNMENT

cl_uint Returns the value representing the
preferred alignment in bytes for OpenCL
2.0 atomic types to global memory. This
query can return 0 which indicates that the
preferred alignment is aligned to the
natural size of the type.

CL_DEVICE_PREFERRED_
LOCAL_ATOMIC_ALIGNMENT

cl_uint Returns the value representing the
preferred alignment in bytes for OpenCL
2.0 atomic types to local memory. This
query can return 0 which indicates that the
preferred alignment is aligned to the
natural size of the type.

Table 4.3. OpenCL Device Queries

The device queries described in table 4.3 should return the same information for a root-level
device i.e. a device returned by clGetDeviceIDs and any sub-devices created from this device
except for the following queries:

 CL_DEVICE_GLOBAL_MEM_CACHE_SIZE
 CL_DEVICE_BUILT_IN_KERNELS
 CL_DEVICE_PARENT_DEVICE
 CL_DEVICE_PARTITION_TYPE
 CL_DEVICE_REFERENCE_COUNT

clGetDeviceInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_DEVICE if device is not valid.

 CL_INVALID_VALUE if param_name is not one of the supported values or if size in
bytes specified by param_value_size is < size of return type as specified in table 4.3 and

Last Revision Date: 3/18/14 Page 76

param_value is not a NULL value or if param_name is a value that is available as an
extension and the corresponding extension is not supported by the device.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 77

4.3 Partitioning a Device

The function

 cl_int clCreateSubDevices (cl_device_id in_device,

const cl_device_partition_property *properties,
cl_uint num_devices,
cl_device_id *out_devices,

 cl_uint *num_devices_ret)

creates an array of sub-devices that each reference a non-intersecting set of compute units within
in_device, according to a partition scheme given by properties. The output sub-devices may be
used in every way that the root (or parent) device can be used, including creating contexts,
building programs, further calls to clCreateSubDevices and creating command-queues. When a
command-queue is created against a sub-device, the commands enqueued on the queue are
executed only on the sub-device.

in_device is the device to be partitioned.

properties specifies how in_device is to be partition described by a partition name and its
corresponding value. Each partition name is immediately followed by the corresponding desired
value. The list is terminated with 0. The list of supported partitioning schemes is described in
table 4.4. Only one of the listed partitioning schemes can be specified in properties.

cl_device_partition
_property enum

Partition
value

Description

CL_DEVICE_PARTITION
_EQUALLY

unsigned int Split the aggregate device into as many smaller
aggregate devices as can be created, each containing
n compute units. The value n is passed as the value
accompanying this property. If n does not divide
evenly into
CL_DEVICE_PARTITION_MAX_COMPUTE_UNITS,
then the remaining compute units are not used.

CL_DEVICE_PARTITION
_BY_COUNTS

unsigned int This property is followed by a
CL_DEVICE_PARTITION_BY_COUNTS_LIST_END
terminated list of compute unit counts. For each non-
zero count m in the list, a sub-device is created with
m compute units in it.
CL_DEVICE_PARTITION_BY_COUNTS_LIST_END
is defined to be 0.

The number of non-zero count entries in the list may
not exceed
CL_DEVICE_PARTITION_MAX_SUB_DEVICES.

Last Revision Date: 3/18/14 Page 78

The total number of compute units specified may not
exceed
CL_DEVICE_PARTITION_MAX_COMPUTE_UNITS.

CL_DEVICE_PARTITION
_BY_AFFINITY_DOMAIN

cl_device_
affinity_domain

Split the device into smaller aggregate devices
containing one or more compute units that all share
part of a cache hierarchy. The value accompanying
this property may be drawn from the following list:

CL_DEVICE_AFFINITY_DOMAIN_NUMA – Split the
device into sub-devices comprised of compute units
that share a NUMA node.

CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE –
Split the device into sub-devices comprised of
compute units that share a level 4 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE –
Split the device into sub-devices comprised of
compute units that share a level 3 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE –
Split the device into sub-devices comprised of
compute units that share a level 2 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE –
Split the device into sub-devices comprised of
compute units that share a level 1 data cache.

CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIO
NABLE – Split the device along the next partitionable
affinity domain. The implementation shall find the
first level along which the device or sub-device may
be further subdivided in the order NUMA, L4, L3,
L2, L1, and partition the device into sub-devices
comprised of compute units that share memory
subsystems at this level.

The user may determine what happened by calling
clGetDeviceInfo(CL_DEVICE_PARTITION_TYPE)
on the sub-devices.

 Table 4.4 List of supported partition schemes by clCreateSubDevices

Last Revision Date: 3/18/14 Page 79

num_devices is the size of memory pointed to by out_devices specified as the number of
cl_device_id entries.

out_devices is the buffer where the OpenCL sub-devices will be returned. If out_devices is
NULL, this argument is ignored. If out_devices is not NULL, num_devices must be greater than
or equal to the number of sub-devices that device may be partitioned into according to the
partitioning scheme specified in properties.

num_devices_ret returns the number of sub-devices that device may be partitioned into according
to the partitioning scheme specified in properties. If num_devices_ret is NULL, it is ignored.

clCreateSubDevices returns CL_SUCCESS if the partition is created successfully. Otherwise, it
returns a NULL value with the following error values returned in errcode_ret:

 CL_INVALID_DEVICE if in_device is not valid.

 CL_INVALID_VALUE if values specified in properties are not valid or if values specified
in properties are valid but not supported by the device.

 CL_INVALID_VALUE if out_devices is not NULL and num_devices is less than the

number of sub-devices created by the partition scheme.

 CL_DEVICE_PARTITION_FAILED if the partition name is supported by the
implementation but in_device could not be further partitioned.

 CL_INVALID_DEVICE_PARTITION_COUNT if the partition name specified in properties

is CL_DEVICE_PARTITION_BY_COUNTS and the number of sub-devices requested
exceeds CL_DEVICE_PARTITION_MAX_SUB_DEVICES or the total number of compute
units requested exceeds CL_DEVICE_PARTITION_MAX_COMPUTE_UNITS for
in_device, or the number of compute units requested for one or more sub-devices is less
than zero or the number of sub-devices requested exceeds
CL_DEVICE_PARTITION_MAX_COMPUTE_UNITS for in_device.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

A few examples that describe how to specify partition properties in properties argument to
clCreateSubDevices are given below:

To partition a device containing 16 compute units into two sub-devices, each containing 8
compute units, pass the following in properties:

Last Revision Date: 3/18/14 Page 80

{ CL_DEVICE_PARTITION_EQUALLY, 8, 0 }

To partition a device with four compute units into two sub-devices with one sub-device
containing 3 compute units and the other sub-device 1 compute unit, pass the following in
properties argument:

{ CL_DEVICE_PARTITION_BY_COUNTS,
 3, 1, CL_DEVICE_PARTITION_BY_COUNTS_LIST_END, 0 }

To split a device along the outermost cache line (if any), pass the following in properties
argument:

{ CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN,
 CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE,
 0 }

The function

 cl_int clRetainDevice (cl_device_id device)

increments the device reference count if device is a valid sub-device created by a call to
clCreateSubDevices. If device is a root level device i.e. a cl_device_id returned by
clGetDeviceIDs, the device reference count remains unchanged. clRetainDevice returns
CL_SUCCESS if the function is executed successfully or the device is a root-level device.
Otherwise, it returns one of the following errors:

 CL_INVALID_DEVICE if device is not a valid sub-device created by a call to
clCreateSubDevices.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clReleaseDevice (cl_device_id device)

decrements the device reference count if device is a valid sub-device created by a call to
clCreateSubDevices. If device is a root level device i.e. a cl_device_id returned by
clGetDeviceIDs, the device reference count remains unchanged. clReleaseDevice returns
CL_SUCCESS if the function is executed successfully. Otherwise, it returns one of the following
errors:

Last Revision Date: 3/18/14 Page 81

 CL_INVALID_DEVICE if device is not a valid sub-device created by a call to
clCreateSubDevices.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

After the device reference count becomes zero and all the objects attached to device (such as
command-queues) are released, the device object is deleted.

Last Revision Date: 3/18/14 Page 82

4.4 Contexts

The function

 cl_context clCreateContext (const cl_context_properties *properties,
 cl_uint num_devices,
 const cl_device_id *devices,
 void (CL_CALLBACK *pfn_notify)(const char *errinfo,
 const void *private_info, size_t cb,
 void *user_data),
 void *user_data,
 cl_int *errcode_ret)

creates an OpenCL context. An OpenCL context is created with one or more devices. Contexts
are used by the OpenCL runtime for managing objects such as command-queues, memory,
program and kernel objects and for executing kernels on one or more devices specified in the
context.

properties specifies a list of context property names and their corresponding values. Each
property name is immediately followed by the corresponding desired value. The list is terminated
with 0. The list of supported properties is described in table 4.5. properties can be NULL in
which case the platform that is selected is implementation-defined.

cl_context_properties enum Property value Description
CL_CONTEXT_PLATFORM cl_platform_id Specifies the platform to use.
CL_CONTEXT_INTEROP_USER
_SYNC

cl_bool Specifies whether the user is
responsible for synchronization
between OpenCL and other APIs.
Please refer to the specific sections
in the OpenCL 2.0 extension
specification that describe sharing
with other APIs for restrictions on
using this flag.

If CL_CONTEXT_INTEROP_USER_
SYNC is not specified, a default of
CL_FALSE is assumed.

 Table 4.5 List of supported properties by clCreateContext

num_devices is the number of devices specified in the devices argument.

Last Revision Date: 3/18/14 Page 83

devices is a pointer to a list of unique devices10 returned by clGetDeviceIDs or sub-devices
created by clCreateSubDevices for a platform.

pfn_notify is a callback function that can be registered by the application. This callback function
will be used by the OpenCL implementation to report information on errors during context
creation as well as errors that occur at runtime in this context. This callback function may be
called asynchronously by the OpenCL implementation. It is the application’s responsibility to
ensure that the callback function is thread-safe. The parameters to this callback function are:

 errinfo is a pointer to an error string.
 private_info and cb represent a pointer to binary data that is returned by the OpenCL

implementation that can be used to log additional information helpful in debugging
the error.

 user_data is a pointer to user supplied data.

If pfn_notify is NULL, no callback function is registered.

NOTE: There are a number of cases where error notifications need to be delivered due to an
error that occurs outside a context. Such notifications may not be delivered through the
pfn_notify callback. Where these notifications go is implementation-defined.

user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateContext returns a valid non-zero context and errcode_ret is set to CL_SUCCESS if the
context is created successfully. Otherwise, it returns a NULL value with the following error
values returned in errcode_ret:

 CL_INVALID_PLATFORM if properties is NULL and no platform could be selected or if
platform value specified in properties is not a valid platform.

 CL_INVALID_PROPERTY if context property name in properties is not a supported

property name, if the value specified for a supported property name is not valid, or if the
same property name is specified more than once.

 CL_INVALID_VALUE if devices is NULL.

 CL_INVALID_VALUE if num_devices is equal to zero.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE if devices contains an invalid device.

10 Duplicate devices specified in devices are ignored.

Last Revision Date: 3/18/14 Page 84

 CL_DEVICE_NOT_AVAILABLE if a device in devices is currently not available even

though the device was returned by clGetDeviceIDs.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

cl_context
clCreateContextFromType11 (const cl_context_properties *properties,

 cl_device_type device_type,
 void (CL_CALLBACK *pfn_notify)(const char *errinfo,
 const void *private_info, size_t cb,
 void *user_data),
 void *user_data,

 cl_int *errcode_ret)

creates an OpenCL context from a device type that identifies the specific device(s) to use. Only
devices that are returned by clGetDeviceIDs for device_type are used to create the context. The
context does not reference any sub-devices that may have been created from these devices.

properties specifies a list of context property names and their corresponding values. Each
property name is immediately followed by the corresponding desired value. The list of
supported properties is described in table 4.5. properties can also be NULL in which case the
platform that is selected is implementation-defined.

device_type is a bit-field that identifies the type of device and is described in table 4.2 in section
4.2.

pfn_notify and user_data are described in clCreateContext.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateContextFromType returns a valid non-zero context and errcode_ret is set to
CL_SUCCESS if the context is created successfully. Otherwise, it returns a NULL value with the
following error values returned in errcode_ret:

 CL_INVALID_PLATFORM if properties is NULL and no platform could be selected or if

11 clCreateContextfromType may return all or a subset of the actual physical devices present in the platform and
that match device_type.

Last Revision Date: 3/18/14 Page 85

platform value specified in properties is not a valid platform.

 CL_INVALID_PROPERTY if context property name in properties is not a supported
property name, if the value specified for a supported property name is not valid, or if the
same property name is specified more than once.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE_TYPE if device_type is not a valid value.

 CL_DEVICE_NOT_AVAILABLE if no devices that match device_type and property values

specified in properties are currently available.

 CL_DEVICE_NOT_FOUND if no devices that match device_type and property values
specified in properties were found.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clRetainContext (cl_context context)

increments the context reference count. clRetainContext returns CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_CONTEXT if context is not a valid OpenCL context.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

clCreateContext and clCreateContextFromType perform an implicit retain. This is very
helpful for 3rd party libraries, which typically get a context passed to them by the application.
However, it is possible that the application may delete the context without informing the library.
Allowing functions to attach to (i.e. retain) and release a context solves the problem of a context
being used by a library no longer being valid.

The function

 cl_int clReleaseContext (cl_context context)

Last Revision Date: 3/18/14 Page 86

decrements the context reference count. clReleaseContext returns CL_SUCCESS if the function
is executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_CONTEXT if context is not a valid OpenCL context.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

After the context reference count becomes zero and all the objects attached to context (such as
memory objects, command-queues) are released, the context is deleted.

The function

 cl_int clGetContextInfo (cl_context context,

 cl_context_info param_name,
 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

can be used to query information about a context.

context specifies the OpenCL context being queried.

param_name is an enumeration constant that specifies the information to query.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size specifies the size in bytes of memory pointed to by param_value. This size
must be greater than or equal to the size of return type as described in table 4.6.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

The list of supported param_name values and the information returned in param_value by
clGetContextInfo is described in table 4.6.

Last Revision Date: 3/18/14 Page 87

cl_context_info Return Type Information returned in
param_value

CL_CONTEXT_REFERENCE_
COUNT12

cl_uint Return the context reference count.

CL_CONTEXT_NUM_
DEVICES

cl_uint Return the number of devices in
context.

CL_CONTEXT_DEVICES cl_device_id[] Return the list of devices in context.
CL_CONTEXT_PROPERTIES cl_context_properties[] Return the properties argument

specified in clCreateContext or
clCreateContextFromType.

If the properties argument specified
in clCreateContext or
clCreateContextFromType used
to create context is not NULL, the
implementation must return the
values specified in the properties
argument.

If the properties argument specified
in clCreateContext or
clCreateContextFromType used
to create context is NULL, the
implementation may return either a
param_value_size_ret of 0 i.e. there
is no context property value to be
returned or can return a context
property value of 0 (where 0 is used
to terminate the context properties
list) in the memory that
param_value points to.

 Table 4.6 List of supported param_names by clGetContextInfo

clGetContextInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if param_name is not one of the supported values or if size in
bytes specified by param_value_size is < size of return type as specified in table 4.6 and
param_value is not a NULL value.

12 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 3/18/14 Page 88

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 89

5. The OpenCL Runtime

In this section we describe the API calls that manage OpenCL objects such as command-queues,
memory objects, program objects, kernel objects for __kernel functions in a program and
calls that allow you to enqueue commands to a command-queue such as executing a kernel,
reading, or writing a memory object.

5.1 Command Queues

OpenCL objects such as memory, program and kernel objects are created using a context.
Operations on these objects are performed using a command-queue. The command-queue can be
used to queue a set of operations (referred to as commands) in order. Having multiple
command-queues allows applications to queue multiple independent commands without
requiring synchronization. Note that this should work as long as these objects are not being
shared. Sharing of objects across multiple command-queues will require the application to
perform appropriate synchronization. This is described in Appendix A.

The function

 cl_command_queue clCreateCommandQueueWithProperties (cl_context context,
 cl_device_id device,

 const cl_queue_properties *properties,
 cl_int *errcode_ret)

creates a host or device command-queue on a specific device.

context must be a valid OpenCL context.

Queue Properties Property Value Description
CL_QUEUE_
PROPERTIES

cl_command_queue
_properties

This is a bitfield and can be set to a
combination of the following values:

CL_QUEUE_OUT_OF_ORDER_EXEC_
MODE_ENABLE – Determines whether the
commands queued in the command-queue
are executed in-order or out-of-order. If
set, the commands in the command-queue
are executed out-of-order. Otherwise,
commands are executed in-order.

CL_QUEUE_PROFILING_ENABLE –
Enable or disable profiling of commands in

Last Revision Date: 3/18/14 Page 90

the command-queue. If set, the profiling of
commands is enabled. Otherwise profiling
of commands is disabled.

CL_QUEUE_ON_DEVICE – Indicates that
this is a device queue. If
CL_QUEUE_ON_DEVICE is set,
CL_QUEUE_OUT_OF_ORDER_
EXEC_MODE_ENABLE13 must also be set.

CL_QUEUE_ON_DEVICE_DEFAULT14 –
indicates that this is the default device
queue. This can only be used with
CL_QUEUE_ON_DEVICE.

If CL_QUEUE_PROPERTIES is not
specified an in-order host command queue
is created for the specified device.

CL_QUEUE_SIZE cl_uint Specifies the size of the device queue in
bytes.

This can only be specified if
CL_QUEUE_ON_DEVICE is set in
CL_QUEUE_PROPERTIES. This must be a
value <= CL_DEVICE_QUEUE_ON_
DEVICE_MAX_SIZE.

For best performance, this should be <=
CL_DEVICE_QUEUE_ON_DEVICE_PREFE
RRED_SIZE.

If CL_QUEUE_SIZE is not specified, the
device queue is created with CL_DEVICE_
QUEUE_ON_DEVICE_PREFERRED_SIZE
as the size of the queue.

 Table 5.1 List of supported cl_queue_property values and description.

device must be a device associated with context. It can either be in the list of devices specified
when context is created using clCreateContext or have the same device type as device type
specified when context is created using clCreateContextFromType.

13 Only out-of-order device queues are supported.
14 The application should create the default device queue if needed. There can only be one default device queue per
context. clCreateCommandQueueWithProperties with CL_QUEUE_PROPERTIES set to
CL_QUEUE_ON_DEVICE | CL_QUEUE_ON_DEVICE_DEFAULT will return the default device queue thas
already been created and increment its retain count by 1.

Last Revision Date: 3/18/14 Page 91

properties specifies a list of properties for the command-queue and their corresponding values.
Each property name is immediately followed by the corresponding desired value. The list is
terminated with 0. The list of supported properties is described in the table below. If a
supported property and its value is not specified in properties, its default value will be used.
properties can be NULL in which case the default values for supported command-queue
properties will be used.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateCommandQueueWithProperties returns a valid non-zero command-queue and
errcode_ret is set to CL_SUCCESS if the command-queue is created successfully. Otherwise, it
returns a NULL value with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_DEVICE if device is not a valid device or is not associated with context.

 CL_INVALID_VALUE if values specified in properties are not valid.

 CL_INVALID_QUEUE_PROPERTIES if values specified in properties are valid but are
not supported by the device.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clRetainCommandQueue (cl_command_queue command_queue)

increments the command_queue reference count. clRetainCommandQueue returns
CL_SUCCESS if the function is executed successfully. Otherwise, it returns one of the following
errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 92

clCreateCommandQueueWithProperties performs an implicit retain. This is very helpful for
3rd party libraries, which typically get a command-queue passed to them by the application.
However, it is possible that the application may delete the command-queue without informing
the library. Allowing functions to attach to (i.e. retain) and release a command-queue solves the
problem of a command-queue being used by a library no longer being valid.

The function

 cl_int clReleaseCommandQueue (cl_command_queue command_queue)

decrements the command_queue reference count. clReleaseCommandQueue returns
CL_SUCCESS if the function is executed successfully. Otherwise, it returns one of the following
errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

After the command_queue reference count becomes zero and all commands queued to
command_queue have finished (eg. kernel-instances, memory object updates etc.), the command-
queue is deleted.

clReleaseCommandQueue performs an implicit flush to issue any previously queued OpenCL
commands in command_queue.

The function

 cl_int clGetCommandQueueInfo (cl_command_queue command_queue,

 cl_command_queue_info param_name,
 size_t param_value_size,

 void *param_value,
 size_t *param_value_size_ret)

can be used to query information about a command-queue.

command_queue specifies the command-queue being queried.

param_name specifies the information to query.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

Last Revision Date: 3/18/14 Page 93

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.2. If param_value is NULL, it is
ignored.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

The list of supported param_name values and the information returned in param_value by
clGetCommandQueueInfo is described in table 5.2.

cl_command_queue_info Return Type Information returned in
param_value

CL_QUEUE_CONTEXT cl_context Return the context specified when the
command-queue is created.

CL_QUEUE_DEVICE cl_device_id Return the device specified when the
command-queue is created.

CL_QUEUE_REFERENCE_COUNT15 cl_uint Return the command-queue reference
count.

CL_QUEUE_PROPERTIES cl_command_
queue_properties

Return the currently specified
properties for the command-queue.
These properties are specified by the
value associated with the CL_
COMMAND_QUEUE_PROPERTIES
passed in properties argument in
clCreateCommandQueueWith
Properties.

CL_QUEUE_SIZE cl_uint Return the currently specified size for
the device command-queue. This
query is only supported for device
command queues.

 Table 5.2 List of supported param_names by clGetCommandQueueInfo

clGetCommandQueueInfo returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_VALUE if param_name is not one of the supported values or if size in
bytes specified by param_value_size is < size of return type as specified in table 5.2 and
param_value is not a NULL value.

15 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 3/18/14 Page 94

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

NOTE

It is possible that a device(s) becomes unavailable after a context and command-queues that use
this device(s) have been created and commands have been queued to command-queues. In this
case the behavior of OpenCL API calls that use this context (and command-queues) are
considered to be implementation-defined. The user callback function, if specified, when the
context is created can be used to record appropriate information in the errinfo, private_info
arguments passed to the callback function when the device becomes unavailable.

Last Revision Date: 3/18/14 Page 95

5.2 Buffer Objects

A buffer object stores a one-dimensional collection of elements. Elements of a buffer object can
be a scalar data type (such as an int, float), vector data type, or a user-defined structure.

5.2.1 Creating Buffer Objects

A buffer object is created using the following function

 cl_mem clCreateBuffer (cl_context context,
 cl_mem_flags flags,
 size_t size,

 void *host_ptr,
 cl_int *errcode_ret)

context is a valid OpenCL context used to create the buffer object.

flags is a bit-field that is used to specify allocation and usage information such as the memory
arena that should be used to allocate the buffer object and how it will be used. Table 5.3
describes the possible values for flags. If value specified for flags is 0, the default is used which
is CL_MEM_READ_WRITE.

cl_mem_flags Description
CL_MEM_READ_WRITE This flag specifies that the memory object will be read

and written by a kernel. This is the default.

CL_MEM_WRITE_ONLY This flag specifies that the memory object will be
written but not read by a kernel.

Reading from a buffer or image object created with
CL_MEM_WRITE_ONLY inside a kernel is undefined.

CL_MEM_READ_WRITE and
CL_MEM_WRITE_ONLY are mutually exclusive.

CL_MEM_READ_ONLY This flag specifies that the memory object is a read-
only memory object when used inside a kernel.

Writing to a buffer or image object created with
CL_MEM_READ_ONLY inside a kernel is undefined.

CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY
and CL_MEM_READ_ONLY are mutually exclusive.

CL_MEM_USE_HOST_PTR This flag is valid only if host_ptr is not NULL. If

Last Revision Date: 3/18/14 Page 96

specified, it indicates that the application wants the
OpenCL implementation to use memory referenced by
host_ptr as the storage bits for the memory object.

OpenCL implementations are allowed to cache the
buffer contents pointed to by host_ptr in device
memory. This cached copy can be used when kernels
are executed on a device.

The result of OpenCL commands that operate on
multiple buffer objects created with the same host_ptr
or overlapping host regions is considered to be
undefined.

Also refer to section C.3 for a description of the
alignment rules for host_ptr for memory objects
(buffer and images) created using
CL_MEM_USE_HOST_PTR.

CL_MEM_ALLOC_HOST_PTR

This flag specifies that the application wants the
OpenCL implementation to allocate memory from
host accessible memory.

CL_MEM_ALLOC_HOST_PTR and
CL_MEM_USE_HOST_PTR are mutually exclusive.

CL_MEM_COPY_HOST_PTR

This flag is valid only if host_ptr is not NULL. If
specified, it indicates that the application wants the
OpenCL implementation to allocate memory for the
memory object and copy the data from memory
referenced by host_ptr.

CL_MEM_COPY_HOST_PTR and
CL_MEM_USE_HOST_PTR are mutually exclusive.

CL_MEM_COPY_HOST_PTR can be used with
CL_MEM_ALLOC_HOST_PTR to initialize the
contents of the cl_mem object allocated using host-
accessible (e.g. PCIe) memory.

CL_MEM_HOST_WRITE_ONLY This flag specifies that the host will only write to the
memory object (using OpenCL APIs that enqueue a
write or a map for write). This can be used to
optimize write access from the host (e.g. enable write-
combined allocations for memory objects for devices
that communicate with the host over a system bus
such as PCIe).

Last Revision Date: 3/18/14 Page 97

CL_MEM_HOST_READ_ONLY This flag specifies that the host will only read the
memory object (using OpenCL APIs that enqueue a
read or a map for read).

CL_MEM_HOST_WRITE_ONLY and
CL_MEM_HOST_READ_ONLY are mutually
exclusive.

CL_MEM_HOST_NO_ACCESS This flag specifies that the host will not read or write
the memory object.

CL_MEM_HOST_WRITE_ONLY or
CL_MEM_HOST_READ_ONLY and
CL_MEM_HOST_NO_ACCESS are mutually
exclusive.

 Table 5.3 List of supported cl_mem_flags values

size is the size in bytes of the buffer memory object to be allocated.

host_ptr is a pointer to the buffer data that may already be allocated by the application. The size
of the buffer that host_ptr points to must be >= size bytes.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateBuffer returns a valid non-zero buffer object and errcode_ret is set to CL_SUCCESS if
the buffer object is created successfully. Otherwise, it returns a NULL value with one of the
following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid as defined in table 5.3.

 CL_INVALID_BUFFER_SIZE if size is 016.

 CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or
CL_MEM_COPY_HOST_PTR are set in flags or if host_ptr is not NULL but
CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in flags.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

buffer object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

16 Implementations may return CL_INVALID_BUFFER_SIZE if size is greater than
CL_DEVICE_MAX_MEM_ALLOC_SIZE value specified in table 4.3 for all devices in context.

Last Revision Date: 3/18/14 Page 98

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_mem clCreateSubBuffer (cl_mem buffer,
 cl_mem_flags flags,

 cl_buffer_create_type buffer_create_type,
 const void *buffer_create_info,
 cl_int *errcode_ret)

can be used to create a new buffer object (referred to as a sub-buffer object) from an existing
buffer object.

buffer must be a valid buffer object and cannot be a sub-buffer object.

flags is a bit-field that is used to specify allocation and usage information about the sub-buffer
memory object being created and is described in table 5.3. If the CL_MEM_READ_WRITE,
CL_MEM_READ_ONLY or CL_MEM_WRITE_ONLY values are not specified in flags, they are
inherited from the corresponding memory access qualifers associated with buffer. The
CL_MEM_USE_HOST_PTR, CL_MEM_ALLOC_HOST_PTR and CL_MEM_COPY_HOST_PTR
values cannot be specified in flags but are inherited from the corresponding memory access
qualifiers associated with buffer. If CL_MEM_COPY_HOST_PTR is specified in the memory
access qualifier values associated with buffer it does not imply any additional copies when the
sub-buffer is created from buffer. If the CL_MEM_HOST_WRITE_ONLY,
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS values are not specified in
flags, they are inherited from the corresponding memory access qualifiers associated with buffer.

buffer_create_type and buffer_create_info describe the type of buffer object to be created. The
list of supported values for buffer_create_type and corresponding descriptor that
buffer_create_info points to is described in table 5.4.

cl_buffer_create_type Description
CL_BUFFER_CREATE_TYPE_REGION Create a buffer object that represents a specific

region in buffer.

buffer_create_info is a pointer to the following
structure:

typedef struct _cl_buffer_region {
 size_t origin;
 size_t size;
} cl_buffer_region;

Last Revision Date: 3/18/14 Page 99

(origin, size) defines the offset and size in bytes in
buffer.

If buffer is created with
CL_MEM_USE_HOST_PTR, the host_ptr
associated with the buffer object returned is
host_ptr + origin.

The buffer object returned references the data store
allocated for buffer and points to a specific region
given by (origin, size) in this data store.

CL_INVALID_VALUE is returned in errcode_ret if
the region specified by (origin, size) is out of
bounds in buffer.

CL_INVALID_BUFFER_SIZE if size is 0.

CL_MISALIGNED_SUB_BUFFER_OFFSET is
returned in errcode_ret if there are no devices in
context associated with buffer for which the origin
value is aligned to the
CL_DEVICE_MEM_BASE_ADDR_ALIGN value.

 Table 5.4 List of supported names and values in clCreateSubBuffer.

clCreateSubBuffer returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors in errcode_ret:

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object or is a sub-buffer
object.

 CL_INVALID_VALUE if buffer was created with CL_MEM_WRITE_ONLY and flags
specifies CL_MEM_READ_WRITE or CL_MEM_READ_ONLY, or if buffer was created
with CL_MEM_READ_ONLY and flags specifies CL_MEM_READ_WRITE or
CL_MEM_WRITE_ONLY, or if flags specifies CL_MEM_USE_HOST_PTR or
CL_MEM_ALLOC_HOST_PTR or CL_MEM_COPY_HOST_PTR.

 CL_INVALID_VALUE if buffer was created with CL_MEM_HOST_WRITE_ONLY and

flags specify CL_MEM_HOST_READ_ONLY, or if buffer was created with
CL_MEM_HOST_READ_ONLY and flags specify CL_MEM_HOST_WRITE_ONLY, or if
buffer was created with CL_MEM_HOST_NO_ACCESS and flags specify
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_WRITE_ONLY.

Last Revision Date: 3/18/14 Page 100

 CL_INVALID_VALUE if value specified in buffer_create_type is not valid.

 CL_INVALID_VALUE if value(s) specified in buffer_create_info (for a given
buffer_create_type) is not valid or if buffer_create_info is NULL.

 CL_INVALID_BUFFER_SIZE if size is 0.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

sub-buffer object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

NOTE:

Concurrent reading from, writing to and copying between both a buffer object and its sub-buffer
object(s) is undefined. Concurrent reading from, writing to and copying between overlapping
sub-buffer objects created with the same buffer object is undefined. Only reading from both a
buffer object and its sub-buffer objects or reading from multiple overlapping sub-buffer objects
is defined.

Last Revision Date: 3/18/14 Page 101

5.2.2 Reading, Writing and Copying Buffer Objects

The following functions enqueue commands to read from a buffer object to host memory or
write to a buffer object from host memory.

 cl_int clEnqueueReadBuffer (cl_command_queue command_queue,

 cl_mem buffer,
 cl_bool blocking_read,
 size_t offset,
 size_t size,
 void *ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

 cl_int clEnqueueWriteBuffer (cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_write,
 size_t offset,
 size_t size,
 const void *ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

command_queue is a valid host command-queue in which the read / write command will be
queued. command_queue and buffer must be created with the same OpenCL context.

buffer refers to a valid buffer object.

blocking_read and blocking_write indicate if the read and write operations are blocking or non-
blocking.

If blocking_read is CL_TRUE i.e. the read command is blocking, clEnqueueReadBuffer does
not return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking_read is CL_FALSE i.e. the read command is non-blocking, clEnqueueReadBuffer
queues a non-blocking read command and returns. The contents of the buffer that ptr points to
cannot be used until the read command has completed. The event argument returns an event
object which can be used to query the execution status of the read command. When the read
command has completed, the contents of the buffer that ptr points to can be used by the
application.

Last Revision Date: 3/18/14 Page 102

If blocking_write is CL_TRUE, the OpenCL implementation copies the data referred to by ptr
and enqueues the write operation in the command-queue. The memory pointed to by ptr can be
reused by the application after the clEnqueueWriteBuffer call returns.

If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-
blocking write. As the write is non-blocking the implementation can return immediately. The
memory pointed to by ptr cannot be reused by the application after the call returns. The event
argument returns an event object which can be used to query the execution status of the write
command. When the write command has completed, the memory pointed to by ptr can then be
reused by the application.

offset is the offset in bytes in the buffer object to read from or write to.

size is the size in bytes of data being read or written.

ptr is the pointer to buffer in host memory where data is to be read into or to be written from.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular read / write command and can be used
to query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. If the event_wait_list and the event arguments are not
NULL, the event argument should not refer to an element of the event_wait_list array.

clEnqueueReadBuffer and clEnqueueWriteBuffer return CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and buffer are

not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

 CL_INVALID_VALUE if the region being read or written specified by (offset, size) is out

of bounds or if ptr is a NULL value or if size is 0.

Last Revision Date: 3/18/14 Page 103

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write

operations are blocking and the execution status of any of the events in event_wait_list is
a negative integer value.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with buffer.

 CL_INVALID_OPERATION if clEnqueueReadBuffer is called on buffer which has been
created with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.

 CL_INVALID_OPERATION if clEnqueueWriteBuffer is called on buffer which has been

created with CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The following functions enqueue commands to read a 2D or 3D rectangular region from a buffer
object to host memory or write a 2D or 3D rectangular region to a buffer object from host
memory.

 cl_int clEnqueueReadBufferRect (cl_command_queue command_queue,

 cl_mem buffer,
 cl_bool blocking_read,

 const size_t *buffer_origin,
 const size_t *host_origin,

 const size_t *region,
 size_t buffer_row_pitch,
 size_t buffer_slice_pitch,
 size_t host_row_pitch,
 size_t host_slice_pitch,
 void *ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

Last Revision Date: 3/18/14 Page 104

 cl_int clEnqueueWriteBufferRect (cl_command_queue command_queue,

 cl_mem buffer,
 cl_bool blocking_write,

 const size_t *buffer_origin,
 const size_t *host_origin,
 const size_t *region,

 size_t buffer_row_pitch,
 size_t buffer_slice_pitch,
 size_t host_row_pitch,
 size_t host_slice_pitch,
 const void *ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

command_queue refers is a valid host command-queue in which the read / write command will
be queued. command_queue and buffer must be created with the same OpenCL context.

buffer refers to a valid buffer object.

blocking_read and blocking_write indicate if the read and write operations are blocking or non-
blocking.

If blocking_read is CL_TRUE i.e. the read command is blocking, clEnqueueReadBufferRect
does not return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking_read is CL_FALSE i.e. the read command is non-blocking,
clEnqueueReadBufferRect queues a non-blocking read command and returns. The contents of
the buffer that ptr points to cannot be used until the read command has completed. The event
argument returns an event object which can be used to query the execution status of the read
command. When the read command has completed, the contents of the buffer that ptr points to
can be used by the application.

If blocking_write is CL_TRUE, the OpenCL implementation copies the data referred to by ptr
and enqueues the write operation in the command-queue. The memory pointed to by ptr can be
reused by the application after the clEnqueueWriteBufferRect call returns.

If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-
blocking write. As the write is non-blocking the implementation can return immediately. The
memory pointed to by ptr cannot be reused by the application after the call returns. The event
argument returns an event object which can be used to query the execution status of the write
command. When the write command has completed, the memory pointed to by ptr can then be
reused by the application.

Last Revision Date: 3/18/14 Page 105

buffer_origin defines the (x, y, z) offset in the memory region associated with buffer. For a 2D
rectangle region, the z value given by buffer_origin[2] should be 0. The offset in bytes is
computed as buffer_origin[2] * buffer_slice_pitch + buffer_origin[1] * buffer_row_pitch +
buffer_origin[0].

host_origin defines the (x, y, z) offset in the memory region pointed to by ptr. For a 2D rectangle
region, the z value given by host_origin[2] should be 0. The offset in bytes is computed as
host_origin[2] * host_slice_pitch + host_origin[1] * host_row_pitch + host_origin[0].

region defines the (width in bytes, height in rows, depth in slices) of the 2D or 3D rectangle
being read or written. For a 2D rectangle copy, the depth value given by region[2] should be 1.
The values in region cannot be 0.

buffer_row_pitch is the length of each row in bytes to be used for the memory region associated
with buffer. If buffer_row_pitch is 0, buffer_row_pitch is computed as region[0].

buffer_slice_pitch is the length of each 2D slice in bytes to be used for the memory region
associated with buffer. If buffer_slice_pitch is 0, buffer_slice_pitch is computed as region[1] *
buffer_row_pitch.

host_row_pitch is the length of each row in bytes to be used for the memory region pointed to by
ptr. If host_row_pitch is 0, host_row_pitch is computed as region[0].

host_slice_pitch is the length of each 2D slice in bytes to be used for the memory region pointed
to by ptr. If host_slice_pitch is 0, host_slice_pitch is computed as region[1] * host_row_pitch.

ptr is the pointer to buffer in host memory where data is to be read into or to be written from.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular read / write command and can be used
to query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. If the event_wait_list and the event arguments are not
NULL, the event argument should not refer to an element of the event_wait_list array.

clEnqueueReadBufferRect and clEnqueueWriteBufferRect return CL_SUCCESS if the
function is executed successfully. Otherwise, it returns one of the following errors:

Last Revision Date: 3/18/14 Page 106

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and buffer are

not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

 CL_INVALID_VALUE if the region being read or written specified by (buffer_origin,

region, buffer_row_pitch, buffer_slice_pitch) is out of bounds.

 CL_INVALID_VALUE if ptr is a NULL value.

 CL_INVALID_VALUE if any region array element is 0.

 CL_INVALID_VALUE if buffer_row_pitch is not 0 and is less than region[0].

 CL_INVALID_VALUE if host_row_pitch is not 0 and is less than region[0].

 CL_INVALID_VALUE if buffer_slice_pitch is not 0 and is less than region[1] *
buffer_row_pitch and not a multiple of buffer_row_pitch.

 CL_INVALID_VALUE if host_slice_pitch is not 0 and is less than region[1] *

host_row_pitch and not a multiple of host_row_pitch.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write

operations are blocking and the execution status of any of the events in event_wait_list is
a negative integer value.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with buffer.

 CL_INVALID_OPERATION if clEnqueueReadBufferRect is called on buffer which has
been created with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.

 CL_INVALID_OPERATION if clEnqueueWriteBufferRect is called on buffer which has

been created with CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.

Last Revision Date: 3/18/14 Page 107

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

NOTE:

Calling clEnqueueReadBuffer to read a region of the buffer object with the ptr argument value
set to host_ptr + offset, where host_ptr is a pointer to the memory region specified when the
buffer object being read is created with CL_MEM_USE_HOST_PTR, must meet the following
requirements in order to avoid undefined behavior:

• All commands that use this buffer object or a memory object (buffer or image) created
from this buffer object have finished execution before the read command begins
execution.

• The buffer object or memory objects created from this buffer object are not mapped.

• The buffer object or memory objects created from this buffer object are not used by any
command-queue until the read command has finished execution.

Calling clEnqueueReadBufferRect to read a region of the buffer object with the ptr argument
value set to host_ptr and host_origin, buffer_origin values are the same, where host_ptr is a
pointer to the memory region specified when the buffer object being read is created with
CL_MEM_USE_HOST_PTR, must meet the same requirements given above for
clEnqueueReadBuffer.

Calling clEnqueueWriteBuffer to update the latest bits in a region of the buffer object with the
ptr argument value set to host_ptr + offset, where host_ptr is a pointer to the memory region
specified when the buffer object being written is created with CL_MEM_USE_HOST_PTR, must
meet the following requirements in order to avoid undefined behavior:

• The host memory region given by (host_ptr + offset, cb) contains the latest bits when the
enqueued write command begins execution.

• The buffer object or memory objects created from this buffer object are not mapped.

• The buffer object or memory objects created from this buffer object are not used by any
command-queue until the write command has finished execution.

Calling clEnqueueWriteBufferRect to update the latest bits in a region of the buffer object with
the ptr argument value set to host_ptr and host_origin, buffer_origin values are the same, where
host_ptr is a pointer to the memory region specified when the buffer object being written is

Last Revision Date: 3/18/14 Page 108

created with CL_MEM_USE_HOST_PTR, must meet the following requirements in order to avoid
undefined behavior:

• The host memory region given by (buffer_origin region) contains the latest bits when the
enqueued write command begins execution.

• The buffer object or memory objects created from this buffer object are not mapped.

• The buffer object or memory objects created from this buffer object are not used by any
command-queue until the write command has finished execution.

The function

 cl_int clEnqueueCopyBuffer (cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_buffer,
 size_t src_offset,
 size_t dst_offset,
 size_t size,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to copy a buffer object identified by src_buffer to another buffer object
identified by dst_buffer.

command_queue refers to a host command-queue in which the copy command will be queued.
The OpenCL context associated with command_queue, src_buffer and dst_buffer must be the
same.

src_offset refers to the offset where to begin copying data from src_buffer.

dst_offset refers to the offset where to begin copying data into dst_buffer.

size refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

Last Revision Date: 3/18/14 Page 109

event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If
the event_wait_list and the event arguments are not NULL, the event argument should not refer to
an element of the event_wait_list array.

clEnqueueCopyBuffer returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and

dst_buffer are not the same or if the context associated with command_queue and events
in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if src_buffer and dst_buffer are not valid buffer objects.

 CL_INVALID_VALUE if src_offset, dst_offset, size, src_offset + size or dst_offset + size

require accessing elements outside the src_buffer and dst_buffer buffer objects
respectively.

 CL_INVALID_VALUE if size is 0.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer or sub-

buffer object and the source and destination regions overlap or if src_buffer and
dst_buffer are different sub-buffers of the same associated buffer object and they overlap.
The regions overlap if src_offset <= dst_offset <= src_offset + size – 1 or if dst_offset <=
src_offset <= dst_offset + size – 1.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with src_buffer or dst_buffer.

Last Revision Date: 3/18/14 Page 110

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clEnqueueCopyBufferRect (cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_buffer,
 const size_t *src_origin,
 const size_t *dst_origin,
 const size_t *region,

 size_t src_row_pitch,
 size_t src_slice_pitch,
 size_t dst_row_pitch,
 size_t dst_slice_pitch,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to copy a 2D or 3D rectangular region from the buffer object identified by
src_buffer to a 2D or 3D region in the buffer object identified by dst_buffer. Copying begins at
the source offset and destination offset which are computed as described below in the description
for src_origin and dst_origin. Each byte of the region's width is copied from the source offset to
the destination offset. After copying each width, the source and destination offsets are
incremented by their respective source and destination row pitches. After copying each 2D
rectangle, the source and destination offsets are incremented by their respective source and
destination slice pitches.

NOTE: If src_buffer and dst_buffer are the same buffer object, src_row_pitch must equal
dst_row_pitch and src_slice_pitch must equal dst_slice_pitch.

command_queue refers to the host command-queue in which the copy command will be queued.
The OpenCL context associated with command_queue, src_buffer and dst_buffer must be the
same.

src_origin defines the (x, y, z) offset in the memory region associated with src_buffer. For a 2D
rectangle region, the z value given by src_origin[2] should be 0. The offset in bytes is computed
as src_origin[2] * src_slice_pitch + src_origin[1] * src_row_pitch + src_origin[0].

dst_origin defines the (x, y, z) offset in the memory region associated with dst_buffer. For a 2D
rectangle region, the z value given by dst_origin[2] should be 0. The offset in bytes is computed
as dst_origin[2] * dst_slice_pitch + dst_origin[1] * dst_row_pitch + dst_origin[0].

Last Revision Date: 3/18/14 Page 111

region defines the (width in bytes, height in rows, depth in slices) of the 2D or 3D rectangle
being copied. For a 2D rectangle, the depth value given by region[2] should be 1. The values in
region cannot be 0.

src_row_pitch is the length of each row in bytes to be used for the memory region associated
with src_buffer. If src_row_pitch is 0, src_row_pitch is computed as region[0].

src_slice_pitch is the length of each 2D slice in bytes to be used for the memory region
associated with src_buffer. If src_slice_pitch is 0, src_slice_pitch is computed as region[1] *
src_row_pitch.

dst_row_pitch is the length of each row in bytes to be used for the memory region associated
with dst_buffer. If dst_row_pitch is 0, dst_row_pitch is computed as region[0].

dst_slice_pitch is the length of each 2D slice in bytes to be used for the memory region
associated with dst_buffer. If dst_slice_pitch is 0, dst_slice_pitch is computed as region[1] *
dst_row_pitch.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If
the event_wait_list and the event arguments are not NULL, the event argument should not refer to
an element of the event_wait_list array.

clEnqueueCopyBufferRect returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and

dst_buffer are not the same or if the context associated with command_queue and events
in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if src_buffer and dst_buffer are not valid buffer objects.

Last Revision Date: 3/18/14 Page 112

 CL_INVALID_VALUE if (src_origin, region, src_row_pitch, src_slice_pitch) or
(dst_origin, region, dst_row_pitch, dst_slice_pitch) require accessing elements outside
the src_buffer and dst_buffer buffer objects respectively.

 CL_INVALID_VALUE if any region array element is 0.

 CL_INVALID_VALUE if src_row_pitch is not 0 and is less than region[0].

 CL_INVALID_VALUE if dst_row_pitch is not 0 and is less than region[0].

 CL_INVALID_VALUE if src_slice_pitch is not 0 and is less than region[1] *

src_row_pitch or if src_slice_pitch is not 0 and is not a multiple of src_row_pitch.

 CL_INVALID_VALUE if dst_slice_pitch is not 0 and is less than region[1] *
dst_row_pitch or if dst_slice_pitch is not 0 and is not a multiple of dst_row_pitch.

 CL_INVALID_VALUE if src_buffer and dst_buffer are the same buffer object and

src_slice_pitch is not equal to dst_slice_pitch and src_row_pitch is not equal to
dst_row_pitch.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer or sub-

buffer object and the source and destination regions overlap or if src_buffer and
dst_buffer are different sub-buffers of the same associated buffer object and they overlap.
Refer to Appendix E for details on how to determine if source and destination regions
overlap.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with src_buffer or dst_buffer.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 113

5.2.3 Filling Buffer Objects

The function

 cl_int clEnqueueFillBuffer (cl_command_queue command_queue,
 cl_mem buffer,
 const void *pattern,
 size_t pattern_size,
 size_t offset,
 size_t size,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to fill a buffer object with a pattern of a given pattern size. The usage
information which indicates whether the memory object can be read or written by a kernel and/or
the host and is given by the cl_mem_flags argument value specified when buffer is created is
ignored by clEnqueueFillBuffer.

command_queue refers to the host command-queue in which the fill command will be queued.
The OpenCL context associated with command_queue and buffer must be the same.

buffer is a valid buffer object.

pattern is a pointer to the data pattern of size pattern_size in bytes. pattern will be used to fill a
region in buffer starting at offset and is size bytes in size. The data pattern must be a scalar or
vector integer or floating-point data type supported by OpenCL as described in sections 6.1.1 and
6.1.2. For example, if buffer is to be filled with a pattern of float4 values, then pattern will be
a pointer to a cl_float4 value and pattern_size will be sizeof(cl_float4). The
maximum value of pattern_size is the size of the largest integer or floating-point vector data type
supported by the OpenCL device. The memory associated with pattern can be reused or freed
after the function returns.

offset is the location in bytes of the region being filled in buffer and must be a multiple of
pattern_size.

size is the size in bytes of region being filled in buffer and must be a multiple of pattern_size.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

Last Revision Date: 3/18/14 Page 114

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueFillBuffer returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and buffer are

not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

 CL_INVALID_VALUE if offset or offset + size require accessing elements outside the

buffer buffer object respectively.

 CL_INVALID_VALUE if pattern is NULL or if pattern_size is 0 or if pattern_size is not
one of {1, 2, 4, 8, 16, 32, 64, 128}.

 CL_INVALID_VALUE if offset and size are not a multiple of pattern_size.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with buffer.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 115

5.2.4 Mapping Buffer Objects

The function

 void * clEnqueueMapBuffer (cl_command_queue command_queue,

 cl_mem buffer,
 cl_bool blocking_map,

 cl_map_flags map_flags,
 size_t offset,

 size_t size,
 cl_uint num_events_in_wait_list,

 const cl_event *event_wait_list,
 cl_event *event,

 cl_int *errcode_ret)

enqueues a command to map a region of the buffer object given by buffer into the host address
space and returns a pointer to this mapped region.

command_queue must be a valid host command-queue.

blocking_map indicates if the map operation is blocking or non-blocking.

If blocking_map is CL_TRUE, clEnqueueMapBuffer does not return until the specified region
in buffer is mapped into the host address space and the application can access the contents of the
mapped region using the pointer returned by clEnqueueMapBuffer.

If blocking_map is CL_FALSE i.e. map operation is non-blocking, the pointer to the mapped
region returned by clEnqueueMapBuffer cannot be used until the map command has
completed. The event argument returns an event object which can be used to query the execution
status of the map command. When the map command is completed, the application can access
the contents of the mapped region using the pointer returned by clEnqueueMapBuffer.

map_flags is a bit-field and is described in table 5.5.

buffer is a valid buffer object. The OpenCL context associated with command_queue and buffer
must be the same.

offset and size are the offset in bytes and the size of the region in the buffer object that is being
mapped.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must

Last Revision Date: 3/18/14 Page 116

be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clEnqueueMapBuffer will return a pointer to the mapped region. The errcode_ret is set to
CL_SUCCESS.

A NULL pointer is returned otherwise with one of the following error values returned in
errcode_ret:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if context associated with command_queue and buffer are not

the same or if the context associated with command_queue and events in event_wait_list
are not the same.

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

 CL_INVALID_VALUE if region being mapped given by (offset, size) is out of bounds or if

size is 0 or if values specified in map_flags are not valid.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for the device associated with queue.

 CL_MAP_FAILURE if there is a failure to map the requested region into the host address

space. This error cannot occur for buffer objects created with CL_MEM_USE_HOST_PTR
or CL_MEM_ALLOC_HOST_PTR.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is

blocking and the execution status of any of the events in event_wait_list is a negative
integer value.

Last Revision Date: 3/18/14 Page 117

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with buffer.

 CL_INVALID_OPERATION if buffer has been created with
CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS and CL_MAP_READ
is set in map_flags or if buffer has been created with CL_MEM_HOST_READ_ONLY or
CL_MEM_HOST_NO_ACCESS and CL_MAP_WRITE or
CL_MAP_WRITE_INVALIDATE_REGION is set in map_flags.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The pointer returned maps a region starting at offset and is at least size bytes in size. The result
of a memory access outside this region is undefined.

NOTE:

If the buffer object is created with CL_MEM_USE_HOST_PTR set in mem_flags, the following
will be true:

 The host_ptr specified in clCreateBuffer is guaranteed to contain the latest bits in the
region being mapped when the clEnqueueMapBuffer command has completed.

 The pointer value returned by clEnqueueMapBuffer will be derived from the host_ptr
specified when the buffer object is created.

Mapped buffer objects are unmapped using clEnqueueUnmapMemObject. This is described in
section 5.5.2.

cl_map_flags Description
CL_MAP_READ This flag specifies that the region being mapped

in the memory object is being mapped for
reading.

The pointer returned by
clEnqueueMap{Buffer | Image} is guaranteed
to contain the latest bits in the region being
mapped when the clEnqueueMap{Buffer |
Image} command has completed

CL_MAP_WRITE This flag specifies that the region being mapped
in the memory object is being mapped for
writing.

Last Revision Date: 3/18/14 Page 118

The pointer returned by
clEnqueueMap{Buffer | Image} is guaranteed
to contain the latest bits in the region being
mapped when the clEnqueueMap{Buffer |
Image} command has completed

CL_MAP_WRITE_INVALIDATE_REGION This flag specifies that the region being mapped
in the memory object is being mapped for
writing.

The contents of the region being mapped are to
be discarded. This is typically the case when
the region being mapped is overwritten by the
host. This flag allows the implementation to no
longer guarantee that the pointer returned by
clEnqueueMap{Buffer | Image} contains the
latest bits in the region being mapped which can
be a significant performance enhancement.

CL_MAP_READ or CL_MAP_WRITE and
CL_MAP_WRITE_INVALIDATE_REGION are
mutually exclusive.

 Table 5.5 List of supported cl_map_flags values

Last Revision Date: 3/18/14 Page 119

5.3 Image Objects

An image object is used to store a one-, two- or three- dimensional texture, frame-buffer or
image. The elements of an image object are selected from a list of predefined image formats.
The minimum number of elements in a memory object is one.

5.3.1 Creating Image Objects

A 1D image, 1D image buffer, 1D image array, 2D image, 2D image array and 3D image
object can be created using the following function

 cl_mem clCreateImage (cl_context context,
 cl_mem_flags flags,
 const cl_image_format *image_format,
 const cl_image_desc *image_desc,
 void *host_ptr,
 cl_int *errcode_ret)

context is a valid OpenCL context on which the image object is to be created.

flags is a bit-field that is used to specify allocation and usage information about the image
memory object being created and is described in table 5.3.

For all image types except CL_MEM_OBJECT_IMAGE1D_BUFFER, if value specified for flags is
0, the default is used which is CL_MEM_READ_WRITE.

For CL_MEM_OBJECT_IMAGE1D_BUFFER image type, or an image created from another
memory object (image or buffer), if the CL_MEM_READ_WRITE, CL_MEM_READ_ONLY or
CL_MEM_WRITE_ONLY values are not specified in flags, they are inherited from the
corresponding memory access qualifers associated with mem_object. The
CL_MEM_USE_HOST_PTR, CL_MEM_ALLOC_HOST_PTR and CL_MEM_COPY_HOST_PTR
values cannot be specified in flags but are inherited from the corresponding memory access
qualifiers associated with mem_object. If CL_MEM_COPY_HOST_PTR is specified in the
memory access qualifier values associated with mem_object it does not imply any additional
copies when the image is created from mem_object. If the CL_MEM_HOST_WRITE_ONLY,
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS values are not specified in
flags, they are inherited from the corresponding memory access qualifiers associated with
mem_object.

image_format is a pointer to a structure that describes format properties of the image to be
allocated. Refer to section 5.3.1.1 for a detailed description of the image format descriptor.

Last Revision Date: 3/18/14 Page 120

image_desc is a pointer to a structure that describes type and dimensions of the image to be
allocated. Refer to section 5.3.1.2 for a detailed description of the image descriptor.

host_ptr is a pointer to the image data that may already be allocated by the application. Refer to
table below for a description of how large the buffer that host_ptr points to must be.

Image Type Size of buffer that host_ptr points to
CL_MEM_OBJECT_IMAGE1D >= image_row_pitch
CL_MEM_OBJECT_IMAGE1D_BUFFER >= image_row_pitch
CL_MEM_OBJECT_IMAGE2D >= image_row_pitch * image_height
CL_MEM_OBJECT_IMAGE3D >= image_slice_pitch * image_depth
CL_MEM_OBJECT_IMAGE1D_ARRAY >= image_slice_pitch * image_array_size
CL_MEM_OBJECT_IMAGE2D_ARRAY >= image_slice_pitch * image_array_size

clCreateImage can be used to create a 2D image from a buffer object or a 2D image from
another 2D image object.

A 2D image can be created from a buffer by specifying a buffer object in the image_desc-
>mem_object passed to clCreateImage for image_desc->image_type =
CL_MEM_OBJECT_IMAGE2D. If image_desc->mem_object is created with
CL_MEM_USE_HOST_PTR, the host_ptr specified to clCreateBuffer must be aligned to the
minimum of the CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT value for all devices in
the context associated with image_desc->mem_object and that support images.

A 2D image can be created from another 2D image object by specifying an image object in the
image_desc->mem_object passed to clCreateImage for image_desc->image_type
= CL_MEM_OBJECT_IMAGE2D. This allows users to create a new image object that shares the
image data store with mem_object but views the pixels in the image with a different channel
order and channel type. The restrictions are:

 all the values specified in image_desc except for mem_object must match the image
descriptor information associated with mem_object.

 the channel data type specified in image_format must match the channel data type
associated with mem_object. The channel order values17 supported are:

image_channel_order

specified in image_format
image channel order of

mem_object
CL_sBGRA CL_BGRA
CL_BGRA CL_sBGRA
CL_sRGBA CL_RGBA
CL_RGBA CL_sRGBA

17 This allows developers to create a sRGB view of the image from a linear RGB view or vice-versa i.e. the pixels
stored in the image can be accessed as linear RGB or sRGB values.

Last Revision Date: 3/18/14 Page 121

CL_sRGB CL_RGB
CL_RGB CL_sRGB

CL_sRGBx CL_RGBx
CL_RGBx CL_sRGBx

For a 3D image or 2D image array, the image data specified by host_ptr is stored as a linear
sequence of adjacent 2D image slices or 2D images respectively. Each 2D image is a linear
sequence of adjacent scanlines. Each scanline is a linear sequence of image elements.

For a 2D image, the image data specified by host_ptr is stored as a linear sequence of adjacent
scanlines. Each scanline is a linear sequence of image elements.

For a 1D image array, the image data specified by host_ptr is stored as a linear sequence of
adjacent 1D images respectively. Each 1D image or 1D image buffer is a single scanline which
is a linear sequence of adjacent elements.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateImage returns a valid non-zero image object created and the errcode_ret is set to
CL_SUCCESS if the image object is created successfully. Otherwise, it returns a NULL value
with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if values specified in image_format are
not valid or if image_format is NULL.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if a 2D image is created from a buffer

and the row pitch and base address alignment does not follow the rules described for
creating a 2D image from a buffer.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if a 2D image is created from a 2D

image object and the rules described above are not followed.

 CL_INVALID_IMAGE_DESCRIPTOR if values specified in image_desc are not valid or if
image_desc is NULL.

 CL_INVALID_IMAGE_SIZE if image dimensions specified in image_desc exceed the

maximum image dimensions described in table 4.3 for all devices in context.

 CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or
CL_MEM_COPY_HOST_PTR are set in flags or if host_ptr is not NULL but
CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in flags.

Last Revision Date: 3/18/14 Page 122

 CL_INVALID_VALUE if an image buffer is being created and the buffer object was
created with CL_MEM_WRITE_ONLY and flags specifies CL_MEM_READ_WRITE or
CL_MEM_READ_ONLY, or if the buffer object was created with CL_MEM_READ_ONLY
and flags specifies CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY, or if flags
specifies CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR or
CL_MEM_COPY_HOST_PTR.

 CL_INVALID_VALUE if an image buffer is being created or an image is being created

from another memory object (image or buffer) and the mem_object object was created
with CL_MEM_HOST_WRITE_ONLY and flags specifies CL_MEM_HOST_READ_ONLY,
or if mem_object was created with CL_MEM_HOST_READ_ONLY and flags specifies
CL_MEM_HOST_WRITE_ONLY, or if mem_object was created with
CL_MEM_HOST_NO_ACCESS and flags specifies CL_MEM_HOST_READ_ONLY or
CL_MEM_HOST_WRITE_ONLY.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if the image_format is not supported.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

image object.

 CL_INVALID_OPERATION if there are no devices in context that support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

5.3.1.1 Image Format Descriptor

The image format descriptor structure is defined as

 typedef struct _cl_image_format {
 cl_channel_order image_channel_order;
 cl_channel_type image_channel_data_type;
 } cl_image_format;

image_channel_order specifies the number of channels and the channel layout i.e. the
memory layout in which channels are stored in the image. Valid values are described in table
5.6.

image_channel_data_type describes the size of the channel data type. The list of
supported values is described in table 5.7. The number of bits per element determined by the
image_channel_data_type and image_channel_order must be a power of two.

Last Revision Date: 3/18/14 Page 123

Enum values that can be specified in channel_order
CL_R, CL_Rx or CL_A
CL_INTENSITY
CL_LUMINANCE
CL_DEPTH
CL_RG, CL_RGx or CL_RA
CL_RGB or CL_RGBx
CL_RGBA
CL_sRGB, CL_sRGBx, CL_sRGBA, CL_sBGRA
CL_ARGB, CL_BGRA, CL_ABGR

 Table 5.6 List of supported Image Channel Order Values

Image Channel Data Type Description
CL_SNORM_INT8 Each channel component is a normalized signed 8-bit

integer value
CL_SNORM_INT16 Each channel component is a normalized signed 16-bit

integer value
CL_UNORM_INT8 Each channel component is a normalized unsigned 8-bit

integer value
CL_UNORM_INT16 Each channel component is a normalized unsigned 16-

bit integer value

CL_UNORM_SHORT_565 Represents a normalized 5-6-5 3-channel RGB image.

The channel order must be CL_RGB or CL_RGBx.
CL_UNORM_SHORT_555 Represents a normalized x-5-5-5 4-channel xRGB

image. The channel order must be CL_RGB or
CL_RGBx.

CL_UNORM_INT_101010

Represents a normalized x-10-10-10 4-channel xRGB
image. The channel order must be CL_RGB or
CL_RGBx.

CL_SIGNED_INT8 Each channel component is an unnormalized signed 8-

bit integer value
CL_SIGNED_INT16 Each channel component is an unnormalized signed 16-

bit integer value
CL_SIGNED_INT32 Each channel component is an unnormalized signed 32-

bit integer value
CL_UNSIGNED_INT8 Each channel component is an unnormalized unsigned

8-bit integer value
CL_UNSIGNED_INT16 Each channel component is an unnormalized unsigned

16-bit integer value
CL_UNSIGNED_INT32 Each channel component is an unnormalized unsigned

32-bit integer value

Last Revision Date: 3/18/14 Page 124

CL_HALF_FLOAT Each channel component is a 16-bit half-float value
CL_FLOAT Each channel component is a single precision floating-

point value

 Table 5.7 List of supported Image Channel Data Types

For example, to specify a normalized unsigned 8-bit / channel RGBA image,
image_channel_order = CL_RGBA, and image_channel_data_type =
CL_UNORM_INT8. The memory layout of this image format is described below:

Similar, if image_channel_order = CL_RGBA and image_channel_data_type =
CL_SIGNED_INT16, the memory layout of this image format is described below:

image_channel_data_type values of CL_UNORM_SHORT_565,
CL_UNORM_SHORT_555 and CL_UNORM_INT_101010 are special cases of packed image
formats where the channels of each element are packed into a single unsigned short or unsigned
int. For these special packed image formats, the channels are normally packed with the first
channel in the most significant bits of the bitfield, and successive channels occupying
progressively less significant locations. For CL_UNORM_SHORT_565, R is in bits 15:11, G is
in bits 10:5 and B is in bits 4:0. For CL_UNORM_SHORT_555, bit 15 is undefined, R is in
bits 14:10, G in bits 9:5 and B in bits 4:0. For CL_UNORM_INT_101010, bits 31:30 are
undefined, R is in bits 29:20, G in bits 19:10 and B in bits 9:0.

OpenCL implementations must maintain the minimum precision specified by the number of bits
in image_channel_data_type. If the image format specified by
image_channel_order, and image_channel_data_type cannot be supported by the
OpenCL implementation, then the call to clCreateImage will return a NULL memory object.

5.3.1.2 Image Descriptor

The image descriptor structure describes the type and dimensions of the image or image array
and is defined as:

R G B A
Byte
Offset 0 1 2 3

R G B A
Byte
Offset 0 2 4 6

Last Revision Date: 3/18/14 Page 125

 typedef struct _cl_image_desc {
 cl_mem_object_type image_type,
 size_t image_width;
 size_t image_height;
 size_t image_depth;
 size_t image_array_size;
 size_t image_row_pitch;
 size_t image_slice_pitch;
 cl_uint num_mip_levels;
 cl_uint num_samples;
 cl_mem mem_object;
 } cl_image_desc;

image_type describes the image type and must be either CL_MEM_OBJECT_IMAGE1D,
CL_MEM_OBJECT_IMAGE1D_BUFFER, CL_MEM_OBJECT_IMAGE1D_ARRAY,
CL_MEM_OBJECT_IMAGE2D, CL_MEM_OBJECT_IMAGE2D_ARRAY or
CL_MEM_OBJECT_IMAGE3D.

image_width is the width of the image in pixels. For a 2D image and image array, the image
width must be a value >= 1 and <= CL_DEVICE_IMAGE2D_MAX_WIDTH. For a 3D image, the
image width must be a value >=1 and <= CL_DEVICE_IMAGE3D_MAX_WIDTH. For a 1D
image buffer, the image width must be a value >=1 and <=
CL_DEVICE_IMAGE_MAX_BUFFER_SIZE. For a 1D image and 1D image array, the image
width must be a value >=1 and <= CL_DEVICE_IMAGE2D_MAX_WIDTH.

image_height is height of the image in pixels. This is only used if the image is a 2D or 3D
image, or a 2D image array. For a 2D image or image array, the image height must be a value
>=1 and <= CL_DEVICE_IMAGE2D_MAX_HEIGHT. For a 3D image, the image height must be
a value >=1 and <= CL_DEVICE_IMAGE3D_MAX_HEIGHT.

image_depth is the depth of the image in pixels. This is only used if the image is a 3D image
and must be a value >= 1 and <= CL_DEVICE_IMAGE3D_MAX_DEPTH.

image_array_size18 is the number of images in the image array. This is only used if the
image is a 1D or 2D image array. The values for image_array_size, if specified, must be a
value >= 1 and <= CL_DEVICE_IMAGE_MAX_ARRAY_SIZE.

image_row_pitch is the scan-line pitch in bytes. This must be 0 if host_ptr is NULL and can
be either 0 or >= image_width * size of element in bytes if host_ptr is not NULL. If host_ptr
is not NULL and image_row_pitch = 0, image_row_pitch is calculated as
image_width * size of element in bytes. If image_row_pitch is not 0, it must be a
multiple of the image element size in bytes. For a 2D image created from a buffer, the pitch
specified (or computed if pitch specified is 0) must be a multiple of the maximum of the

18 Note that reading and writing 2D image arrays from a kernel with image_array_size =1 may be lower
performance than 2D images.

Last Revision Date: 3/18/14 Page 126

CL_DEVICE_IMAGE_PITCH_ALIGNMENT value for all devices in the context associated with
image_desc->mem_object and that support images.

image_slice_pitch is the size in bytes of each 2D slice in the 3D image or the size in bytes
of each image in a 1D or 2D image array. This must be 0 if host_ptr is NULL. If host_ptr is not
NULL, image_slice_pitch can be either 0 or >= image_row_pitch *
image_height for a 2D image array or 3D image and can be either 0 or >=
image_row_pitch for a 1D image array. If host_ptr is not NULL and
image_slice_pitch = 0, image_slice_pitch is calculated as image_row_pitch *
image_height for a 2D image array or 3D image and image_row_pitch for a 1D image
array. If image_slice_pitch is not 0, it must be a multiple of the image_row_pitch.

num_mip_levels and num_samples must be 0.

mem_object refers to a valid buffer or image memory object. mem_object can be a buffer
memory object if image_type is CL_MEM_OBJECT_IMAGE1D_BUFFER or
CL_MEM_OBJECT_IMAGE2D19. mem_object can be a image object if image_type is
CL_MEM_OBJECT_IMAGE2D20. Otherwise it must be NULL. The image pixels are taken from
the memory object’s data store. When the contents of the specified memory object’s data store
are modified, those changes are reflected in the contents of the image object and vice-versa at
corresponding sychronization points. For a 1D image buffer object, the image_width * size
of element in bytes must be <= size of buffer object data store. For a 2D image created from a
buffer, the image_row_pitch * image_height must be <= size of buffer object data
store. For an image object created from another image object, the values specified in the image
descriptor except for mem_object must match the image descriptor information associated
with mem_object.

NOTE:
Concurrent reading from, writing to and copying between both a buffer object and 1D image
buffer or 2D image object associated with the buffer object is undefined. Only reading from
both a buffer object and 1D image buffer or 2D image object associated with the buffer object is
defined.

Writing to an image created from a buffer and then reading from this buffer in a kernel even if
appropriate synchronization operations (such as a barrier) are performed between the writes and
reads is undefined. Similarly, writing to the buffer and reading from the image created from this
buffer with appropriate synchronization between the writes and reads is undefined.

5.3.2 Querying List of Supported Image Formats

The function

19 To create a 2D image from a buffer object that share the data store between the image and buffer object.
20 To create an image object from another image object that share the data store between these image objects.

Last Revision Date: 3/18/14 Page 127

 cl_int clGetSupportedImageFormats (cl_context context,
 cl_mem_flags flags,
 cl_mem_object_type image_type,
 cl_uint num_entries,
 cl_image_format *image_formats,
 cl_uint *num_image_formats)

can be used to get the list of image formats supported by an OpenCL implementation when the
following information about an image memory object is specified:

 Context
 Image type – 1D, 2D, or 3D image, 1D image buffer, 1D or 2D image array.
 Image object allocation information

clGetSupportedImageFormats returns a union of image formats supported by all devices in the
context.

context is a valid OpenCL context on which the image object(s) will be created.

flags is a bit-field that is used to specify allocation and usage information about the image
memory object being queried and is described in table 5.3. To get a list of supported image
formats that can be read from or written to by a kernel, flags must be set to
CL_MEM_READ_WRITE (get a list of images that can be read from or written to by a kernel),
CL_MEM_READ_ONLY (list of images that can be read from by a kernel) or
CL_MEM_WRITE_ONLY (list of images that can be written to by a kernel). To get a list of
supported image formats that can be both read from and written to by a kernel, flags must be set
to CL_MEM_KERNEL_READ_AND_WRITE.

image_type describes the image type and must be either CL_MEM_OBJECT_IMAGE1D,
CL_MEM_OBJECT_IMAGE1D_BUFFER, CL_MEM_OBJECT_IMAGE2D,
CL_MEM_OBJECT_IMAGE3D, CL_MEM_OBJECT_IMAGE1D_ARRAY or
CL_MEM_OBJECT_IMAGE2D_ARRAY.

num_entries specifies the number of entries that can be returned in the memory location given by
image_formats.

image_formats is a pointer to a memory location where the list of supported image formats are
returned. Each entry describes a cl_image_format structure supported by the OpenCL
implementation. If image_formats is NULL, it is ignored.

num_image_formats is the actual number of supported image formats for a specific context and
values specified by flags. If num_image_formats is NULL, it is ignored.

clGetSupportedImageFormats returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

Last Revision Date: 3/18/14 Page 128

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if flags or image_type are not valid, or if num_entries is 0 and

image_formats is not NULL.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

If CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_TRUE, the values assigned to
CL_DEVICE_MAX_READ_IMAGE_ARGS, CL_DEVICE_MAX_WRITE_IMAGE_ARGS,
CL_DEVICE_IMAGE2D_MAX_WIDTH, CL_DEVICE_IMAGE2D_MAX_HEIGHT,
CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT,
CL_DEVICE_IMAGE3D_MAX_DEPTH and CL_DEVICE_MAX_SAMPLERS by the
implementation must be greater than or equal to the minimum values specified in table 4.3.

5.3.2.1 Minimum List of Supported Image Formats

For 1D, 1D image from buffer, 2D, 3D image objects, 1D and 2D image array objects, the
mandated minimum list of image formats that must be supported by all devices (that can be read
from or written to by a kernel but not both) that support images is described in table 5.8.a.

1 CL_R

CL_UNORM_INT8
CL_UNORM_INT16
CL_SNORM_INT8
CL_SNORM_INT16
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

1 CL_DEPTH

CL_UNORM_INT16
CL_FLOAT

2 CL_RG

CL_UNORM_INT8
CL_UNORM_INT16
CL_SNORM_INT8
CL_SNORM_INT16
CL_SIGNED_INT8
CL_SIGNED_INT16

num_channels channel_order channel_data_type

Last Revision Date: 3/18/14 Page 129

CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

4 CL_RGBA CL_UNORM_INT8
CL_UNORM_INT16
CL_SNORM_INT8
CL_SNORM_INT16
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

4 CL_BGRA CL_UNORM_INT8
4 CL_sRGBA CL_UNORM_INT821

 Table 5.8.a Min. list of supported image formats – kernel read or write

For 1D, 1D image from buffer, 2D, 3D image objects, 1D and 2D image array objects, the
mandated minimum list of image formats that must be supported by all devices (that can be read
from and written to by a kernel) that support images is described in table 5.8.b.

1 CL_R

CL_UNORM_INT8
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

4 CL_RGBA CL_UNORM_INT8
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

21 sRGB images can only be written to if the cl_khr_srgb_image_writes extension is supported.

num_channels channel_order channel_data_type

Last Revision Date: 3/18/14 Page 130

 Table 5.8.b Min. list of supported image formats – kernel read and write

5.3.3 Reading, Writing and Copying Image Objects

The following functions enqueue commands to read from an image or image array object to host
memory or write to an image or image array object from host memory.

 cl_int clEnqueueReadImage (cl_command_queue command_queue,

 cl_mem image,
 cl_bool blocking_read,
 const size_t *origin,
 const size_t *region,
 size_t row_pitch,
 size_t slice_pitch,
 void *ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

cl_int clEnqueueWriteImage (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_write,
 const size_t *origin,
 const size_t *region,
 size_t input_row_pitch,

 size_t input_slice_pitch,
 const void * ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

command_queue refers to the host command-queue in which the read / write command will be
queued. command_queue and image must be created with the same OpenCL context.

image refers to a valid image or image array object.

blocking_read and blocking_write indicate if the read and write operations are blocking or non-
blocking.

If blocking_read is CL_TRUE i.e. the read command is blocking, clEnqueueReadImage does
not return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking_read is CL_FALSE i.e. the read command is non-blocking, clEnqueueReadImage
queues a non-blocking read command and returns. The contents of the buffer that ptr points to
cannot be used until the read command has completed. The event argument returns an event

Last Revision Date: 3/18/14 Page 131

object which can be used to query the execution status of the read command. When the read
command has completed, the contents of the buffer that ptr points to can be used by the
application.

If blocking_write is CL_TRUE, the OpenCL implementation copies the data referred to by ptr
and enqueues the write command in the command-queue. The memory pointed to by ptr can be
reused by the application after the clEnqueueWriteImage call returns.

If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-
blocking write. As the write is non-blocking the implementation can return immediately. The
memory pointed to by ptr cannot be reused by the application after the call returns. The event
argument returns an event object which can be used to query the execution status of the write
command. When the write command has completed, the memory pointed to by ptr can then be
reused by the application.

origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer
object, origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be
0. If image is a 1D image array object, origin[1] describes the image index in the 1D image
array. If image is a 2D image array object, origin[2] describes the image index in the 2D image
array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is
a 2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object,
region[1] and region[2] must be 1. If image is a 1D image array object, region[2] must be 1.
The values in region cannot be 0.

row_pitch in clEnqueueReadImage and input_row_pitch in clEnqueueWriteImage is the
length of each row in bytes. This value must be greater than or equal to the element size in bytes
* width. If row_pitch (or input_row_pitch) is set to 0, the appropriate row pitch is calculated
based on the size of each element in bytes multiplied by width.

slice_pitch in clEnqueueReadImage and input_slice_pitch in clEnqueueWriteImage is the size
in bytes of the 2D slice of the 3D region of a 3D image or each image of a 1D or 2D image array
being read or written respectively. This must be 0 if image is a 1D or 2D image. Otherwise this
value must be greater than or equal to row_pitch * height. If slice_pitch (or input_slice_pitch) is
set to 0, the appropriate slice pitch is calculated based on the row_pitch * height.

ptr is the pointer to a buffer in host memory where image data is to be read from or to be written
to.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command

Last Revision Date: 3/18/14 Page 132

does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular read / write command and can be used
to query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. If the event_wait_list and the event arguments are not
NULL, the event argument should not refer to an element of the event_wait_list array.

clEnqueueReadImage and clEnqueueWriteImage return CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and image are

not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if image is not a valid image object.

 CL_INVALID_VALUE if the region being read or written specified by origin and region

is out of bounds or if ptr is a NULL value.

 CL_INVALID_VALUE if values in origin and region do not follow rules described in the
argument description for origin and region.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for image are not supported by device associated with
queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data

type) for image are not supported by device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for
data store associated with image.

 CL_INVALID_OPERATION if the device associated with command_queue does not

support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

Last Revision Date: 3/18/14 Page 133

 CL_INVALID_OPERATION if clEnqueueReadImage is called on image which has been

created with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.

 CL_INVALID_OPERATION if clEnqueueWriteImage is called on image which has been
created with CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write

operations are blocking and the execution status of any of the events in event_wait_list is
a negative integer value.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

NOTE:

Calling clEnqueueReadImage to read a region of the image with the ptr argument value set to
host_ptr + (origin[2] * image slice pitch + origin[1] * image row pitch + origin[0] * bytes per
pixel), where host_ptr is a pointer to the memory region specified when the image being read is
created with CL_MEM_USE_HOST_PTR, must meet the following requirements in order to avoid
undefined behavior:

• All commands that use this image object have finished execution before the read
command begins execution.

• The row_pitch and slice_pitch argument values in clEnqueueReadImage must be set to
the image row pitch and slice pitch.

• The image object is not mapped.

• The image object is not used by any command-queue until the read command has
finished execution.

Calling clEnqueueWriteImage to update the latest bits in a region of the image with the ptr
argument value set to host_ptr + (origin[2] * image slice pitch + origin[1] * image row pitch +
origin[0] * bytes per pixel), where host_ptr is a pointer to the memory region specified when the
image being written is created with CL_MEM_USE_HOST_PTR, must meet the following
requirements in order to avoid undefined behavior:

• The host memory region being written contains the latest bits when the enqueued write
command begins execution.

Last Revision Date: 3/18/14 Page 134

• The input_row_pitch and input_slice_pitch argument values in clEnqueueWriteImage
must be set to the image row pitch and slice pitch.

• The image object is not mapped.

• The image object is not used by any command-queue until the write command has
finished execution.

The function

 cl_int clEnqueueCopyImage (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_image,

 const size_t *src_origin,
 const size_t *dst_origin,
 const size_t *region,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

enqueues a command to copy image objects. src_image and dst_image can be 1D, 2D, 3D
image or a 1D, 2D image array objects. It is possible to copy subregions between any
combinations of source and destination types, provided that the dimensions of the subregions are
the same e.g., one can copy a rectangular region from a 2D image to a slice of a 3D image.

command_queue refers to the host command-queue in which the copy command will be queued.
The OpenCL context associated with command_queue, src_image and dst_image must be the
same.

src_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If image is a 2D image object, src_origin[2] must be 0. If src_image is a 1D image object,
src_origin[1] and src_origin[2] must be 0. If src_image is a 1D image array object,
src_origin[2] must be 0. If src_image is a 1D image array object, src_origin[1] describes the
image index in the 1D image array. If src_image is a 2D image array object, src_origin[2]
describes the image index in the 2D image array.

dst_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If dst_image is a 2D image object, dst_origin[2] must be 0. If dst_image is a 1D image or 1D
image buffer object, dst_origin[1] and dst_origin[2] must be 0. If dst_image is a 1D image array
object, dst_origin[2] must be 0. If dst_image is a 1D image array object, dst_origin[1] describes
the image index in the 1D image array. If dst_image is a 2D image array object, dst_origin[2]
describes the image index in the 2D image array.

Last Revision Date: 3/18/14 Page 135

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If
src_image or dst_image is a 2D image object, region[2] must be 1. If src_image or dst_image is
a 1D image or 1D image buffer object, region[1] and region[2] must be 1. If src_image or
dst_image is a 1D image array object, region[2] must be 1. The values in region cannot be 0.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If
the event_wait_list and the event arguments are not NULL, the event argument should not refer to
an element of the event_wait_list array.

It is currently a requirement that the src_image and dst_image image memory objects for
clEnqueueCopyImage must have the exact same image format (i.e. the cl_image_format
descriptor specified when src_image and dst_image are created must match).

clEnqueueCopyImage returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue, src_image and

dst_image are not the same or if the context associated with command_queue and events
in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if src_image and dst_image are not valid image objects.

 CL_IMAGE_FORMAT_MISMATCH if src_image and dst_image do not use the same

image format.

 CL_INVALID_VALUE if the 2D or 3D rectangular region specified by src_origin and
src_origin + region refers to a region outside src_image, or if the 2D or 3D rectangular
region specified by dst_origin and dst_origin + region refers to a region outside
dst_image.

Last Revision Date: 3/18/14 Page 136

 CL_INVALID_VALUE if values in src_origin, dst_origin and region do not follow rules
described in the argument description for src_origin, dst_origin and region.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for src_image or dst_image are not supported by device
associated with queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data

type) for src_image or dst_image are not supported by device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for
data store associated with src_image or dst_image.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

 CL_INVALID_OPERATION if the device associated with command_queue does not

support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_MEM_COPY_OVERLAP if src_image and dst_image are the same image object and
the source and destination regions overlap.

Last Revision Date: 3/18/14 Page 137

5.3.4 Filling Image Objects

The function

 cl_int clEnqueueFillImage (cl_command_queue command_queue,
 cl_mem image,
 const void *fill_color,
 const size_t *origin,
 const size_t *region,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to fill an image object with a specified color. The usage information
which indicates whether the memory object can be read or written by a kernel and/or the host
and is given by the cl_mem_flags argument value specified when image is created is ignored by
clEnqueueFillImage.

command_queue refers to the host command-queue in which the fill command will be queued.
The OpenCL context associated with command_queue and image must be the same.

image is a valid image object.

fill_color is the fill color. The fill color is a four component RGBA floating-point color value if
the image channel data type is not an unnormalized signed or unsigned integer type, is a four
component signed integer value if the image channel data type is an unnormalized signed integer
type and is a four component unsigned integer value if the image channel data type is an
unnormalized unsigned integer type. The fill color will be converted to the appropriate image
channel format and order associated with image as described in sections 6.12.14 and 8.3.

origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer
object, origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be
0. If image is a 1D image array object, origin[1] describes the image index in the 1D image
array. If image is a 2D image array object, origin[2] describes the image index in the 2D image
array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is
a 2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object,
region[1] and region[2] must be 1. If image is a 1D image array object, region[2] must be 1.
The values in region cannot be 0.

Last Revision Date: 3/18/14 Page 138

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueFillImage returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and image are

not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if image is not a valid image object.

 CL_INVALID_VALUE if fill_color is NULL.

 CL_INVALID_VALUE if the region being filled as specified by origin and region is out of

bounds or if ptr is a NULL value.

 CL_INVALID_VALUE if values in origin and region do not follow rules described in the
argument description for origin and region.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for image are not supported by device associated with
queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data

type) for image are not supported by device associated with queue.

Last Revision Date: 3/18/14 Page 139

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for
data store associated with image.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

5.3.5 Copying between Image and Buffer Objects

The function

 cl_int clEnqueueCopyImageToBuffer (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_buffer,

 const size_t *src_origin,
 const size_t *region,

 size_t dst_offset,
 cl_uint num_events_in_wait_list,

 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to copy an image object to a buffer object.

command_queue must be a valid host command-queue. The OpenCL context associated with
command_queue, src_image and dst_buffer must be the same.

src_image is a valid image object.

dst_buffer is a valid buffer object.

src_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If src_image is a 2D image object, src_origin[2] must be 0. If src_image is a 1D image or 1D
image buffer object, src_origin[1] and src_origin[2] must be 0. If src_image is a 1D image array
object, src_origin[2] must be 0. If src_image is a 1D image array object, src_origin[1] describes
the image index in the 1D image array. If src_image is a 2D image array object, src_origin[2]
describes the image index in the 2D image array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If
src_image is a 2D image object, region[2] must be 1. If src_image is a 1D image or 1D image

Last Revision Date: 3/18/14 Page 140

buffer object, region[1] and region[2] must be 1. If src_image is a 1D image array object,
region[2] must be 1. The values in region cannot be 0.

dst_offset refers to the offset where to begin copying data into dst_buffer. The size in bytes of
the region to be copied referred to as dst_cb is computed as width * height * depth * bytes/image
element if src_image is a 3D image object, is computed as width * height * bytes/image element
if src_image is a 2D image, is computed as width * height * arraysize * bytes/image element if
src_image is a 2D image array object, is computed as width * bytes/image element if src_image
is a 1D image or 1D image buffer object and is computed as width * arraysize * bytes/image
element if src_image is a 1D image array object.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If
the event_wait_list and the event arguments are not NULL, the event argument should not refer to
an element of the event_wait_list array.

clEnqueueCopyImageToBuffer returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue, src_image and

dst_buffer are not the same or if the context associated with command_queue and events
in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if src_image is not a valid image object or dst_buffer is not

a valid buffer object or if src_image is a 1D image buffer object created from dst_buffer.

 CL_INVALID_VALUE if the 1D, 2D or 3D rectangular region specified by src_origin and
src_origin + region refers to a region outside src_image, or if the region specified by
dst_offset and dst_offset + dst_cb to a region outside dst_buffer.

 CL_INVALID_VALUE if values in src_origin and region do not follow rules described in

the argument description for src_origin and region.

Last Revision Date: 3/18/14 Page 141

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for src_image are not supported by device associated
with queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data

type) for src_image are not supported by device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for
data store associated with src_image or dst_buffer.

 CL_INVALID_OPERATION if the device associated with command_queue does not

support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clEnqueueCopyBufferToImage (cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_image,
 size_t src_offset,

 const size_t *dst_origin,
 const size_t *region,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

enqueues a command to copy a buffer object to an image object.

command_queue must be a valid host command-queue. The OpenCL context associated with
command_queue, src_buffer and dst_image must be the same.

src_buffer is a valid buffer object.

Last Revision Date: 3/18/14 Page 142

dst_image is a valid image object.

src_offset refers to the offset where to begin copying data from src_buffer.

dst_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If dst_image is a 2D image object, dst_origin[2] must be 0. If dst_image is a 1D image or 1D
image buffer object, dst_origin[1] and dst_origin[2] must be 0. If dst_image is a 1D image array
object, dst_origin[2] must be 0. If dst_image is a 1D image array object, dst_origin[1] describes
the image index in the 1D image array. If dst_image is a 2D image array object, dst_origin[2]
describes the image index in the 2D image array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If
dst_image is a 2D image object, region[2] must be 1. If dst_image is a 1D image or 1D image
buffer object, region[1] and region[2] must be 1. If dst_image is a 1D image array object,
region[2] must be 1. The values in region cannot be 0.

The size in bytes of the region to be copied from src_buffer referred to as src_cb is computed as
width * height * depth * bytes/image element if dst_image is a 3D image object, is computed as
width * height * bytes/image element if dst_image is a 2D image, is computed as width * height
* arraysize * bytes/image element if dst_image is a 2D image array object, is computed as width
* bytes/image element if dst_image is a 1D image or 1D image buffer object and is computed as
width * arraysize * bytes/image element if dst_image is a 1D image array object.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If
the event_wait_list and the event arguments are not NULL, the event argument should not refer to
an element of the event_wait_list array.

clEnqueueCopyBufferToImage returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

Last Revision Date: 3/18/14 Page 143

 CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and

dst_image are not the same or if the context associated with command_queue and events
in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if src_buffer is not a valid buffer object or dst_image is not

a valid image object or if dst_image is a 1D image buffer object created from src_buffer.

 CL_INVALID_VALUE if the 1D, 2D or 3D rectangular region specified by dst_origin and
dst_origin + region refer to a region outside dst_image, or if the region specified by
src_offset and src_offset + src_cb refer to a region outside src_buffer.

 CL_INVALID_VALUE if values in dst_origin and region do not follow rules described in

the argument description for dst_origin and region.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for dst_image are not supported by device associated
with queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data

type) for dst_image are not supported by device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for
data store associated with src_buffer or dst_image.

 CL_INVALID_OPERATION if the device associated with command_queue does not

support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 144

5.3.6 Mapping Image Objects

The function

 void * clEnqueueMapImage (cl_command_queue command_queue,

 cl_mem image,
 cl_bool blocking_map,
 cl_map_flags map_flags,
 const size_t *origin,
 const size_t *region,
 size_t *image_row_pitch,
 size_t *image_slice_pitch,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event,
 cl_int *errcode_ret)

enqueues a command to map a region in the image object given by image into the host address
space and returns a pointer to this mapped region.

command_queue must be a valid host command-queue.

image is a valid image object. The OpenCL context associated with command_queue and image
must be the same.

blocking_map indicates if the map operation is blocking or non-blocking.

If blocking_map is CL_TRUE, clEnqueueMapImage does not return until the specified region in
image is mapped into the host address space and the application can access the contents of the
mapped region using the pointer returned by clEnqueueMapImage.

If blocking_map is CL_FALSE i.e. map operation is non-blocking, the pointer to the mapped
region returned by clEnqueueMapImage cannot be used until the map command has completed.
The event argument returns an event object which can be used to query the execution status of
the map command. When the map command is completed, the application can access the
contents of the mapped region using the pointer returned by clEnqueueMapImage.

map_flags is a bit-field and is described in table 5.5.

origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer
object, origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be
0. If image is a 1D image array object, origin[1] describes the image index in the 1D image

Last Revision Date: 3/18/14 Page 145

array. If image is a 2D image array object, origin[2] describes the image index in the 2D image
array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is
a 2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object,
region[1] and region[2] must be 1. If image is a 1D image array object, region[2] must be 1. The
values in region cannot be 0.

image_row_pitch returns the scan-line pitch in bytes for the mapped region. This must be a non-
NULL value.

image_slice_pitch returns the size in bytes of each 2D slice of a 3D image or the size of each 1D
or 2D image in a 1D or 2D image array for the mapped region. For a 1D and 2D image, zero is
returned if this argument is not NULL. For a 3D image, 1D and 2D image array,
image_slice_pitch must be a non-NULL value.

event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueMapImage can be executed. If event_wait_list is NULL, then clEnqueueMapImage
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clEnqueueMapImage will return a pointer to the mapped region. The errcode_ret is set to
CL_SUCCESS.

A NULL pointer is returned otherwise with one of the following error values returned in
errcode_ret:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if context associated with command_queue and image are not

Last Revision Date: 3/18/14 Page 146

the same or if context associated with command_queue and events in event_wait_list are
not the same.

 CL_INVALID_MEM_OBJECT if image is not a valid image object.

 CL_INVALID_VALUE if region being mapped given by (origin, origin+region) is out of

bounds or if values specified in map_flags are not valid.

 CL_INVALID_VALUE if values in origin and region do not follow rules described in the
argument description for origin and region.

 CL_INVALID_VALUE if image_row_pitch is NULL.

 CL_INVALID_VALUE if image is a 3D image, 1D or 2D image array object and

image_slice_pitch is NULL.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for image are not supported by device associated with
queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data

type) for image are not supported by device associated with queue.

 CL_MAP_FAILURE if there is a failure to map the requested region into the host address
space. This error cannot occur for image objects created with CL_MEM_USE_HOST_PTR
or CL_MEM_ALLOC_HOST_PTR.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is

blocking and the execution status of any of the events in event_wait_list is a negative
integer value.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with image.

 CL_INVALID_OPERATION if the device associated with command_queue does not
support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_INVALID_OPERATION if image has been created with

CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS and CL_MAP_READ
is set in map_flags or if image has been created with CL_MEM_HOST_READ_ONLY or
CL_MEM_HOST_NO_ACCESS and CL_MAP_WRITE or
CL_MAP_WRITE_INVALIDATE_REGION is set in map_flags.

Last Revision Date: 3/18/14 Page 147

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The pointer returned maps a 1D, 2D or 3D region starting at origin and is at least region[0]
pixels in size for a 1D image, 1D image buffer or 1D image array, (image_row_pitch *
region[1]) pixels in size for a 2D image or 2D image array, and (image_slice_pitch * region[2])
pixels in size for a 3D image. The result of a memory access outside this region is undefined.

If the image object is created with CL_MEM_USE_HOST_PTR set in mem_flags, the following
will be true:

 The host_ptr specified in clCreateImage is guaranteed to contain the latest bits in the
region being mapped when the clEnqueueMapImage command has completed.

 The pointer value returned by clEnqueueMapImage will be derived from the host_ptr
specified when the image object is created.

Mapped image objects are unmapped using clEnqueueUnmapMemObject. This is described in
section 5.5.2.

5.3.7 Image Object Queries

To get information that is common to all memory objects, use the clGetMemObjectInfo
function described in section 5.5.5.

To get information specific to an image object created with clCreateImage, use the following
function

 cl_int clGetImageInfo (cl_mem image,

 cl_image_info param_name,
 size_t param_value_size,

 void *param_value,
 size_t *param_value_size_ret)

image specifies the image object being queried.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetImageInfo is described in table 5.9.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

Last Revision Date: 3/18/14 Page 148

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.9.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

clGetImageInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.9 and param_value is
not NULL.

 CL_INVALID_MEM_OBJECT if image is a not a valid image object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

cl_image_info Return type Info. returned in param_value
CL_IMAGE_FORMAT cl_image_format Return image format descriptor specified

when image is created with
clCreateImage.

CL_IMAGE_ELEMENT_SIZE size_t Return size of each element of the image
memory object given by image in bytes.
An element is made up of n channels. The
value of n is given in cl_image_format
descriptor.

CL_IMAGE_ROW_PITCH size_t Return calculated row pitch in bytes of a
row of elements of the image object given
by image.

CL_IMAGE_SLICE_PITCH size_t Return calculated slice pitch in bytes of a
2D slice for the 3D image object or size of
each image in a 1D or 2D image array
given by image. For a 1D image, 1D
image buffer and 2D image object return 0.

CL_IMAGE_WIDTH size_t Return width of the image in pixels.
CL_IMAGE_HEIGHT size_t Return height of the image in pixels. For a

1D image, 1D image buffer and 1D image
array object, height = 0.

CL_IMAGE_DEPTH size_t Return depth of the image in pixels. For a
1D image, 1D image buffer, 2D image or

Last Revision Date: 3/18/14 Page 149

1D and 2D image array object, depth = 0.
CL_IMAGE_ARRAY_SIZE size_t Return number of images in the image

array. If image is not an image array, 0 is
returned.

CL_IMAGE_NUM_MIP_
LEVELS

cl_uint Return num_mip_levels associated with
image.

CL_IMAGE_NUM_SAMPLES cl_uint Return num_samples associated with
image.

Table 5.9 List of supported param_names by clGetImageInfo

Last Revision Date: 3/18/14 Page 150

5.4 Pipes

A pipe is a memory object that stores data organized as a FIFO. Pipe objects can only be
accessed using built-in functions that read from and write to a pipe. Pipe objects are not
accessible from the host. A pipe object encapsulates the following information:

 Packet size in bytes
 Maximum capacity in packets
 Information about the number of packets currently in the pipe
 Data packets

5.4.1 Creating Pipe Objects

A pipe object is created using the following function

 cl_mem clCreatePipe (cl_context context,
 cl_mem_flags flags,
 cl_uint pipe_packet_size,
 cl_uint pipe_max_packets,

 const cl_pipe_properties *properties,
 cl_int *errcode_ret)

context is a valid OpenCL context used to create the pipe object.

flags is a bit-field that is used to specify allocation and usage information such as the memory
arena that should be used to allocate the pipe object and how it will be used. Table 5.3 describes
the possible values for flags. Only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY,
CL_MEM_READ_WRITE and CL_MEM_HOST_NO_ACCESS can be specified when creating a
pipe object. If value specified for flags is 0, the default is used which is
CL_MEM_READ_WRITE.

pipe_packet_size is the size in bytes of a pipe packet.

pipe_max_packets specifies the pipe capacity by specifying the maximum number of packets the
pipe can hold.

properties specifies a list of properties for the pipe and their corresponding values. Each
property name is immediately followed by the corresponding desired value. The list is terminated
with 0. In OpenCL 2.0, properties must be NULL.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

Last Revision Date: 3/18/14 Page 151

clCreatePipe returns a valid non-zero pipe object and errcode_ret is set to CL_SUCCESS if the
pipe object is created successfully. Otherwise, it returns a NULL value with one of the following
error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not as defined above.

 CL_INVALID_VALUE if properties is not NULL.

 CL_INVALID_PIPE_SIZE if pipe_packet_size is 0 or the pipe_packet_size exceeds
CL_DEVICE_PIPE_MAX_PACKET_SIZE value specified in table 4.3 for all devices in
context or if pipe_max_packets is 0.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

the pipe object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Pipes follow the same memory consistency model as defined for buffer and image objects. The
pipe state i.e. contents of the pipe across kernel-instances (on the same or different devices) is
enforced at a synchronization point.

5.4.2 Pipe Object Queries

To get information that is common to all memory objects, use the clGetMemObjectInfo
function described in section 5.5.5.

To get information specific to a pipe object created with clCreatePipe, use the following
function

 cl_int clGetPipeInfo (cl_mem pipe,

 cl_pipe_info param_name,
 size_t param_value_size,

 void *param_value,
 size_t *param_value_size_ret)

pipe specifies the pipe object being queried.

Last Revision Date: 3/18/14 Page 152

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetPipeInfo is described in table 5.10.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.10.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

clGetPipeInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.10 and param_value is
not NULL.

 CL_INVALID_MEM_OBJECT if pipe is a not a valid pipe object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

cl_pipe_info Return type Info. returned in param_value
CL_PIPE_PACKET_SIZE cl_uint Return pipe packet size specified when

pipe is created with clCreatePipe.
CL_PIPE_MAX_PACKETS cl_uint Return max. number of packets specified

when pipe is created with clCreatePipe.

Table 5.10 List of supported param_names by clGetPipeInfo

Last Revision Date: 3/18/14 Page 153

5.5 Querying, Unmapping, Migrating, Retaining and
Releasing Memory Objects

5.5.1 Retaining and Releasing Memory Objects

The function

 cl_int clRetainMemObject (cl_mem memobj)

increments the memobj reference count. clRetainMemObject returns CL_SUCCESS if the
function is executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_MEM_OBJECT if memobj is not a valid memory object (buffer or image
object).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

clCreateBuffer, clCreateSubBuffer, clCreateImage and clCreatePipe perform an implicit
retain.

The function

 cl_int clReleaseMemObject (cl_mem memobj)

decrements the memobj reference count. clReleaseMemObject returns CL_SUCCESS if the
function is executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_MEM_OBJECT if memobj is not a valid memory object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

After the memobj reference count becomes zero and commands queued for execution on a
command-queue(s) that use memobj have finished, the memory object is deleted. If memobj is a

Last Revision Date: 3/18/14 Page 154

buffer object, memobj cannot be deleted until all sub-buffer objects associated with memobj are
deleted.

The function

 cl_int clSetMemObjectDestructorCallback (cl_mem memobj,
 void (CL_CALLBACK *pfn_notify)(cl_mem memobj,

 void *user_data),
 void *user_data)

registers a user callback function with a memory object. Each call to
clSetMemObjectDestructorCallback registers the specified user callback function on a
callback stack associated with memobj. The registered user callback functions are called in the
reverse order in which they were registered. The user callback functions are called and then the
memory object’s resources are freed and the memory object is deleted. This provides a
mechanism for the application (and libraries) using memobj to be notified when the memory
referenced by host_ptr, specified when the memory object is created and used as the storage bits
for the memory object, can be reused or freed.

memobj is a valid memory object.

pfn_notify is the callback function that can be registered by the application. This callback
function may be called asynchronously by the OpenCL implementation. It is the application’s
responsibility to ensure that the callback function is thread-safe. The parameters to this callback
function are:

 memobj is the memory object being deleted. When the user callback is called by the
implementation, this memory object is not longer valid. memobj is only provided for
reference purposes.

 user_data is a pointer to user supplied data.

user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

clSetMemObjectDestructorCallback returns CL_SUCCESS if the function is executed
successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_MEM_OBJECT if memobj is not a valid memory object.

 CL_INVALID_VALUE if pfn_notify is NULL.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 155

NOTE: When the user callback function is called by the implementation, the contents of the
memory region pointed to by host_ptr (if the memory object is created with
CL_MEM_USE_HOST_PTR) are undefined. The callback function is typically used by the
application to either free or reuse the memory region pointed to by host_ptr.

The behavior of calling expensive system routines, OpenCL API calls to create contexts or
command-queues, or blocking OpenCL operations from the following list below, in a callback is
undefined.

 clFinish,
 clWaitForEvents,
 blocking calls to clEnqueueReadBuffer, clEnqueueReadBufferRect,

 clEnqueueWriteBuffer, clEnqueueWriteBufferRect,
blocking calls to clEnqueueReadImage and clEnqueueWriteImage,

 blocking calls to clEnqueueMapBuffer,
 clEnqueueMapImage,

 blocking calls to clBuildProgram, clCompileProgram or clLinkProgram

If an application needs to wait for completion of a routine from the above list in a callback,
please use the non-blocking form of the function, and assign a completion callback to it to do the
remainder of your work. Note that when a callback (or other code) enqueues commands to a
command-queue, the commands are not required to begin execution until the queue is flushed.
In standard usage, blocking enqueue calls serve this role by implicitly flushing the queue. Since
blocking calls are not permitted in callbacks, those callbacks that enqueue commands on a
command queue should either call clFlush on the queue before returning or arrange for clFlush
to be called later on another thread.

The user callback function may not call OpenCL APIs with the memory object for which the
callback function is invoked and for such cases the behavior of OpenCL APIs is considered to be
undefined.

5.5.2 Unmapping Mapped Memory Objects

The function

 cl_int clEnqueueUnmapMemObject (cl_command_queue command_queue,

 cl_mem memobj,
 void *mapped_ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

Last Revision Date: 3/18/14 Page 156

enqueues a command to unmap a previously mapped region of a memory object. Reads or
writes from the host using the pointer returned by clEnqueueMapBuffer or
clEnqueueMapImage are considered to be complete.

command_queue must be a valid host command-queue.

memobj is a valid memory (buffer or image) object. The OpenCL context associated with
command_queue and memobj must be the same.

mapped_ptr is the host address returned by a previous call to clEnqueueMapBuffer, or
clEnqueueMapImage for memobj.

event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueUnmapMemObject can be executed. If event_wait_list is NULL, then
clEnqueueUnmapMemObject does not wait on any event to complete. If event_wait_list is
NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL, the list of events
pointed to by event_wait_list must be valid and num_events_in_wait_list must be greater than 0.
The events specified in event_wait_list act as synchronization points. The context associated
with events in event_wait_list and command_queue must be the same. The memory associated
with event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueUnmapMemObject returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_MEM_OBJECT if memobj is not a valid memory object or is a pipe object.

 CL_INVALID_VALUE if mapped_ptr is not a valid pointer returned by

clEnqueueMapBuffer, or clEnqueueMapImage for memobj.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or if event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

Last Revision Date: 3/18/14 Page 157

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

 CL_INVALID_CONTEXT if context associated with command_queue and memobj are not

the same or if the context associated with command_queue and events in event_wait_list
are not the same.

clEnqueueMapBuffer, and clEnqueueMapImage increments the mapped count of the
memory object. The initial mapped count value of the memory object is zero. Multiple calls to
clEnqueueMapBuffer, or clEnqueueMapImage on the same memory object will increment
this mapped count by appropriate number of calls. clEnqueueUnmapMemObject decrements
the mapped count of the memory object.

clEnqueueMapBuffer, and clEnqueueMapImage act as synchronization points for a region of
the buffer object being mapped.

5.5.3 Accessing mapped regions of a memory object

This section describes the behavior of OpenCL commands that access mapped regions of a
memory object.

The contents of the region of a memory object and associated memory objects (sub-buffer
objects or 1D image buffer objects that overlap this region) mapped for writing (i.e.
CL_MAP_WRITE or CL_MAP_WRITE_INVALIDATE_REGION is set in map_flags argument to
clEnqueueMapBuffer, or clEnqueueMapImage) are considered to be undefined until this
region is unmapped.

Multiple commands in command-queues can map a region or overlapping regions of a memory
object and associated memory objects (sub-buffer objects or 1D image buffer objects that
overlap this region) for reading (i.e. map_flags = CL_MAP_READ). The contents of the regions
of a memory object mapped for reading can also be read by kernels and other OpenCL
commands (such as clEnqueueCopyBuffer) executing on a device(s).

Mapping (and unmapping) overlapped regions in a memory object and/or associated memory
objects (sub-buffer objects or 1D image buffer objects that overlap this region) for writing is an
error and will result in CL_INVALID_OPERATION error returned by clEnqueueMapBuffer, or
clEnqueueMapImage.

If a memory object is currently mapped for writing, the application must ensure that the memory
object is unmapped before any enqueued kernels or commands that read from or write to this
memory object or any of its associated memory objects (sub-buffer or 1D image buffer objects)
or its parent object (if the memory object is a sub-buffer or 1D image buffer object) begin
execution; otherwise the behavior is undefined.

If a memory object is currently mapped for reading, the application must ensure that the memory

Last Revision Date: 3/18/14 Page 158

object is unmapped before any enqueued kernels or commands that write to this memory object
or any of its associated memory objects (sub-buffer or 1D image buffer objects) or its parent
object (if the memory object is a sub-buffer or 1D image buffer object) begin execution;
otherwise the behavior is undefined.

A memory object is considered as mapped if there are one or more active mappings for the
memory object irrespective of whether the mapped regions span the entire memory object.

Accessing the contents of the memory region referred to by the mapped pointer that has been
unmapped is undefined.

The mapped pointer returned by clEnqueueMapBuffer or clEnqueueMapImage can be used as
ptr argument value to clEnqueue{Read | Write}Buffer, clEnqeue{Read | Write}BufferRect,
clEnqueue{Read | Write}Image provided the rules described above are adhered to.

5.5.4 Migrating Memory Objects

This section describes a mechanism for assigning which device an OpenCL memory object
resides. A user may wish to have more explicit control over the location of their memory objects
on creation. This could be used to:

 Ensure that an object is allocated on a specific device prior to usage.

 Preemptively migrate an object from one device to another.

The function

 cl_int clEnqueueMigrateMemObjects (cl_command_queue command_queue,

 cl_uint num_mem_objects,
 const cl_mem *mem_objects,
 cl_mem_migration_flags flags,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

enqueues a command to indicate which device a set of memory objects should be associated
with. Typically, memory objects are implicitly migrated to a device for which enqueued
commands, using the memory object, are targeted. clEnqueueMigrateMemObjects allows this
migration to be explicitly performed ahead of the dependent commands. This allows a user to
preemptively change the association of a memory object, through regular command queue
scheduling, in order to prepare for another upcoming command. This also permits an application
to overlap the placement of memory objects with other unrelated operations before these
memory objects are needed potentially hiding transfer latencies. Once the event, returned from
clEnqueueMigrateMemObjects, has been marked CL_COMPLETE the memory objects
specified in mem_objects have been successfully migrated to the device associated with

Last Revision Date: 3/18/14 Page 159

command_queue. The migrated memory object shall remain resident on the device until another
command is enqueued that either implicitly or explicitly migrates it away.

clEnqueueMigrateMemObjects can also be used to direct the initial placement of a memory
object, after creation, possibly avoiding the initial overhead of instantiating the object on the first
enqueued command to use it.

The user is responsible for managing the event dependencies, associated with this command, in
order to avoid overlapping access to memory objects. Improperly specified event dependencies
passed to clEnqueueMigrateMemObjects could result in undefined results.

command_queue is a valid host command-queue. The specified set of memory objects in
mem_objects will be migrated to the OpenCL device associated with command_queue or to the
host if the CL_MIGRATE_MEM_OBJECT_HOST has been specified.

num_mem_objects is the number of memory objects specified in mem_objects.

mem_objects is a pointer to a list of memory objects.

flags is a bit-field that is used to specify migration options. The following table describes the
possible values for flags.

cl_mem_migration flags Description
CL_MIGRATE_MEM_OBJECT_HOST This flag indicates that the specified set of

memory objects are to be migrated to the host,
regardless of the target command-queue.

CL_MIGRATE_MEM_OBJECT_
CONTENT_UNDEFINED

This flag indicates that the contents of the set of
memory objects are undefined after migration.
The specified set of memory objects are migrated
to the device associated with command_queue
without incurring the overhead of migrating their
contents.

Table 5.11 Supported cl_mem_migration flags.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will

Last Revision Date: 3/18/14 Page 160

not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

clEnqueueMigrateMemObjects return CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and memory

objects in mem_objects are not the same or if the context associated with
command_queue and events in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if any of the memory objects in mem_objects is not a valid

memory object.

 CL_INVALID_VALUE if num_mem_objects is zero or if mem_objects is NULL.

 CL_INVALID_VALUE if flags is not 0 or is not any of the values described in the table
above.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

the specified set of memory objects in mem_objects.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

5.5.5 Memory Object Queries

To get information that is common to all memory objects (buffer and image objects), use the
following function

 cl_int clGetMemObjectInfo (cl_mem memobj,

 cl_mem_info param_name,
 size_t param_value_size,
 void *param_value,

Last Revision Date: 3/18/14 Page 161

 size_t *param_value_size_ret)

memobj specifies the memory object being queried.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetMemObjectInfo is described in table 5.12.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.12.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

clGetMemObjectInfo returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.12 and param_value is
not NULL.

 CL_INVALID_MEM_OBJECT if memobj is a not a valid memory object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

cl_mem_info Return type Info. returned in param_value
CL_MEM_TYPE cl_mem_object_type Returns one of the following values:

CL_MEM_OBJECT_BUFFER if memobj
is created with clCreateBuffer or
clCreateSubBuffer.

cl_image_desc.image_type argument
value if memobj is created with
clCreateImage.

CL_MEM_OBJECT_PIPE if memobj is
created with clCreatePipe.

CL_MEM_FLAGS cl_mem_flags Return the flags argument value specified

Last Revision Date: 3/18/14 Page 162

when memobj is created with
clCreateBuffer,
clCreateSubBuffer,
clCreateImage or
clCreatePipe.

If memobj is a sub-buffer the memory
access qualifiers inherited from parent
buffer is also returned.

CL_MEM_SIZE size_t Return actual size of the data store
associated with memobj in bytes.

CL_MEM_HOST_PTR void * If memobj is created with
clCreateBuffer or clCreateImage and
CL_MEM_USE_HOST_PTR is specified
in mem_flags, return the host_ptr
argument value specified when memobj
is created. Otherwise a NULL value is
returned.

If memobj is created with
clCreateSubBuffer, return the host_ptr
+ origin value specified when memobj is
created. host_ptr is the argument value
specified to clCreateBuffer and
CL_MEM_USE_HOST_PTR is specified
in mem_flags for memory object from
which memobj is created. Otherwise a
NULL value is returned.

CL_MEM_MAP_COUNT22 cl_uint Map count.

CL_MEM_REFERENCE_
COUNT23

cl_uint Return memobj reference count.

CL_MEM_CONTEXT cl_context Return context specified when memory
object is created. If memobj is created
using clCreateSubBuffer, the context
associated with the memory object
specified as the buffer argument to
clCreateSubBuffer is returned.

CL_MEM_ASSOCIATED_
MEMOBJECT

cl_mem Return memory object from which
memobj is created.

This returns the memory object specified

22 The map count returned should be considered immediately stale. It is unsuitable for general use in applications.
This feature is provided for debugging.
23 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 3/18/14 Page 163

as buffer argument to
clCreateSubBuffer if memobj is a sub-
buffer object created using
clCreateSubBuffer.

This returns the mem_object specified in
cl_image_desc if memobj is an image
object.

Otherwise a NULL value is returned.

CL_MEM_OFFSET size_t Return offset if memobj is a sub-buffer
object created using clCreateSubBuffer.

This return 0 if memobj is not a sub-
buffer object.

CL_MEM_USES_SVM_
POINTER

cl_bool Return CL_TRUE if memobj is a buffer
object that was created with
CL_MEM_USE_HOST_PTR or is a sub-
buffer object of a buffer object that was
created with CL_MEM_USE_HOST_PTR
and the host_ptr specified when the
buffer object was created is a SVM
pointer; otherwise returns CL_FALSE.

Table 5.12 List of supported param_names by clGetMemObjectInfo

Last Revision Date: 3/18/14 Page 164

5.6 Shared Virtual Memory

OpenCL 2.0 adds support for shared virtual memory (a.k.a. SVM). SVM allows the host and
kernels executing on devices to directly share complex, pointer-containing data structures such
as trees and linked lists. It also eliminates the need to marshal data between the host and devices.
As a result, SVM substantially simplifies OpenCL programming and may improve performance.

5.6.1 SVM sharing granularity: coarse- and fine- grained
sharing

OpenCL maintains memory consistency in a coarse-grained fashion in regions of buffers. We
call this coarse-grained sharing. Many platforms such as those with integrated CPU-GPU
processors and ones using the SVM-related PCI-SIG IOMMU services can do better, and can
support sharing at a granularity smaller than a buffer. We call this fine-grained sharing. OpenCL
2.0 requires that the host and all OpenCL 2.0 devices support coarse-grained sharing at a
minimum.

 Coarse-grained sharing: Coarse-grain sharing may be used for memory and virtual
pointer sharing between multiple devices as well as between the host and one or more
devices. The shared memory region is a memory buffer allocated using clSVMAlloc.
Memory consistency is guaranteed at synchronization points and the host can use calls to
clEnqueueSVMMap and clEnqueueSVMUnmap or create a cl_mem buffer object
using the SVM pointer and use OpenCL’s existing host API functions
clEnqueueMapBuffer and clEnqueueUnmapMemObject to update regions of the
buffer. What coarse-grain buffer SVM adds to OpenCL’s current buffer support is the
ability to share virtual memory pointers. The coarse-grain buffer SVM provides a
memory consistency model similar to the global memory consistency model described in
sections 3.3.1 and 3.4.3 of the OpenCL 1.2 specification. This memory consistency
applies to the regions of buffers being shared in a coarse-grained fashion. It is enforced at
the synchronization points between commands enqueued to command queues in a single
context.

 Fine-grained sharing: Shared virtual memory where memory consistency is maintained
at a granularity smaller than a buffer. How fine-grained SVM is used depends on
whether the device supports SVM atomic operations.

o If SVM atomic operations are supported, they provide memory consistency for

loads and stores by the host and kernels executing on devices supporting SVM.
This means that the host and devices can concurrently read and update the same
memory. The consistency provided by SVM atomics is in addition to the
consistency provided at synchronization points. There is no need for explicit calls
to clEnqueueSVMMap and clEnqueueSVMUnmap or clEnqueueMapBuffer
and clEnqueueUnmapMemObject on a cl_mem buffer object created using the

Last Revision Date: 3/18/14 Page 165

SVM pointer.

o If SVM atomic operations are not supported, the host and devices can
concurrently read the same memory locations and can concurrently update non-
overlapping memory regions, but attempts to update the same memory locations
are undefined. Memory consistency is guaranteed at synchronization points
without the need for explicit calls to to clEnqueueSVMMap and
clEnqueueSVMUnmap or clEnqueueMapBuffer and
clEnqueueUnmapMemObject on a cl_mem buffer object created using the
SVM pointer.

There are two kinds of fine-grain sharing support. Devices may support either fine-grain
buffer sharing or fine-grain system sharing.

o Fine-grain buffer sharing provides fine-grain SVM only within buffers and is an
extension of coarse-grain sharing. To support fine-grain buffer sharing in an
OpenCL context, all devices in the context must support
CL_DEVICE_SVM_FINE_GRAIN_BUFFER.

o Fine-grain system sharing enables fine-grain sharing of the host’s entire virtual
memory, including memory regions allocated by the system malloc API.
OpenCL buffer objects are unnecessary and programmers can pass pointers
allocated using malloc to OpenCL kernels.

As an illustration of fine-grain SVM using SVM atomic operations to maintain memory
consistency, consider the following example. The host and a set of devices can simultaneously
access and update a shared work-queue data structure holding work-items to be done. The host
can use atomic operations to insert new work-items into the queue at the same time as the
devices using similar atomic operations to remove work-items for processing.

It is the programmer’s responsibility to ensure that no host code or executing kernels attempt to
access a shared memory region after that memory is freed. We require the SVM implementation
to work with either 32- or 64- bit host applications subject to the following requirement: the
address space size must be the same for the host and all OpenCL devices in the context.

The function

 void * clSVMAlloc (cl_context context,
 cl_svm_mem_flags flags,
 size_t size,

unsigned int alignment)

allocates a shared virtual memory buffer (referred to as a SVM buffer) that can be shared by the
host and all devices in an OpenCL context that support shared virtual memory.

context is a valid OpenCL context used to create the SVM buffer.

Last Revision Date: 3/18/14 Page 166

flags is a bit-field that is used to specify allocation and usage information. Table 5.13 describes
the possible values for flags.

cl_svm_mem_flags Description
CL_MEM_READ_WRITE This flag specifies that the SVM buffer will be read

and written by a kernel. This is the default.

CL_MEM_WRITE_ONLY This flag specifies that the SVM buffer will be written
but not read by a kernel.

Reading from a SVM buffer created with
CL_MEM_WRITE_ONLY inside a kernel is undefined.

CL_MEM_READ_WRITE and
CL_MEM_WRITE_ONLY are mutually exclusive.

CL_MEM_READ_ONLY This flag specifies that the SVM buffer object is a
read-only memory object when used inside a kernel.

Writing to a SVM buffer created with
CL_MEM_READ_ONLY inside a kernel is undefined.

CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY
and CL_MEM_READ_ONLY are mutually exclusive.

CL_MEM_SVM_FINE_GRAIN_
BUFFER

This specifies that the application wants the OpenCL
implementation to do a fine-grained allocation.

CL_MEM_SVM_ATOMICS

This flag is valid only if
CL_MEM_SVM_FINE_GRAIN_BUFFER is specified in
flags. It is used to indicate that SVM atomic
operations can control visibility of memory accesses
in this SVM buffer.

 Table 5.13 List of supported cl_svm_mem_flags values

If CL_MEM_SVM_FINE_GRAIN_BUFFER is not specified, the buffer can be created as a coarse
grained SVM allocation. Similarly, if CL_MEM_SVM_ATOMICS is not specified, the buffer can
be created without support for the OpenCL 2.0 SVM atomic operations (refer to section 6.13.11
of the OpenCL C 2.0 specification).

size is the size in bytes of the SVM buffer to be allocated.

alignment is the minimum alignment in bytes that is required for the newly created buffer’s
memory region. It must be a power of two up to the largest data type supported by the OpenCL
device. For the full profile, the largest data type is long16. For the embedded profile, it is
long16 if the device supports 64-bit integers; otherwise it is int16. If alignment is 0, a

Last Revision Date: 3/18/14 Page 167

default alignment will be used that is equal to the size of largest data type supported by the
OpenCL implementation.

clSVMAlloc returns a valid non-NULL shared virtual memory address if the SVM buffer is
successfully allocated. Otherwise, like malloc, it returns a NULL pointer value. clSVMAlloc
will fail if

 context is not a valid context.

 flags does not contain CL_MEM_SVM_FINE_GRAIN_BUFFER but does contain
CL_MEM_SVM_ATOMICS.

 Values specified in flags do not follow rules described for supported values in table 5.13.

 CL_MEM_SVM_FINE_GRAIN_BUFFER or CL_MEM_SVM_ATOMICS is specified in

flags and these are not supported by at least one device in context.

 The values specified in flags are not valid i.e. don’t match those defined in table 5.13.

 size is 0 or > CL_DEVICE_MAX_MEM_ALLOC_SIZE value for any device in context.

 alignment is not a power of two or the OpenCL implementation cannot support the
specified alignment for at least one device in context.

 There was a failure to allocate resources.

Calling clSVMAlloc does not itself provide consistency for the shared memory region. When
the host can’t use the SVM atomic operations, it must rely on OpenCL’s guaranteed memory
consistency at synchronization points. To initialize a buffer to be shared with a kernel, the host
can create the buffer and use the resulting virtual memory pointer to initialize the buffer’s
contents.

For SVM to be used efficiently, the host and any devices sharing a buffer containing virtual
memory pointers should have the same endianness. If the context passed to clSVMAlloc has
devices with mixed endianness and the OpenCL implementation is unable to implement SVM
because of that mixed endianness, clSVMAlloc will fail and return NULL.

Although SVM is generally not supported for image objects, clCreateImage may create an
image from a buffer (a 1D image from a buffer or a 2D image from buffer) if the buffer specified
in its image description parameter is a SVM buffer. Such images have a linear memory
representation so their memory can be shared using SVM. However, fine grained sharing and
atomics are not supported for image reads and writes in a kernel.

If clCreateBuffer is called with a pointer returned by clSVMAlloc as its host_ptr argument, and
CL_MEM_USE_HOST_PTR is set in its flags argument, clCreateBuffer will succeed and return a

Last Revision Date: 3/18/14 Page 168

valid non-zero buffer object as long as the size argument to clCreateBuffer is no larger than the
size argument passed in the original clSVMAlloc call. The new buffer object returned has the
shared memory as the underlying storage. Locations in the buffer’s underlying shared memory
can be operated on using, e.g., atomic operations if the device supports them.

The function

 void clSVMFree (cl_context context,
 void * svm_pointer)

frees a shared virtual memory buffer allocated using clSVMAlloc.

context is a valid OpenCL context used to create the SVM buffer.

svm_pointer must be the value returned by a call to clSVMAlloc. If a NULL pointer is passed in
svm_pointer, no action occurs.

Note that clSVMFree does not wait for previously enqueued commands that may be using
svm_pointer to finish before freeing svm_pointer. It is the responsibility of the application to
make sure that enqueued commands that use svm_pointer have finished before freeing
svm_pointer. This can be done by enqueuing a blocking operation such as clFinish,
clWaitForEvents, clEnqueueReadBuffer or by registering a callback with the events
associated with enqueued commands and when the last enqueued comamnd has finished freeing
svm_pointer.

The behavior of using svm_pointer after it has been freed is undefined. In addition, if a buffer
object is created using clCreateBuffer with svm_pointer, the buffer object must first be released
before the svm_pointer is freed.

The clEnqueueSVMFree API can also be used to enqueue a callback to free the shared virtual
memory buffer allocated using clSVMAlloc or a shared system memory pointer.

Last Revision Date: 3/18/14 Page 169

The function

 cl_int clEnqueueSVMFree (cl_command_queue command_queue,
 cl_uint num_svm_pointers,
 void *svm_pointers[],
 void (CL_CALLBACK *pfn_free_func)(
 cl_command_queue queue,
 cl_uint num_svm_pointers,
 void *svm_pointers[],
 void *user_data),
 void *user_data,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to free the shared virtual memory allocated using clSVMAlloc or a shared
system memory pointer.

command_queue is a valid host command-queue.

svm_pointers and num_svm_pointers specify shared virtual memory pointers to be freed. Each
pointer in svm_pointers that was allocated using clSVMAlloc must have been allocated from the
same context from which command_queue was created. The memory associated with
svm_pointers can be reused or freed after the function returns.

pfn_free_func specifies the callback function to be called to free the SVM pointers.
pfn_free_func takes four arguments: queue which is the command queue in which
clEnqueueSVMFree was enqueued, the count and list of SVM pointers to free and user_data
which is a pointer to user specified data. If pfn_free_func is NULL, all pointers specified in
svm_pointers must be allocated using clSVMAlloc and the OpenCL implementation will free
these SVM pointers. pfn_free_func must be a valid callback function if any SVM pointer to be
freed is a shared system memory pointer i.e. not allocated using clSVMAlloc. If pfn_free_func
is a valid callback function, the OpenCL implementation will call pfn_free_func to free all the
SVM pointers specified in svm_pointers.

user_data will be passed as the user_data argument when pfn_free_func is called. user_data can
be NULL.

event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueSVMFree can be executed. If event_wait_list is NULL, then clEnqueueSVMFree
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in

Last Revision Date: 3/18/14 Page 170

event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

clEnqueueSVMFree returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_VALUE if num_svm_pointers is 0 or if svm_pointers is NULL or if any of

the pointers specified in svm_pointers array is NULL.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The following function enqueues a command to do a memcpy operation.

 cl_int clEnqueueSVMMemcpy (cl_command_queue command_queue,

 cl_bool blocking_copy,
 void *dst_ptr,
 const void *src_ptr,

 size_t size,
 cl_uint num_events_in_wait_list,

 const cl_event *event_wait_list,
 cl_event *event)

command_queue refers to the host command-queue in which the read / write command will be
queued. command_queue and buffer must be created with the same OpenCL context.

blocking_copy indicates if the copy operation is blocking or non-blocking.

If blocking_copy is CL_TRUE i.e. the copy command is blocking, clEnqueueSVMMemcpy does
not return until the buffer data has been copied into memory pointed to by dst_ptr.

Last Revision Date: 3/18/14 Page 171

If blocking_copy is CL_FALSE i.e. the copy command is non-blocking,
clEnqueueSVMMemcpy queues a non-blocking copy command and returns. The contents of
the buffer that dst_ptr point to cannot be used until the copy command has completed. The event
argument returns an event object which can be used to query the execution status of the read
command. When the copy command has completed, the contents of the buffer that dst_ptr
points to can be used by the application.

size is the size in bytes of data being copied.

dst_ptr is the pointer to a memory region where data is copied to.

src_ptr is the pointer to a memory region where data is copied from.

If dst_ptr and/or src_ptr are allocated using clSVMAlloc then they must be allocated from the
same context from which command_queue was created. Otherwise the behavior is undefined.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular read / write command and can be used
to query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. If the event_wait_list and the event arguments are not
NULL, the event argument should not refer to an element of the event_wait_list array.

clEnqueueSVMMemcpy returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and events in

event_wait_list are not the same.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

Last Revision Date: 3/18/14 Page 172

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the copy operation is
blocking and the execution status of any of the events in event_wait_list is a negative
integer value.

 CL_INVALID_VALUE if dst_ptr or src_ptr are NULL.

 CL_INVALID_VALUE if size is 0.

 CL_MEM_COPY_OVERLAP if the values specified for dst_ptr, src_ptr and size result in

an overlapping copy.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clEnqueueSVMMemFill (cl_command_queue command_queue,
 void *svm_ptr,
 const void *pattern,
 size_t pattern_size,
 size_t size,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to fill a region in memory with a pattern of a given pattern size.

command_queue refers to the host command-queue in which the fill command will be queued.
The OpenCL context associated with command_queue and SVM pointer referred to by svm_ptr
must be the same.

svm_ptr is a pointer to a memory region that will be filled with pattern. It must be aligned to
pattern_size bytes. If svm_ptr is allocated using clSVMAlloc then it must be allocated from the
same context from which command_queue was created. Otherwise the behavior is undefined.

pattern is a pointer to the data pattern of size pattern_size in bytes. pattern will be used to fill a
region in buffer starting at svm_ptr and is size bytes in size. The data pattern must be a scalar or
vector integer or floating-point data type supported by OpenCL as described in sections 6.1.1 and
6.1.2. For example, if region pointed to by svm_ptr is to be filled with a pattern of float4
values, then pattern will be a pointer to a cl_float4 value and pattern_size will be
sizeof(cl_float4). The maximum value of pattern_size is the size of the largest integer

Last Revision Date: 3/18/14 Page 173

or floating-point vector data type supported by the OpenCL device. The memory associated with
pattern can be reused or freed after the function returns.

size is the size in bytes of region being filled starting with svm_ptr and must be a multiple of
pattern_size.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueSVMMemFill returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and events in

event_wait_list are not the same.

 CL_INVALID_VALUE if svm_ptr is NULL.

 CL_INVALID_VALUE if svm_ptr is not aligned to pattern_size bytes.

 CL_INVALID_VALUE if pattern is NULL or if pattern_size is 0 or if pattern_size is not
one of {1, 2, 4, 8, 16, 32, 64, 128}.

 CL_INVALID_VALUE if size is 0 or is not a multiple of pattern_size.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

Last Revision Date: 3/18/14 Page 174

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clEnqueueSVMMap (cl_command_queue command_queue,
 cl_bool blocking_map,

 cl_map_flags map_flags,
 void *svm_ptr,
 size_t size,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command that will allow the host to update a region of a SVM buffer. Note that
since we are enqueuing a command with a SVM buffer, the region is already mapped in the host
address space.

command_queue must be a valid host command-queue.

blocking_map indicates if the map operation is blocking or non-blocking.

If blocking_map is CL_TRUE, clEnqueueSVMMap does not return until the application can
access the contents of the SVM region specified by svm_ptr and size on the host.

If blocking_map is CL_FALSE i.e. map operation is non-blocking, the region specified by
svm_ptr and size cannot be used until the map command has completed. The event argument
returns an event object which can be used to query the execution status of the map command.
When the map command is completed, the application can access the contents of the region
specified by svm_ptr and size.

map_flags is a bit-field and is described in table 5.5.

svm_ptr and size are a pointer to a memory region and size in bytes that will be updated by the
host. If svm_ptr is allocated using clSVMAlloc then it must be allocated from the same context
from which command_queue was created. Otherwise the behavior is undefined.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in

Last Revision Date: 3/18/14 Page 175

event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueSVMMap returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if context associated with command_queue and events in

event_wait_list are not the same.

 CL_INVALID_VALUE if svm_ptr is NULL.

 CL_INVALID_VALUE if size is 0 or if values specified in map_flags are not valid.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is

blocking and the execution status of any of the events in event_wait_list is a negative
integer value.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clEnqueueSVMUnmap (cl_command_queue command_queue,

 void *svm_ptr,
 cl_uint num_events_in_wait_list,

 const cl_event *event_wait_list,
 cl_event *event)

Last Revision Date: 3/18/14 Page 176

enqueues a command to indicate that the host has completed updating the region given by
svm_ptr and which was specified in a previous call to clEnqueueSVMMap.

command_queue must be a valid host command-queue.

svm_ptr is a pointer that was specified in a previous call to clEnqueueSVMMap. If svm_ptr is
allocated using clSVMAlloc then it must be allocated from the same context from which
command_queue was created. Otherwise the behavior is undefined.

event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueSVMUnmap can be executed. If event_wait_list is NULL, then clEnqueueUnmap
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueSVMUnmap returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if context associated with command_queue and events in

event_wait_list are not the same.

 CL_INVALID_VALUE if svm_ptr is NULL.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or if event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 177

clEnqueueSVMMap, and clEnqueueSVMUnmap act as synchronization points for the region
of the SVM buffer specified in these calls.

NOTE:

If a coarse-grained SVM buffer is currently mapped for writing, the application must ensure that
the SVM buffer is unmapped before any enqueued kernels or commands that read from or write
to this SVM buffer or any of its associated cl_mem buffer objects begin execution; otherwise the
behavior is undefined.

If a coarse-grained SVM buffer is currently mapped for reading, the application must ensure that
the SVM buffer is unmapped before any enqueued kernels or commands that write to this
memory object or any of its associated cl_mem buffer objects begin execution; otherwise the
behavior is undefined.

A SVM buffer is considered as mapped if there are one or more active mappings for the SVM
buffer irrespective of whether the mapped regions span the entire SVM buffer.

The above note does not apply to fine-grained SVM buffers (fine-grained buffers allocated using
clSVMAlloc or fine-grained system allocations).

5.6.2 Memory consistency for SVM allocations

To ensure memory consistency in SVM allocations, the program can rely on the guaranteed
memory consistency at synchronization points. This consistency support already exists in
OpenCL 1.x and can be used for coarse-grained SVM allocations or for fine-grained buffer SVM
allocations; what SVM adds is the ability to share pointers between the host and all SVM
devices.

In addition, sub-buffers can also be used to ensure that each device gets a consistent view of a
SVM buffer’s memory when it is shared by multiple devices. For example, assume that two
devices share a SVM pointer. The host can create a cl_mem buffer object using clCreateBuffer
with CL_MEM_USE_HOST_PTR and host_ptr set to the SVM pointer and then create two disjoint
sub-buffers with starting virtual addresses sb1_ptr and sb2_ptr. These pointers (sb1_ptr and
sb2_ptr) can be passed to kernels executing on the two devices. clEnqueueMapBuffer and
clEnqueueUnmapMemObject and the existing access rules for memory objects (in section
5.5.3) can be used to ensure consistency for buffer regions (sb1_ptr and sb2_ptr) read and
written by these kernels.

When the host and devices are able to use SVM atomic operations (i.e.
CL_DEVICE_SVM_ATOMICS is set in CL_DEVICE_SVM_CAPABILITIES), these atomic
operations can be used to provide memory consistency at a fine grain in a shared memory region.
The effect of these operations is visible to the host and all devices with which that memory is
shared.

Last Revision Date: 3/18/14 Page 178

Last Revision Date: 3/18/14 Page 179

5.7 Sampler Objects

A sampler object describes how to sample an image when the image is read in the kernel. The
built-in functions to read from an image in a kernel take a sampler as an argument. The sampler
arguments to the image read function can be sampler objects created using OpenCL functions
and passed as argument values to the kernel or can be samplers declared inside a kernel. In this
section we discuss how sampler objects are created using OpenCL functions.

5.7.1 Creating Sampler Objects

The function

 cl_sampler clCreateSamplerWithProperties (cl_context context,
 const cl_sampler_properties *sampler_properties,
 cl_int *errcode_ret)

creates a sampler object.

context must be a valid OpenCL context.

sampler_properties specifies a list of sampler property names and their corresponding values.
Each sampler property name is immediately followed by the corresponding desired value. The
list is terminated with 0. The list of supported properties is described in the table below. If a
supported property and its value is not specified in sampler_properties, its default value will be
used. sampler_properties can be NULL in which case the default values for supported sampler
properties will be used.

cl_sampler_properties
enum

Property
Value

Description

CL_SAMPLER_NORMALIZED_
COORDS

cl_bool A boolean value that specifies
whether the image coordinates
specified are normalized or not.

The default value (i.e. the value used
if this property is not specified in
sampler_properties) is CL_TRUE.

CL_SAMPLER_ADDRESSING_
MODE

cl_addressing_
mode

Specifies how out-of-range image
coordinates are handled when reading
from an image.

Valid values are:

CL_ADDRESS_MIRRORED_REPEAT

Last Revision Date: 3/18/14 Page 180

CL_ADDRESS_REPEAT
CL_ADDRESS_CLAMP_TO_EDGE
CL_ADDRESS_CLAMP
CL_ADDRESS_NONE

The default is
CL_ADDRESS_CLAMP.

CL_SAMPLER_FILTER_MODE cl_filter_mode Specifies the type of filter that must
be applied when reading an image.
Valid values are:

CL_FILTER_NEAREST
CL_FILTER_LINEAR

The default value is
CL_FILTER_NEAREST.

 Table 5.14 clGetSamplerInfo parameter queries.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateSamplerWithProperties returns a valid non-zero sampler object and errcode_ret is set
to CL_SUCCESS if the sampler object is created successfully. Otherwise, it returns a NULL value
with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if the property name in sampler_properties is not a supported
property name, if the value specified for a supported property name is not valid, or if the
same property name is specified more than once.

 CL_INVALID_OPERATION if images are not supported by any device associated with

context (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clRetainSampler (cl_sampler sampler)

Last Revision Date: 3/18/14 Page 181

increments the sampler reference count. clCreateSamplerWithProperties performs an implicit
retain. clRetainSampler returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_SAMPLER if sampler is not a valid sampler object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clReleaseSampler (cl_sampler sampler)

decrements the sampler reference count. The sampler object is deleted after the reference count
becomes zero and commands queued for execution on a command-queue(s) that use sampler
have finished. clReleaseSampler returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_SAMPLER if sampler is not a valid sampler object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

5.7.2 Sampler Object Queries

The function

 cl_int clGetSamplerInfo (cl_sampler sampler,
 cl_sampler_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns information about the sampler object.

sampler specifies the sampler being queried.

Last Revision Date: 3/18/14 Page 182

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetSamplerInfo is described in table 5.15.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.15.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_sampler_info Return Type Info. returned in param_value
CL_SAMPLER_REFERENCE_
COUNT24

cl_uint Return the sampler reference count.

CL_SAMPLER_CONTEXT cl_context Return the context specified when the
sampler is created.

CL_SAMPLER_NORMALIZED_
COORDS

cl_bool Return the normalized coords value
associated with sampler.

CL_SAMPLER_ADDRESSING_
MODE

cl_addressing_
mode

Return the addressing mode value
associated with sampler.

CL_SAMPLER_FILTER_MODE cl_filter_mode Return the filter mode value
associated with sampler.

 Table 5.15 clGetSamplerInfo parameter queries.

clGetSamplerInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.15 and param_value is
not NULL.

 CL_INVALID_SAMPLER if sampler is a not a valid sampler object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

24 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 3/18/14 Page 183

5.8 Program Objects

An OpenCL program consists of a set of kernels that are identified as functions declared with
the __kernel qualifier in the program source. OpenCL programs may also contain auxiliary
functions and constant data that can be used by __kernel functions. The program executable
can be generated online or offline by the OpenCL compiler for the appropriate target device(s).

A program object encapsulates the following information:

 An associated context.
 A program source or binary.
 The latest successfully built program executable, library or compiled binary, the list of

devices for which the program executable, library or compiled binary is built, the build
options used and a build log.

 The number of kernel objects currently attached.

5.8.1 Creating Program Objects

The function

 cl_program clCreateProgramWithSource (cl_context context,

 cl_uint count,
 const char **strings,
 const size_t *lengths,
 cl_int *errcode_ret)

creates a program object for a context, and loads the source code specified by the text strings in
the strings array into the program object. The devices associated with the program object are the
devices associated with context. The source code specified by strings is either an OpenCL C
program source, header or implementation-defined source for custom devices that support an
online compiler.

context must be a valid OpenCL context.

strings is an array of count pointers to optionally null-terminated character strings that make up
the source code.

The lengths argument is an array with the number of chars in each string (the string length). If
an element in lengths is zero, its accompanying string is null-terminated. If lengths is NULL, all
strings in the strings argument are considered null-terminated. Any length value passed in that is
greater than zero excludes the null terminator in its count.

Last Revision Date: 3/18/14 Page 184

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateProgramWithSource returns a valid non-zero program object and errcode_ret is set to
CL_SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value
with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if count is zero or if strings or any entry in strings is NULL.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_program clCreateProgramWithBinary (cl_context context,
 cl_uint num_devices,
 const cl_device_id *device_list,
 const size_t *lengths,

 const unsigned char **binaries,
 cl_int *binary_status,

 cl_int *errcode_ret)

creates a program object for a context, and loads the binary bits specified by binary into the
program object.

context must be a valid OpenCL context.

device_list is a pointer to a list of devices that are in context. device_list must be a non-NULL
value. The binaries are loaded for devices specified in this list.

num_devices is the number of devices listed in device_list.

The devices associated with the program object will be the list of devices specified by
device_list. The list of devices specified by device_list must be devices associated with context.

lengths is an array of the size in bytes of the program binaries to be loaded for devices specified
by device_list.

binaries is an array of pointers to program binaries to be loaded for devices specified by
device_list. For each device given by device_list[i], the pointer to the program binary for that

Last Revision Date: 3/18/14 Page 185

device is given by binaries[i] and the length of this corresponding binary is given by lengths[i].
lengths[i] cannot be zero and binaries[i] cannot be a NULL pointer.

The program binaries specified by binaries contain the bits that describe one of the following:

 a program executable to be run on the device(s) associated with context,

 a compiled program for device(s) associated with context, or

 a library of compiled programs for device(s) associated with context.

The program binary can consist of either or both:

 Device-specific code and/or,

 Implementation-specific intermediate representation (IR) which will be converted to the
device-specific code.

binary_status returns whether the program binary for each device specified in device_list was
loaded successfully or not. It is an array of num_devices entries and returns CL_SUCCESS in
binary_status[i] if binary was successfully loaded for device specified by device_list[i];
otherwise returns CL_INVALID_VALUE if lengths[i] is zero or if binaries[i] is a NULL value or
CL_INVALID_BINARY in binary_status[i] if program binary is not a valid binary for the
specified device. If binary_status is NULL, it is ignored.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateProgramWithBinary returns a valid non-zero program object and errcode_ret is set to
CL_SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value
with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if device_list is NULL or num_devices is zero.

 CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of
devices associated with context.

 CL_INVALID_VALUE if lengths or binaries are NULL or if any entry in lengths[i] is zero

or binaries[i] is NULL.

 CL_INVALID_BINARY if an invalid program binary was encountered for any device.
binary_status will return specific status for each device.

Last Revision Date: 3/18/14 Page 186

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

OpenCL allows applications to create a program object using the program source or binary and
build appropriate program executables. This can be very useful as it allows applications to load
program source and then compile and link to generate a program executable online on its first
instance for appropriate OpenCL devices in the system. These executables can now be queried
and cached by the application. Future instances of the application launching will no longer need
to compile and link the program executables. The cached executables can be read and loaded by
the application, which can help significantly reduce the application initialization time.

The function

 cl_program clCreateProgramWithBuiltInKernels (cl_context context,
 cl_uint num_devices,
 const cl_device_id *device_list,

 const char *kernel_names,
 cl_int *errcode_ret)

creates a program object for a context, and loads the information related to the built-in kernels
into a program object.

context must be a valid OpenCL context.

num_devices is the number of devices listed in device_list.

device_list is a pointer to a list of devices that are in context. device_list must be a non-NULL
value. The built-in kernels are loaded for devices specified in this list.

The devices associated with the program object will be the list of devices specified by
device_list. The list of devices specified by device_list must be devices associated with context.

kernel_names is a semi-colon separated list of built-in kernel names.

clCreateProgramWithBuiltInKernels returns a valid non-zero program object and errcode_ret
is set to CL_SUCCESS if the program object is created successfully. Otherwise, it returns a
NULL value with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if device_list is NULL or num_devices is zero.

Last Revision Date: 3/18/14 Page 187

 CL_INVALID_VALUE if kernel_names is NULL or kernel_names contains a kernel
name that is not supported by any of the devices in device_list.

 CL_INVALID_DEVICE if devices listed in device_list are not in the list of devices

associated with context.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clRetainProgram (cl_program program)

increments the program reference count. clCreateProgram does an implicit retain.
clRetainProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clReleaseProgram (cl_program program)

decrements the program reference count. The program object is deleted after all kernel objects
associated with program have been deleted and the program reference count becomes zero.
clReleaseProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 188

5.8.2 Building Program Executables

The function

 cl_int clBuildProgram (cl_program program,
 cl_uint num_devices,
 const cl_device_id *device_list,

 const char *options,
 void (CL_CALLBACK *pfn_notify)(cl_program program,

 void *user_data),
 void *user_data)

builds (compiles & links) a program executable from the program source or binary for all the
devices or a specific device(s) in the OpenCL context associated with program. OpenCL allows
program executables to be built using the source or the binary. clBuildProgram must be called
for program created using either clCreateProgramWithSource or
clCreateProgramWithBinary to build the program executable for one or more devices
associated with program. If program is created with clCreateProgramWithBinary, then the
program binary must be an executable binary (not a compiled binary or library).

The executable binary can be queried using clGetProgramInfo(program,
CL_PROGRAM_BINARIES, …) and can be specified to clCreateProgramWithBinary to create
a new program object.

program is the program object.

device_list is a pointer to a list of devices associated with program. If device_list is a NULL
value, the program executable is built for all devices associated with program for which a source
or binary has been loaded. If device_list is a non-NULL value, the program executable is built
for devices specified in this list for which a source or binary has been loaded.

num_devices is the number of devices listed in device_list.

options is a pointer to a null-terminated string of characters that describes the build options to be
used for building the program executable. The list of supported options is described in section
5.8.4.

pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully). If pfn_notify is not NULL, clBuildProgram does
not need to wait for the build to complete and can return immediately once the build operation
can begin. The build operation can begin if the context, program whose sources are being
compiled and linked, list of devices and build options specified are all valid and appropriate host
and device resources needed to perform the build are available. If pfn_notify is NULL,
clBuildProgram does not return until the build has completed. This callback function may be

Last Revision Date: 3/18/14 Page 189

called asynchronously by the OpenCL implementation. It is the application’s responsibility to
ensure that the callback function is thread-safe.

user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

clBuildProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if
device_list is not NULL and num_devices is zero.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of

devices associated with program

 CL_INVALID_BINARY if program is created with clCreateProgramWithBinary and
devices listed in device_list do not have a valid program binary loaded.

 CL_INVALID_BUILD_OPTIONS if the build options specified by options are invalid.

 CL_INVALID_OPERATION if the build of a program executable for any of the devices
listed in device_list by a previous call to clBuildProgram for program has not
completed.

 CL_COMPILER_NOT_AVAILABLE if program is created with

clCreateProgramWithSource and a compiler is not available i.e.
CL_DEVICE_COMPILER_AVAILABLE specified in table 4.3 is set to CL_FALSE.

 CL_BUILD_PROGRAM_FAILURE if there is a failure to build the program executable.

This error will be returned if clBuildProgram does not return until the build has
completed.

 CL_INVALID_OPERATION if there are kernel objects attached to program.

 CL_INVALID_OPERATION if program was not created with

clCreateProgramWithSource or clCreateProgramWithBinary.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 190

5.8.3 Separate Compilation and Linking of Programs

OpenCL programs are compiled and linked to support the following:

 Separate compilation and link stages. Program sources can be compiled to generate a
compiled binary object and linked in a separate stage with other compiled program
objects to the program exectuable.

 Embedded headers. In OpenCL 1.0 and 1.1, the –I build option could be used to specify
the list of directories to be searched for headers files that are included by a program
source(s). OpenCL 1.2 extends this by allowing the header sources to come from
program objects instead of just header files.

 Libraries. The linker can be used to link compiled objects and libraries into a program

executable or to create a library of compiled binaries.

The function

 cl_int clCompileProgram (cl_program program,
 cl_uint num_devices,
 const cl_device_id *device_list,

 const char *options,
 cl_uint num_input_headers,
 const cl_program *input_headers,
 const char **header_include_names,
 void (CL_CALLBACK *pfn_notify)(cl_program program,

 void *user_data),
 void *user_data)

compiles a program’s source for all the devices or a specific device(s) in the OpenCL context
associated with program. The pre-processor runs before the program sources are compiled.
The compiled binary is built for all devices associated with program or the list of devices
specified. The compiled binary can be queried using clGetProgramInfo(program,
CL_PROGRAM_BINARIES, …) and can be specified to clCreateProgramWithBinary to create
a new program object.

program is the program object that is the compilation target.

device_list is a pointer to a list of devices associated with program. If device_list is a NULL
value, the compile is performed for all devices associated with program. If device_list is a non-
NULL value, the compile is performed for devices specified in this list.

num_devices is the number of devices listed in device_list.

Last Revision Date: 3/18/14 Page 191

options is a pointer to a null-terminated string of characters that describes the compilation
options to be used for building the program executable. The list of supported options is as
described in section 5.8.4.

num_input_headers specifies the number of programs that describe headers in the array
referenced by input_headers.

input_headers is an array of program embedded headers created with
clCreateProgramWithSource.

header_include_names is an array that has a one to one correspondence with input_headers.
Each entry in header_include_names specifies the include name used by source in program that
comes from an embedded header. The corresponding entry in input_headers identifies the
program object which contains the header source to be used. The embedded headers are first
searched before the headers in the list of directories specified by the –I compile option (as
described in section 5.8.4.1). If multiple entries in header_include_names refer to the same
header name, the first one encountered will be used.

For example, consider the following program source:

 #include <foo.h>
 #include <mydir/myinc.h>

 __kernel void
 image_filter (int n, int m,
 __constant float *filter_weights,
 __read_only image2d_t src_image,
 __write_only image2d_t dst_image)
 {
 ...
 }

This kernel includes two headers foo.h and mydir/myinc.h. The following describes how these
headers can be passed as embedded headers in program objects:

 cl_program foo_pg = clCreateProgramWithSource(context,
 1, &foo_header_src, NULL, &err);
 cl_program myinc_pg = clCreateProgramWithSource(context,
 1, &myinc_header_src, NULL, &err);

 // let’s assume the program source described above is given
 // by program_A and is loaded via clCreateProgramWithSource

 cl_program input_headers[2] = { foo_pg, myinc_pg };
 char * input_header_names[2] = { “foo.h”, “mydir/myinc.h” };
 clCompileProgram(program_A,

Last Revision Date: 3/18/14 Page 192

 0, NULL, // num_devices & device_list
 NULL, // compile_options
 2, // num_input_headers
 input_headers,
 input_header_names,
 NULL, NULL); // pfn_notify & user_data

pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully). If pfn_notify is not NULL, clCompileProgram
does not need to wait for the compiler to complete and can return immediately once the
compilation can begin. The compilation can begin if the context, program whose sources are
being compiled, list of devices, input headers, programs that describe input headers and compiler
options specified are all valid and appropriate host and device resources needed to perform the
compile are available. If pfn_notify is NULL, clCompileProgram does not return until the
compiler has completed. This callback function may be called asynchronously by the OpenCL
implementation. It is the application’s responsibility to ensure that the callback function is
thread-safe.

user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

clCompileProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if
device_list is not NULL and num_devices is zero.

 CL_INVALID_VALUE if num_input_headers is zero and header_include_names or

input_headers are not NULL or if num_input_headers is not zero and
header_include_names or input_headers are NULL.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of

devices associated with program

 CL_INVALID_COMPILER_OPTIONS if the compiler options specified by options are
invalid.

 CL_INVALID_OPERATION if the compilation or build of a program executable for any of

the devices listed in device_list by a previous call to clCompileProgram or
clBuildProgram for program has not completed.

 CL_COMPILER_NOT_AVAILABLE if a compiler is not available i.e.

Last Revision Date: 3/18/14 Page 193

CL_DEVICE_COMPILER_AVAILABLE specified in table 4.3 is set to CL_FALSE.

 CL_COMPILE_PROGRAM_FAILURE if there is a failure to compile the program source.
This error will be returned if clCompileProgram does not return until the compile has
completed.

 CL_INVALID_OPERATION if there are kernel objects attached to program.

 CL_INVALID_OPERATION if program has no source i.e. it has not been created with

clCreateProgramWithSource.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_program clLinkProgram (cl_context context,

 cl_uint num_devices,
 const cl_device_id *device_list,

 const char *options,
 cl_uint num_input_programs,
 const cl_program *input_programs,
void (CL_CALLBACK *pfn_notify)(cl_program program,

 void *user_data),
 void *user_data,
 cl_int *errcode_ret)

links a set of compiled program objects and libraries for all the devices or a specific device(s) in
the OpenCL context and creates an executable. clLinkProgram creates a new program object
which contains this executable. The executable binary can be queried using
clGetProgramInfo(program, CL_PROGRAM_BINARIES, …) and can be specified to
clCreateProgramWithBinary to create a new program object.

The devices associated with the returned program object will be the list of devices specified by
device_list or if device_list is NULL it will be the list of devices associated with context.

context must be a valid OpenCL context.

device_list is a pointer to a list of devices that are in context. If device_list is a NULL value, the
link is performed for all devices associated with context for which a compiled object is available.
If device_list is a non-NULL value, the link is performed for devices specified in this list for
which a compiled object is available.

Last Revision Date: 3/18/14 Page 194

num_devices is the number of devices listed in device_list.

options is a pointer to a null-terminated string of characters that describes the link options to be
used for building the program executable. The list of supported options is as described in section
5.8.5.

num_input_programs specifies the number of programs in array referenced by input_programs.

input_programs is an array of program objects that are compiled binaries or libraries that are to
be linked to create the program executable. For each device in device_list or if device_list is
NULL the list of devices associated with context, the following cases occur:

 All programs specified by input_programs contain a compiled binary or library for the
device. In this case, a link is performed to generate a program executable for this device.

 None of the programs contain a compiled binary or library for that device. In this case,
no link is performed and there will be no program executable generated for this device.

 All other cases will return a CL_INVALID_OPERATION error.

pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully).

If pfn_notify is not NULL, clLinkProgram does not need to wait for the linker to complete and
can return immediately once the linking operation can begin. Once the linker has completed, the
pfn_notify callback function is called which returns the program object returned by
clLinkProgram. The application can query the link status and log for this program object. This
callback function may be called asynchronously by the OpenCL implementation. It is the
application’s responsibility to ensure that the callback function is thread-safe.

If pfn_notify is NULL, clLinkProgram does not return until the linker has completed.

user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

The linking operation can begin if the context, list of devices, input programs and linker options
specified are all valid and appropriate host and device resources needed to perform the link are
available. If the linking operation can begin, clLinkProgram returns a valid non-zero program
object.

If pfn_notify is NULL, the errcode_ret will be set to CL_SUCCESS if the link operation was
successful and CL_LINK_FAILURE if there is a failure to link the compiled binaries and/or
libraries.

If pfn_notify is not NULL, clLinkProgram does not have to wait until the linker to complete and

Last Revision Date: 3/18/14 Page 195

can return CL_SUCCESS in errcode_ret if the linking operation can begin. The pfn_notify
callback function will return a CL_SUCCESS or CL_LINK_FAILURE if the linking operation was
successful or not.

Otherwise clLinkProgram returns a NULL program object with an appropriate error in
errcode_ret. The application should query the linker status of this program object to check if the
link was successful or not. The list of errors that can be returned are:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if
device_list is not NULL and num_devices is zero.

 CL_INVALID_VALUE if num_input_programs is zero and input_programs is NULL or if

num_input_programs is zero and input_programs is not NULL or if num_input_programs
is not zero and input_programs is NULL.

 CL_INVALID_PROGRAM if programs specified in input_programs are not valid program

objects.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of
devices associated with context

 CL_INVALID_LINKER_OPTIONS if the linker options specified by options are invalid.

 CL_INVALID_OPERATION if the compilation or build of a program executable for any of

the devices listed in device_list by a previous call to clCompileProgram or
clBuildProgram for program has not completed.

 CL_INVALID_OPERATION if the rules for devices containing compiled binaries or

libraries as described in input_programs argument above are not followed.

 CL_LINKER_NOT_AVAILABLE if a linker is not available i.e.
CL_DEVICE_LINKER_AVAILABLE specified in table 4.3 is set to CL_FALSE.

 CL_LINK_PROGRAM_FAILURE if there is a failure to link the compiled binaries and/or

libraries.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 196

5.8.4 Compiler Options

The compiler options are categorized as pre-processor options, options for math intrinsics,
options that control optimization and miscellaneous options. This specification defines a
standard set of options that must be supported by the OpenCL C compiler when building
program executables online or offline. These may be extended by a set of vendor- or platform-
specific options.

5.8.4.1 Preprocessor options

These options control the OpenCL C preprocessor which is run on each program source before
actual compilation.

-D name

Predefine name as a macro, with definition 1.

-D name=definition

The contents of definition are tokenized and processed as if they appeared during
translation phase three in a `#define' directive. In particular, the definition will be
truncated by embedded newline characters.

-D options are processed in the order they are given in the options argument to clBuildProgram
or clCompileProgram.

-I dir

Add the directory dir to the list of directories to be searched for header files.

5.8.4.2 Math Intrinsics Options

These options control compiler behavior regarding floating-point arithmetic. These options trade
off between speed and correctness.

-cl-single-precision-constant

Treat double precision floating-point constant as single precision constant.

-cl-denorms-are-zero

This option controls how single precision and double precision denormalized numbers
are handled. If specified as a build option, the single precision denormalized numbers
may be flushed to zero; double precision denormalized numbers may also be flushed to
zero if the optional extension for double precision is supported. This is intended to be a
performance hint and the OpenCL compiler can choose not to flush denorms to zero if
the device supports single precision (or double precision) denormalized numbers.

Last Revision Date: 3/18/14 Page 197

This option is ignored for single precision numbers if the device does not support single
precision denormalized numbers i.e. CL_FP_DENORM bit is not set in
CL_DEVICE_SINGLE_FP_CONFIG.

This option is ignored for double precision numbers if the device does not support double
precision or if it does support double precision but not double precision denormalized
numbers i.e. CL_FP_DENORM bit is not set in CL_DEVICE_DOUBLE_FP_CONFIG.

This flag only applies for scalar and vector single precision floating-point variables and
computations on these floating-point variables inside a program. It does not apply to
reading from or writing to image objects.

-cl-fp32-correctly-rounded-divide-sqrt

The -cl-fp32-correctly-rounded-divide-sqrt build option to clBuildProgram or
clCompileProgram allows an application to specify that single precision floating-point
divide (x/y and 1/x) and sqrt used in the program source are correctly rounded. If
this build option is not specified, the minimum numerical accuracy of single precision
floating-point divide and sqrt are as defined in section 7.4 of the OpenCL specification.

This build option can only be specified if the
CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT is set in
CL_DEVICE_SINGLE_FP_CONFIG (as defined in table 4.3) for devices that the program
is being build. clBuildProgram or clCompileProgram will fail to compile the program
for a device if the -cl-fp32-correctly-rounded-divide-sqrt option is specified and
CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT is not set for the device.

5.8.4.3 Optimization Options

These options control various sorts of optimizations. Turning on optimization flags makes the
compiler attempt to improve the performance and/or code size at the expense of compilation time
and possibly the ability to debug the program.

-cl-opt-disable
 This option disables all optimizations. The default is optimizations are enabled.

The following options control compiler behavior regarding floating-point arithmetic. These
options trade off between performance and correctness and must be specifically enabled. These
options are not turned on by default since it can result in incorrect output for programs which
depend on an exact implementation of IEEE 754 rules/specifications for math functions.

-cl-mad-enable

Allow a * b + c to be replaced by a mad. The mad computes a * b + c with
reduced accuracy. For example, some OpenCL devices implement mad as truncate the
result of a * b before adding it to c.

Last Revision Date: 3/18/14 Page 198

-cl-no-signed-zeros

Allow optimizations for floating-point arithmetic that ignore the signedness of zero.
IEEE 754 arithmetic specifies the distinct behavior of +0.0 and -0.0 values, which
then prohibits simplification of expressions such as x+0.0 or 0.0*x (even with -cl-
finite-math only). This option implies that the sign of a zero result isn't significant.

-cl-unsafe-math-optimizations

Allow optimizations for floating-point arithmetic that (a) assume that arguments and
results are valid, (b) may violate IEEE 754 standard and (c) may violate the OpenCL
numerical compliance requirements as defined in section 7.4 for single precision and
double precision floating-point, and edge case behavior in section 7.5. This option
includes the -cl-no-signed-zeros and -cl-mad-enable options.

-cl-finite-math-only

Allow optimizations for floating-point arithmetic that assume that arguments and results
are not NaNs or ±∞. This option may violate the OpenCL numerical compliance
requirements defined in section 7.4 for single precision and double precision floating-
point, and edge case behavior in section 7.5.

-cl-fast-relaxed-math

Sets the optimization options -cl-finite-math-only and -cl-unsafe-math-optimizations.
This allows optimizations for floating-point arithmetic that may violate the IEEE 754
standard and the OpenCL numerical compliance requirements defined in in section 7.4
for single precision and double precision floating-point, and edge case behavior in section
7.5. This option also relaxes the precision of commonly used math functions (refer to
table 7.2 defined in section 7.4). This option causes the preprocessor macro
__FAST_RELAXED_MATH__ to be defined in the OpenCL program.

-cl-uniform-work-group-size
This requires that the global work-size be a multiple of the work-group size specified to
clEnqueueNDRangeKernel. Allow optimizations that are made possible by this
restriction.

5.8.4.4 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous
but which are risky or suggest there may have been an error. The following language-
independent options do not enable specific warnings but control the kinds of diagnostics
produced by the OpenCL compiler.

-w
Inhibit all warning messages.

-Werror

Last Revision Date: 3/18/14 Page 199

Make all warnings into errors.

5.8.4.5 Options Controlling the OpenCL C version

The following option controls the version of OpenCL C that the compiler accepts.

-cl-std=
Determine the OpenCL C language version to use. A value for this option must be
provided. Valid values are:

CL1.1 – Support all OpenCL C programs that use the OpenCL C language features
defined in section 6 of the OpenCL 1.1 specification.

CL1.2 – Support all OpenCL C programs that use the OpenCL C language features
defined in section 6 of the OpenCL 1.2 specification.

CL2.0 – Support all OpenCL C programs that use the OpenCL C language features
defined in the OpenCL C 2.0 specification.

Calls to clBuildProgram or clCompileProgram with the -cl-std=CL1.1 option will fail to
compile the program for any devices with CL_DEVICE_OPENCL_C_VERSION = OpenCL C 1.0.
Calls to clBuildProgram or clCompileProgram with the -cl-std=CL1.2 option will fail to
compile the program for any devices with CL_DEVICE_OPENCL_C_VERSION = OpenCL C 1.0
or OpenCL C 1.1.
Calls to clBuildProgram or clCompileProgram with the -cl-std=CL2.0 option will fail to
compile the program for any devices with CL_DEVICE_OPENCL_C_VERSION = OpenCL C 1.0,
OpenCL C 1.1 or OpenCL C 1.2.

If the –cl-std build option is not specified, the highest OpenCL C 1.x language version supported
by each device is used when compiling the program for each device. Applications are required
to specify the –cl-std=CL2.0 option if they want to compile or build their programs with
OpenCL C 2.0.

5.8.4.6 Options for Querying Kernel Argument Information

-cl-kernel-arg-info

This option allows the compiler to store information about the arguments of a kernel(s) in
the program executable. The argument information stored includes the argument name,
its type, the address space and access qualifiers used. Refer to description of
clGetKernelArgInfo on how to query this information.

Last Revision Date: 3/18/14 Page 200

5.8.4.7 Options for debugging your program

The following option is available.

-g
 This option can currently be used to generate additional errors for the built-in functions
 that allow you to enqueue commands on a device (refer to section 6.13.17).

5.8.5 Linker Options

This specification defines a standard set of linker options that must be supported by the OpenCL
C compiler when linking compiled programs online or offline. These linker options are
categorized as library linking options and program linking options. These may be extended by a
set of vendor- or platform-specific options.

5.8.5.1 Library Linking Options

The following options can be specified when creating a library of compiled binaries.

-create-library

Create a library of compiled binaries specified in input_programs argument to
clLinkProgram.

-enable-link-options

Allows the linker to modify the library behavior based on one or more link options
(described in section 5.8.5.2) when this library is linked with a program executable. This
option must be specified with the –create-library option.

5.8.5.2 Program Linking Options

The following options can be specified when linking a program executable.

-cl-denorms-are-zero
-cl-no-signed-zeroes
-cl-unsafe-math-optimizations
-cl-finite-math-only
-cl-fast-relaxed-math

The options are described in section 5.8.4.2 and section 5.8.4.3. The linker may apply these
options to all compiled program objects specified to clLinkProgram. The linker may apply
these options only to libraries which were created with the –enable-link-option.

Last Revision Date: 3/18/14 Page 201

5.8.6 Unloading the OpenCL Compiler

The function

 cl_int clUnloadPlatformCompiler (cl_platform_id platform)

allows the implementation to release the resources allocated by the OpenCL compiler for
platform. This is a hint from the application and does not guarantee that the compiler will not be
used in the future or that the compiler will actually be unloaded by the implementation. Calls to
clBuildProgram, clCompileProgram or clLinkProgram after clUnloadPlatformCompiler
will reload the compiler, if necessary, to build the appropriate program executable.

clUnloadPlatformCompiler returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_PLATFORM if platform is not a valid platform.

Last Revision Date: 3/18/14 Page 202

5.8.7 Program Object Queries

The function

 cl_int clGetProgramInfo (cl_program program,
 cl_program_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns information about the program object.

program specifies the program object being queried.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetProgramInfo is described in table 5.16.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.16.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_program_info Return Type Info. returned in param_value
CL_PROGRAM_REFERENCE_
COUNT25

cl_uint Return the program reference count.

CL_PROGRAM_CONTEXT cl_context Return the context specified when the
program object is created

CL_PROGRAM_NUM_DEVICES cl_uint Return the number of devices associated

with program.
CL_PROGRAM_DEVICES cl_device_id[] Return the list of devices associated with

the program object. This can be the
devices associated with context on which
the program object has been created or can
be a subset of devices that are specified
when a progam object is created using
clCreateProgramWithBinary.

25 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 3/18/14 Page 203

CL_PROGRAM_SOURCE char[] Return the program source code specified

by clCreateProgramWithSource. The
source string returned is a concatenation of
all source strings specified to
clCreateProgramWithSource with a null
terminator. The concatenation strips any
nulls in the original source strings.

If program is created using
clCreateProgramWithBinary or
clCreateProgramWithBuiltinKernels, a
null string or the appropriate program
source code is returned depending on
whether or not the program source code is
stored in the binary.

The actual number of characters that
represents the program source code
including the null terminator is returned in
param_value_size_ret.

CL_PROGRAM_BINARY_SIZES size_t[] Returns an array that contains the size in

bytes of the program binary (could be an
executable binary, compiled binary or
library binary) for each device associated
with program. The size of the array is the
number of devices associated with
program. If a binary is not available for a
device(s), a size of zero is returned.

If program is created using
clCreateProgramWithBuiltinKernels,
the implementation may return zero in any
entries of the returned array.

CL_PROGRAM_BINARIES unsigned
char *[]

Return the program binaries (could be an
executable binary, compiled binary or
library binary) for all devices associated
with program. For each device in
program, the binary returned can be the
binary specified for the device when
program is created with
clCreateProgramWithBinary or it can be
the executable binary generated by
clBuildProgram or clLinkProgram. If
program is created with

Last Revision Date: 3/18/14 Page 204

clCreateProgramWithSource, the binary
returned is the binary generated by
clBuildProgram, clCompileProgram or
clLinkProgram. The bits returned can be
an implementation-specific intermediate
representation (a.k.a. IR) or device specific
executable bits or both. The decision on
which information is returned in the binary
is up to the OpenCL implementation.

param_value points to an array of n
pointers allocated by the caller, where n is
the number of devices associated with
program. The buffer sizes needed to
allocate the memory that these n pointers
refer to can be queried using the
CL_PROGRAM_BINARY_SIZES query as
described in this table.

Each entry in this array is used by the
implementation as the location in memory
where to copy the program binary for a
specific device, if there is a binary
available. To find out which device the
program binary in the array refers to, use
the CL_PROGRAM_DEVICES query to get
the list of devices. There is a one-to-one
correspondence between the array of n
pointers returned by
CL_PROGRAM_BINARIES and array of
devices returned by
CL_PROGRAM_DEVICES.

If an entry value in the array is NULL, the
implementation skips copying the program
binary for the specific device identified by
the array index.

CL_PROGRAM_NUM_KERNELS size_t Returns the number of kernels declared in

program that can be created with
clCreateKernel. This information is only
available after a successful program
executable has been built for at least one
device in the list of devices associated with
program.

CL_PROGRAM_KERNEL_ char[] Returns a semi-colon separated list of

Last Revision Date: 3/18/14 Page 205

NAMES kernel names in program that can be
created with clCreateKernel. This
information is only available after a
successful program executable has been
built for at least one device in the list of
devices associated with program.

 Table 5.16 clGetProgramInfo parameter queries.

clGetProgramInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.16 and param_value is
not NULL.

 CL_INVALID_PROGRAM if program is a not a valid program object.

 CL_INVALID_PROGRAM_EXECUTABLE if param_name is
CL_PROGRAM_NUM_KERNELS or CL_PROGRAM_KERNEL_NAMES and a successful
program executable has not been built for at least one device in the list of devices
associated with program.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clGetProgramBuildInfo (cl_program program,
 cl_device_id device,
 cl_program_build_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns build information for each device in the program object.

program specifies the program object being queried.

device specifies the device for which build information is being queried. device must be a valid
device associated with program.

Last Revision Date: 3/18/14 Page 206

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetProgramBuildInfo is described in table 5.17.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.17.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_program_build_info Return Type Info. returned in param_value
CL_PROGRAM_BUILD_
STATUS

cl_build_status Returns the build, compile or link status,
whichever was performed last on program for
device.

This can be one of the following:

CL_BUILD_NONE. The build status returned if
no clBuildProgram, clCompileProgram or
clLinkProgram has been performed on the
specified program object for device.

CL_BUILD_ERROR. The build status returned
if clBuildProgram, clCompileProgram or
clLinkProgram whichever was performed last
on the specified program object for device
generated an error.

CL_BUILD_SUCCESS. The build status
returned if clBuildProgram,
clCompileProgram or clLinkProgram
whichever was performed last on the specified
program object for device was successful.

CL_BUILD_IN_PROGRESS. The build status
returned if clBuildProgram,
clCompileProgram or clLinkProgram
whichever was performed last on the specified
program object for device has not finished.

CL_PROGRAM_BUILD_
OPTIONS

char[] Return the build, compile or link options
specified by the options argument in
clBuildProgram, clCompileProgram or
clLinkProgram, whichever was performed last

Last Revision Date: 3/18/14 Page 207

on program for device.

If build status of program for device is
CL_BUILD_NONE, an empty string is returned.

CL_PROGRAM_BUILD_
LOG

char[] Return the build or compile log for
clBuildProgram or clCompileProgram
whichever was performed last on program for
device.

If build status of program for device is
CL_BUILD_NONE, an empty string is returned.

CL_PROGRAM_BINARY_
TYPE

cl_program_
binary_type

Return the program binary type for device.
This can be one of the following values:

CL_PROGRAM_BINARY_TYPE_NONE – There
is no binary associated with device.

CL_PROGRAM_BINARY_TYPE_
COMPILED_OBJECT – A compiled binary is
associated with device. This is the case if
program was created using
clCreateProgramWithSource and compiled
using clCompileProgram or a compiled binary
is loaded using clCreateProgramWithBinary.

CL_PROGRAM_BINARY_TYPE_
LIBRARY – A library binary is associated with
device. This is the case if program was created
by clLinkProgram which is called with the –
create-library link option or if a library binary is
loaded using clCreateProgramWithBinary.

CL_PROGRAM_BINARY_TYPE_
EXECUTABLE – An executable binary is
associated with device. This is the case if
program was created by clLinkProgram
without the –create-library link option or
program was created by clBuildProgram or an
executable binary is loaded using
clCreateProgramWithBinary.

CL_PROGRAM_BUILD_
GLOBAL_VARIABLE_
TOTAL_SIZE

size_t The total amount of storage, in bytes, used by
program variables in the global address space.

 Table 5.17 clGetProgramBuildInfo parameter queries.

Last Revision Date: 3/18/14 Page 208

clGetProgramBuildInfo returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_DEVICE if device is not in the list of devices associated with program.

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.17 and param_value is
not NULL.

 CL_INVALID_PROGRAM if program is a not a valid program object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

NOTE:

A program binary (compiled binary, library binary or executable binary) built for a parent device
can be used by all its sub-devices. If a program binary has not been built for a sub-device, the
program binary associated with the parent device will be used.

A program binary for a device specified with clCreateProgramWithBinary or queried using
clGetProgramInfo can be used as the binary for the associated root device, and all sub-devices
created from the root-level device or sub-devices thereof.

Last Revision Date: 3/18/14 Page 209

5.9 Kernel Objects

A kernel is a function declared in a program. A kernel is identified by the __kernel qualifier
applied to any function in a program. A kernel object encapsulates the specific __kernel
function declared in a program and the argument values to be used when executing this
__kernel function.

5.9.1 Creating Kernel Objects

To create a kernel object, use the function

cl_kernel clCreateKernel (cl_program program,
 const char *kernel_name,
 cl_int *errcode_ret)

program is a program object with a successfully built executable.

kernel_name is a function name in the program declared with the __kernel qualifier.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateKernel returns a valid non-zero kernel object and errcode_ret is set to CL_SUCCESS if
the kernel object is created successfully. Otherwise, it returns a NULL value with one of the
following error values returned in errcode_ret:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for
program.

 CL_INVALID_KERNEL_NAME if kernel_name is not found in program.

 CL_INVALID_KERNEL_DEFINITION if the function definition for __kernel function

given by kernel_name such as the number of arguments, the argument types are not the
same for all devices for which the program executable has been built.

 CL_INVALID_VALUE if kernel_name is NULL.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

Last Revision Date: 3/18/14 Page 210

OpenCL implementation on the host.

The function

 cl_int clCreateKernelsInProgram (cl_program program,

 cl_uint num_kernels,
 cl_kernel *kernels,
 cl_uint *num_kernels_ret)

creates kernel objects for all kernel functions in program. Kernel objects are not created for any
__kernel functions in program that do not have the same function definition across all devices
for which a program executable has been successfully built.

program is a program object with a successfully built executable.

num_kernels is the size of memory pointed to by kernels specified as the number of cl_kernel
entries.

kernels is the buffer where the kernel objects for kernels in program will be returned. If kernels
is NULL, it is ignored. If kernels is not NULL, num_kernels must be greater than or equal to the
number of kernels in program.

num_kernels_ret is the number of kernels in program. If num_kernels_ret is NULL, it is ignored.

clCreateKernelsInProgram will return CL_SUCCESS if the kernel objects were successfully
allocated. Otherwise, it returns one of the following errors:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for
any device in program.

 CL_INVALID_VALUE if kernels is not NULL and num_kernels is less than the number of

kernels in program.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by

the OpenCL implementation on the host.

Kernel objects can only be created once you have a program object with a valid program source
or binary loaded into the program object and the program executable has been successfully built
for one or more devices associated with program. No changes to the program executable are
allowed while there are kernel objects associated with a program object. This means that calls to

Last Revision Date: 3/18/14 Page 211

clBuildProgram and clCompileProgram return CL_INVALID_OPERATION if there are kernel
objects attached to a program object. The OpenCL context associated with program will be the
context associated with kernel. The list of devices associated with program are the devices
associated with kernel. Devices associated with a program object for which a valid program
executable has been built can be used to execute kernels declared in the program object.

The function

 cl_int clRetainKernel (cl_kernel kernel)

increments the kernel reference count. clRetainKernel returns CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

clCreateKernel or clCreateKernelsInProgram do an implicit retain.

The function

 cl_int clReleaseKernel (cl_kernel kernel)

decrements the kernel reference count. clReleaseKernel returns CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The kernel object is deleted once the number of instances that are retained to kernel become zero
and the kernel object is no longer needed by any enqueued commands that use kernel.

Last Revision Date: 3/18/14 Page 212

5.9.2 Setting Kernel Arguments

To execute a kernel, the kernel arguments must be set.

The function

 cl_int clSetKernelArg (cl_kernel kernel,

 cl_uint arg_index,
 size_t arg_size,
 const void *arg_value)

is used to set the argument value for a specific argument of a kernel.

kernel is a valid kernel object.

arg_index is the argument index. Arguments to the kernel are referred by indices that go from 0
for the leftmost argument to n - 1, where n is the total number of arguments declared by a kernel.

For example, consider the following kernel:

 kernel void
 image_filter (int n, int m,
 constant float *filter_weights,
 read_only image2d_t src_image,
 write_only image2d_t dst_image)
 {
 ...
 }

Argument index values for image_filter will be 0 for n, 1 for m, 2 for
filter_weights, 3 for src_image and 4 for dst_image.

arg_value is a pointer to data that should be used as the argument value for argument specified
by arg_index. The argument data pointed to by arg_value is copied and the arg_value pointer
can therefore be reused by the application after clSetKernelArg returns. The argument value
specified is the value used by all API calls that enqueue kernel (clEnqueueNDRangeKernel)
until the argument value is changed by a call to clSetKernelArg for kernel.

If the argument is a memory object (buffer, pipe, image or image array), the arg_value entry will
be a pointer to the appropriate buffer, pipe, image or image array object. The memory object
must be created with the context associated with the kernel object. If the argument is a buffer
object, the arg_value pointer can be NULL or point to a NULL value in which case a NULL value
will be used as the value for the argument declared as a pointer to global or constant
memory in the kernel. If the argument is declared with the local qualifier, the arg_value entry
must be NULL. If the argument is of type sampler_t, the arg_value entry must be a pointer to the

Last Revision Date: 3/18/14 Page 213

sampler object. If the argument is of type queue_t, the arg_value entry must be a pointer to the
device queue object.

If the argument is declared to be a pointer of a built-in scalar or vector type, or a user defined
structure type in the global or constant address space, the memory object specified as argument
value must be a buffer object (or NULL). If the argument is declared with the constant
qualifier, the size in bytes of the memory object cannot exceed
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE and the number of arguments declared as
pointers to constant memory cannot exceed CL_DEVICE_MAX_CONSTANT_ARGS.

The memory object specified as argument value must be a pipe object if the argument is declared
with the pipe qualifier.

The memory object specified as argument value must be a 2D image object if the argument is
declared to be of type image2d_t. The memory object specified as argument value must be a 2D
image object with image channel order = CL_DEPTH if the argument is declared to be of type
image2d_depth_t. The memory object specified as argument value must be a 3D image object if
argument is declared to be of type image3d_t. The memory object specified as argument value
must be a 1D image object if the argument is declared to be of type image1d_t. The memory
object specified as argument value must be a 1D image buffer object if the argument is declared
to be of type image1d_buffer_t. The memory object specified as argument value must be a 1D
image array object if argument is declared to be of type image1d_array_t. The memory object
specified as argument value must be a 2D image array object if argument is declared to be of
type image2d_array_t. The memory object specified as argument value must be a 2D image
array object with image channel order = CL_DEPTH if argument is declared to be of type
image2d_array_depth_t.

For all other kernel arguments, the arg_value entry must be a pointer to the actual data to be used
as argument value.

arg_size specifies the size of the argument value. If the argument is a memory object, the size is
the size of the memory object. For arguments declared with the local qualifier, the size
specified will be the size in bytes of the buffer that must be allocated for the local argument.
If the argument is of type sampler_t, the arg_size value must be equal to
sizeof(cl_sampler). If the argument is of type queue_t, the arg_size value must be equal
to sizeof(cl_command_queue). For all other arguments, the size will be the size of
argument type.

NOTE: A kernel object does not update the reference count for objects such as memory, sampler
objects specified as argument values by clSetKernelArg, Users may not rely on a kernel object
to retain objects specified as argument values to the kernel26.

26 Implementations shall not allow cl_kernel objects to hold reference counts to cl_kernel arguments, because no
mechanism is provided for the user to tell the kernel to release that ownership right. If the kernel holds ownership
rights on kernel args, that would make it impossible for the user to tell with certainty when he may safely release
user allocated resources associated with OpenCL objects such as the cl_mem backing store used with
CL_MEM_USE_HOST_PTR.

Last Revision Date: 3/18/14 Page 214

clSetKernelArg returns CL_SUCCESS if the function was executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_INVALID_ARG_INDEX if arg_index is not a valid argument index.

 CL_INVALID_ARG_VALUE if arg_value specified is not a valid value.

 CL_INVALID_MEM_OBJECT for an argument declared to be a memory object when the
specified arg_value is not a valid memory object.

 CL_INVALID_SAMPLER for an argument declared to be of type sampler_t when the

specified arg_value is not a valid sampler object.

 CL_INVALID_DEVICE_QUEUE for an argument declared to be of type queue_t when the
specified arg_value is not a valid device queue object.

 CL_INVALID_ARG_SIZE if arg_size does not match the size of the data type for an

argument that is not a memory object or if the argument is a memory object and arg_size
!= sizeof(cl_mem) or if arg_size is zero and the argument is declared with the
local qualifier or if the argument is a sampler and arg_size !=
sizeof(cl_sampler).

 CL_INVALID_ARG_VALUE if the argument is an image declared with the read_only

qualifier and arg_value refers to an image object created with cl_mem_flags of
CL_MEM_WRITE or if the image argument is declared with the write_only qualifier
and arg_value refers to an image object created with cl_mem_flags of CL_MEM_READ.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clSetKernelArgSVMPointer (cl_kernel kernel,

 cl_uint arg_index,
 const void *arg_value)

is used to set a SVM pointer as the argument value for a specific argument of a kernel.

kernel is a valid kernel object.

Last Revision Date: 3/18/14 Page 215

arg_index is the argument index. Arguments to the kernel are referred by indices that go from 0
for the leftmost argument to n - 1, where n is the total number of arguments declared by a kernel.

arg_value is the SVM pointer that should be used as the argument value for argument specified
by arg_index. The SVM pointer specified is the value used by all API calls that enqueue kernel
(clEnqueueNDRangeKernel) until the argument value is changed by a call to
clSetKernelArgSVMPointer for kernel. The SVM pointer can only be used for arguments that
are declared to be a pointer to global or constant memory. The SVM pointer value must
be aligned according to the argument’s type. For example, if the argument is declared to be
global float4 *p, the SVM pointer value passed for p must be at a minimum aligned to a
float4. The SVM pointer value specified as the argument value can be the pointer returned by
clSVMAlloc or can be a pointer + offset into the SVM region.

clSetKernelArgSVMPointer returns CL_SUCCESS if the function was executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_INVALID_ARG_INDEX if arg_index is not a valid argument index.

 CL_INVALID_ARG_VALUE if arg_value specified is not a valid value.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clSetKernelExecInfo (cl_kernel kernel,

 cl_kernel_exec_info param_name,
 size_t param_value_size,
 const void *param_value)

can be used to pass additional information other than argument values to a kernel.

kernel specifies the kernel object being queried.

param_name specifies the information to be passed to kernel. The list of supported param_name
types and the corresponding values passed in param_value is described in table 5.18.

param_value_size specifies the size in bytes of the memory pointed to by param_value.

Last Revision Date: 3/18/14 Page 216

param_value is a pointer to memory where the appropriate values determined by param_name
are specified.

cl_kernel_exec_info Type Description
CL_KERNEL_EXEC_INFO_SVM_
PTRS

void *[] SVM pointers used by a kernel which
are not passed as arguments to kernel.
These addresses may be defined in
SVM buffer(s) that are passed as
arguments to kernel.

These non-argument SVM pointers
must be specified using
clSetKernelExecInfo for coarse-
grain and fine-grain buffer SVM
allocations but not for fine-grain
system SVM allocations.

CL_KERNEL_EXEC_INFO_SVM_
FINE_GRAIN_SYSTEM

cl_bool This flag indicates whether the kernel
uses pointers that are fine grain
system SVM allocations. These fine
grain system SVM pointers may be
passed as arguments or defined in
SVM buffers that are passed as
arguments to kernel.

Table 5.18 clSetKernelExecInfo parameter values.

clSetKernelExecInfo returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_KERNEL if kernel is a not a valid kernel object.

 CL_INVALID_VALUE if param_name is not valid, if param_value is NULL or if the size
specified by param_value_size is not valid.

 CL_INVALID_OPERATION if param_name =

CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM and param_value = CL_TRUE
but no devices in context associated with kernel support fine-grain system SVM
allocations.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 217

NOTES

1. Coarse-grain or fine-grain buffer SVM pointers used by a kernel which are not passed as a
kernel arguments must be specified using clSetKernelExecInfo with
CL_KERNEL_EXEC_INFO_SVM_PTRS. For example, if SVM buffer A contains a pointer to
another SVM buffer B, and the kernel dereferences that pointer, then a pointer to B must either
be passed as an argument in the call to that kernel or it must be made available to the kernel
using clSetKernelExecInfo. For example, we might pass extra SVM pointers as follows:

 clSetKernelExecInfo(kernel,

 CL_KERNEL_EXEC_INFO_SVM_PTRS,
 num_ptrs * sizeof(void *),

 extra_svm_ptr_list);

Here num_ptrs specifies the number of additional SVM pointers while
extra_svm_ptr_list specifies a pointer to memory containing those SVM pointers.

When calling clSetKernelExecInfo with CL_KERNEL_EXEC_INFO_SVM_PTRS to specify
pointers to non-argument SVM buffers as extra arguments to a kernel, each of these pointers can
be the SVM pointer returned by clSVMAlloc or can be a pointer + offset into the SVM region.
It is sufficient to provide one pointer for each SVM buffer used.

2. CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM is used to indicate whether SVM
pointers used by a kernel will refer to system allocations or not.

CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM = CL_FALSE indicates that the
OpenCL implementation may assume that system pointers are not passed as kernel arguments
and are not stored inside SVM allocations passed as kernel arguments.

CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM = CL_TRUE indicates that the OpenCL
implementation must assume that system pointers might be passed as kernel arguments and/or
stored inside SVM allocations passed as kernel arguments. In this case, if the device to which
the kernel is enqueued does not support system SVM pointers, clEnqueueNDRangeKernel will
return a CL_INVALID_OPERATION error. If none of the devices in the context associated with
kernel support fine-grain system SVM allocations, clSetKernelExecInfo will return a
CL_INVALID_OPERATION error.

If clSetKernelExecInfo has not been called with a value for
CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM, the default value is used for this
kernel attribute. The default value depends on whether the device on which the kernel is
enqueued supports fine-grain system SVM allocations. If so, the default value used is CL_TRUE
(system pointers might be passed); otherwise, the default is CL_FALSE.

Last Revision Date: 3/18/14 Page 218

5.9.3 Kernel Object Queries

The function

 cl_int clGetKernelInfo (cl_kernel kernel,
 cl_kernel_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns information about the kernel object.

kernel specifies the kernel object being queried.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetKernelInfo is described in table 5.19.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.19.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_kernel_info Return Type Info. returned in param_value
CL_KERNEL_FUNCTION_NAME char[] Return the kernel function name.

CL_KERNEL_NUM_ARGS cl_uint Return the number of arguments to

kernel.

CL_KERNEL_REFERENCE_
COUNT27

cl_uint Return the kernel reference count.

CL_KERNEL_CONTEXT cl_context Return the context associated with
kernel.

CL_KERNEL_PROGRAM cl_program Return the program object associated
with kernel.

CL_KERNEL_ATTRIBUTES char[] Returns any attributes specified using
the __attribute__ qualifier with the
kernel function declaration in the
program source. These attributes

27 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 3/18/14 Page 219

include attributes described in section
6.11.2 and other attributes supported
by an implementation.

Attributes are returned as they were
declared inside __attribute__((...)),
with any surrounding whitespace and
embedded newlines removed. When
multiple attributes are present, they
are returned as a single, space
delimited string.

Table 5.19 clGetKernelInfo parameter queries.

clGetKernelInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.19 and param_value is
not NULL.

 CL_INVALID_KERNEL if kernel is a not a valid kernel object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clGetKernelWorkGroupInfo (cl_kernel kernel,
 cl_device_id device,
 cl_kernel_work_group_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns information about the kernel object that may be specific to a device.

kernel specifies the kernel object being queried.

device identifies a specific device in the list of devices associated with kernel. The list of devices
is the list of devices in the OpenCL context that is associated with kernel. If the list of devices
associated with kernel is a single device, device can be a NULL value.

Last Revision Date: 3/18/14 Page 220

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetKernelWorkGroupInfo is described in table
5.20.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.20.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_kernel_work_group_info Return Type Info. returned in param_value
CL_KERNEL_GLOBAL_WORK_
SIZE

size_t[3] This provides a mechanism for the
application to query the maximum global
size that can be used to execute a kernel
(i.e. global_work_size argument to
clEnqueueNDRangeKernel) on a custom
device given by device or a built-in kernel
on an OpenCL device given by device.

If device is not a custom device and kernel
is not a built-in kernel,
clGetKernelArgInfo returns the error
CL_INVALID_VALUE.

CL_KERNEL_WORK_GROUP_S
IZE

size_t This provides a mechanism for the
application to query the maximum work-
group size that can be used to execute a
kernel on a specific device given by
device. The OpenCL implementation uses
the resource requirements of the kernel
(register usage etc.) to determine what this
work-group size should be.

CL_KERNEL_COMPILE_
WORK_GROUP_SIZE

size_t[3] Returns the work-group size specified by
the
__attribute__((reqd_work_gro
up_size(X, Y, Z))) qualifier.
Refer to section 6.7.2.

If the work-group size is not specified
using the above attribute qualifier (0, 0, 0)
is returned.

Last Revision Date: 3/18/14 Page 221

CL_KERNEL_LOCAL_MEM_
SIZE

cl_ulong Returns the amount of local memory in
bytes being used by a kernel. This
includes local memory that may be
needed by an implementation to execute
the kernel, variables declared inside the
kernel with the __local address
qualifier and local memory to be allocated
for arguments to the kernel declared as
pointers with the __local address
qualifier and whose size is specified with
clSetKernelArg.

If the local memory size, for any pointer
argument to the kernel declared with the
__local address qualifier, is not
specified, its size is assumed to be 0.

CL_KERNEL_PREFERRED_
WORK_GROUP_SIZE_
MULTIPLE

size_t Returns the preferred multiple of work-
group size for launch. This is a
performance hint. Specifying a work-
group size that is not a multiple of the
value returned by this query as the value
of the local work size argument to
clEnqueueNDRangeKernel will not fail
to enqueue the kernel for execution unless
the work-group size specified is larger
than the device maximum.

CL_KERNEL_PRIVATE_MEM_
SIZE

cl_ulong Returns the minimum amount of private
memory, in bytes, used by each work-item
in the kernel. This value may include any
private memory needed by an
implementation to execute the kernel,
including that used by the language built-
ins and variable declared inside the kernel
with the __private qualifier.

Table 5.20 clGetKernelWorkGroupInfo parameter queries.

clGetKernelWorkGroupInfo returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_DEVICE if device is not in the list of devices associated with kernel or if
device is NULL but there is more than one device associated with kernel.

Last Revision Date: 3/18/14 Page 222

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.20 and param_value is
not NULL.

 CL_INVALID_VALUE if param_name is CL_KERNEL_GLOBAL_WORK_SIZE and

device is not a custom device and kernel is not a built-in kernel.

 CL_INVALID_KERNEL if kernel is a not a valid kernel object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clGetKernelArgInfo (cl_kernel kernel,
 cl_uint arg_indx,
 cl_kernel_arg_info param_name,
 size_t param_value_size,

 void *param_value,
 size_t *param_value_size_ret)

returns information about the arguments of a kernel. Kernel argument information is only
available if the program object associated with kernel is created with
clCreateProgramWithSource and the program executable is built with the -cl-kernel-arg-info
option specified in options argument to clBuildProgram or clCompileProgram.

kernel specifies the kernel object being queried.

arg_indx is the argument index. Arguments to the kernel are referred by indices that go from 0
for the leftmost argument to n - 1, where n is the total number of arguments declared by a kernel.

param_name specifies the argument information to query. The list of supported param_name
types and the information returned in param_value by clGetKernelArgInfo is described in table
5.21.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be > size of return type as described in table 5.21. param_value_size ret returns
the actual size in bytes of data copied to param value. If param_value_size_ret is NULL, it is
ignored.

Last Revision Date: 3/18/14 Page 223

cl_kernel_arg_info Return Type Info. returned in param_value
CL_KERNEL_ARG_
ADDRESS_QUALIFIER

cl_kernel_arg_
address_qualifier

Returns the address qualifier specified for the
argument given by arg_indx. This can be one of the
following values:

CL_KERNEL_ARG_ADDRESS_GLOBAL
CL_KERNEL_ARG_ADDRESS_LOCAL
CL_KERNEL_ARG_ADDRESS_CONSTANT
CL_KERNEL_ARG_ADDRESS_PRIVATE

If no address qualifier is specified, the default
address qualifier which is
CL_KERNEL_ARG_ADDRESS_PRIVATE is
returned.

CL_KERNEL_ARG_
ACCESS_QUALIFIER

cl_kernel_arg_
access_qualifier

Returns the access qualifier specified for the
argument given by arg_indx. This can be one of the
following values:

CL_KERNEL_ARG_ACCESS_READ_ONLY
CL_KERNEL_ARG_ACCESS_WRITE_ONLY
CL_KERNEL_ARG_ACCESS_READ_WRITE
CL_KERNEL_ARG_ACCESS_NONE

If argument is not an image type and is not declared
with the pipe qualifier,
CL_KERNEL_ARG_ACCESS_NONE is returned. If
argument is an image type, the access qualifier
specified or the default access qualifier is returned.

CL_KERNEL_ARG_TYPE_
NAME

char[] Returns the type name specified for the argument
given by arg_indx. The type name returned will be
the argument type name as it was declared with any
whitespace removed. If argument type name is an
unsigned scalar type (i.e. unsigned char, unsigned
short, unsigned int, unsigned long), uchar, ushort,
uint and ulong will be returned. The argument type
name returned does not include any type qualifiers.

CL_KERNEL_ARG_TYPE_
QUALIFIER

cl_kernel_arg_
type_qualifier

Returns the type qualifier specified for the argument
given by arg_indx. The returned value can be:

CL_KERNEL_ARG_TYPE_CONST
CL_KERNEL_ARG_TYPE_RESTRICT
CL_KERNEL_ARG_TYPE_VOLATILE, a
combination of the above enums,
CL_KERNEL_ARG_TYPE_PIPE or
CL_KERNEL_ARG_TYPE_NONE

NOTE: CL_KERNEL_ARG_TYPE_VOLATILE is

Last Revision Date: 3/18/14 Page 224

returned if the argument is a pointer and the
referenced type is declared with the volatile
qualifier. For example, a kernel argument declared
as global int volatile *x returns
CL_KERNEL_ARG_TYPE_VOLATILE but
a kernel argument declared as global int *
volatile x does not. Similarly,
CL_KERNEL_ARG_TYPE_RESTRICT or
CL_KERNEL_ARG_TYPE_CONST is returned if the
argument is a pointer and the referenced type is
declared with the restrict or const qualifier. For
example, a kernel argument declared as global
int const *x returns
CL_KERNEL_ARG_TYPE_CONST but
a kernel argument declared as global int *
const x does not.

If the argument is declared with the constant address
space qualifier, the
CL_KERNEL_ARG_TYPE_CONST type qualifier
will be set.

CL_KERNEL_ARG_NAME char[] Returns the name specified for the argument given
by arg_indx.

Table 5.21 clGetKernelArgInfo parameter queries.

clGetKernelArgInfo returns CL SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_ARG_INDEX if arg_indx is not a valid argument index.

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value size is < size of return type as described in table 5.21 and param_value is
not NULL.

 CL_KERNEL_ARG_INFO_NOT_AVAILABLE if the argument information is not available

for kernel.

 CL_INVALID_KERNEL if kernel is a not a valid kernel object.

Last Revision Date: 3/18/14 Page 225

5.10 Executing Kernels

The function

 cl_int clEnqueueNDRangeKernel (cl_command_queue command_queue,

 cl_kernel kernel,
 cl_uint work_dim,

 const size_t *global_work_offset,
 const size_t *global_work_size,

 const size_t *local_work_size,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

enqueues a command to execute a kernel on a device.

command_queue is a valid host command-queue. The kernel will be queued for execution on the
device associated with command_queue.

kernel is a valid kernel object. The OpenCL context associated with kernel and command-queue
must be the same.

work_dim is the number of dimensions used to specify the global work-items and work-items in
the work-group. work_dim must be greater than zero and less than or equal to
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS.

global_work_offset can be used to specify an array of work_dim unsigned values that describe
the offset used to calculate the global ID of a work-item. If global_work_offset is NULL, the
global IDs start at offset (0, 0, … 0).

global_work_size points to an array of work_dim unsigned values that describe the number of
global work-items in work_dim dimensions that will execute the kernel function. The total
number of global work-items is computed as global_work_size[0] * … *
global_work_size[work_dim – 1].

local_work_size points to an array of work_dim unsigned values that describe the number of
work-items that make up a work-group (also referred to as the size of the work-group) that will
execute the kernel specified by kernel. The total number of work-items in a work-group is
computed as local_work_size[0] * … * local_work_size[work_dim – 1]. The total number of
work-items in the work-group must be less than or equal to the
CL_DEVICE_MAX_WORK_GROUP_SIZE value specified in table 4.3 and the number of work-
items specified in local_work_size[0], … local_work_size[work_dim – 1] must be less than or
equal to the corresponding values specified by CL_DEVICE_MAX_WORK_ITEM_SIZES[0], ….
CL_DEVICE_MAX_WORK_ITEM_SIZES[work_dim – 1]. The explicitly specified
local_work_size will be used to determine how to break the global work-items specified by

Last Revision Date: 3/18/14 Page 226

global_work_size into appropriate work-group instances. If local_work_size is specified, the
values specified in global_work_size[0], … global_work_size[work_dim - 1] must be evenly
divisible by the corresponding values specified in local_work_ size[0], …
local_work_size[work_dim – 1]. The values in local_work_size need not evenly divide the
global_work_size in any dimension. In this case, any single dimension for which the global size
is not divisible by the local size will be partitioned into two regions. One region will have work-
groups that have the same number of work items as was specified by the local size parameter in
that dimension. The other region will have work-groups with less than the number of work items
specified by the local size parameter in that dimension. The global IDs and group IDs of the
work items in the first region will be numerically lower than those in the second, and the second
region will be at most one work-group wide in that dimension. Workgroup sizes could be non-
uniform in multiple dimensions, potentially producing work-groups of up to 4 different sizes in a
2D range and 8 different sizes in a 3D range.

If local_work_size is NULL, the OpenCL runtime is free to implement the ND-range using
uniform or non-uniform work-group sizes, regardless of the divisibility of the global work size.
If the ND-range is implemented using non-uniform work-group sizes, the work-group sizes,
global IDs and group IDs will follow the same pattern as described in above paragraph.

The work-group size to be used for kernel can also be specified in the program source using the
__attribute__((reqd_work_group_size(X, Y, Z)))qualifier (refer to section
6.7.2). In this case the size of work group specified by local_work_size must match the value
specified by the reqd_work_group_size attribute qualifier.

These work-group instances are executed in parallel across multiple compute units or
concurrently on the same compute unit.

Each work-item is uniquely identified by a global identifier. The global ID, which can be read
inside the kernel, is computed using the value given by global_work_size and
global_work_offset. In addition, a work-item is also identified within a work-group by a unique
local ID. The local ID, which can also be read by the kernel, is computed using the value given
by local_work_size. The starting local ID is always (0, 0, … 0).

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular kernel-instance. Event objects are
unique and can be used to identify a particular kernel-instance later on. If event is NULL, no
event will be created for this kernel-instance and therefore it will not be possible for the
application to query or queue a wait for this particular kernel-instance. If the event_wait_list and

Last Revision Date: 3/18/14 Page 227

the event arguments are not NULL, the event argument should not refer to an element of the
event_wait_list array.

clEnqueueNDRangeKernel returns CL_SUCCESS if the kernel-instance was successfully
queued. Otherwise, it returns one of the following errors:

 CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built program
executable available for device associated with command_queue.

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-

queue.

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_INVALID_CONTEXT if context associated with command_queue and kernel are not
the same or if the context associated with command_queue and events in event_wait_list
are not the same.

 CL_INVALID_KERNEL_ARGS if the kernel argument values have not been specified or if

a kernel argument declared to be a pointer to a type does not point to a named address
space.

 CL_INVALID_WORK_DIMENSION if work_dim is not a valid value (i.e. a value between

1 and 3).

 CL_INVALID_GLOBAL_WORK_SIZE if global_work_size is NULL, or if any of the
values specified in global_work_size[0], … global_work_size[work_dim – 1] are 0 or
exceed the range given by the sizeof(size_t) for the device on which the kernel-
instance will be enqueued.

 CL_INVALID_GLOBAL_OFFSET if the value specified in global_work_size + the
corresponding values in global_work_offset for any dimensions is greater than the
sizeof(size t) for the device on which the kernel-instance will be enqueued.

 CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and does not match

the work-group size for kernel in the program source given by the
__attribute__((reqd_work_group_size(X, Y, Z))) qualifier.

 CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and the total number

of work-items in the work-group computed as local_work_size[0] * …
local_work_size[work_dim – 1] is greater than the value specified by
CL_DEVICE_MAX_WORK_GROUP_SIZE in table 4.3.

 CL_INVALID_WORK_GROUP_SIZE if the program was compiled with –cl-uniform-

work-group-size and the number of work-items specified by global_work_size is not
evenly divisible by size of work-group given by local_work_size or if the size of work-

Last Revision Date: 3/18/14 Page 228

group is specified using __attribute__((reqd_work_group_size(X, Y,
Z))) qualifier and local_work_size is NULL.

 CL_INVALID_WORK_ITEM_SIZE if the number of work-items specified in any of

local_work_size[0], … local_work_size[work_dim – 1] is greater than the
corresponding values specified by CL_DEVICE_MAX_WORK_ITEM_SIZES[0], ….
CL_DEVICE_MAX_WORK_ITEM_SIZES[work_dim – 1].

 CL_MISALIGNED_SUB_BUFFER_OFFSET if a sub-buffer object is specified as the value

for an argument that is a buffer object and the offset specified when the sub-buffer object
is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

 CL_INVALID_IMAGE_SIZE if an image object is specified as an argument value and the

image dimensions (image width, height, specified or compute row and/or slice pitch) are
not supported by device associated with queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if an image object is specified as an argument

value and the image format (image channel order and data type) is not supported by
device associated with queue.

 CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel

on the command-queue because of insufficient resources needed to execute the kernel.
For example, the explicitly specified local_work_size causes a failure to execute the
kernel because of insufficient resources such as registers or local memory. Another
example would be the number of read-only image args used in kernel exceed the
CL_DEVICE_MAX_READ_IMAGE_ARGS value for device or the number of write-only
and read-write image args used in kernel exceed the
CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS value for device or the number of
samplers used in kernel exceed CL_DEVICE_MAX_SAMPLERS for device.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with image or buffer objects specified as arguments to kernel.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_INVALID_OPERATION if SVM pointers are passed as arguments to a kernel and the

device does not support SVM or if system pointers are passed as arguments to a kernel
and/or stored inside SVM allocations passed as kernel arguments and the device does not
support fine grain system SVM allocations.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

Last Revision Date: 3/18/14 Page 229

OpenCL implementation on the host.

The function

 cl_int clEnqueueNativeKernel (cl_command_queue command_queue,

 void (CL_CALLBACK *user_func)(void *)
 void *args,
 size_t cb_args,
 cl_uint num_mem_objects,
 const cl_mem *mem_list,
 const void **args_mem_loc,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

enqueues a command to execute a native C/C++ function not compiled using the OpenCL
compiler.

command_queue is a valid host command-queue. A native user function can only be executed
on a command-queue created on a device that has CL_EXEC_NATIVE_KERNEL capability set in
CL_DEVICE_EXECUTION_CAPABILITIES as specified in table 4.3.

user_func is a pointer to a host-callable user function.

args is a pointer to the args list that user_func should be called with.

cb_args is the size in bytes of the args list that args points to.

The data pointed to by args and cb_args bytes in size will be copied and a pointer to this copied
region will be passed to user_func. The copy needs to be done because the memory objects
(cl_mem values) that args may contain need to be modified and replaced by appropriate
pointers to global memory. When clEnqueueNativeKernel returns, the memory region pointed
to by args can be reused by the application.

num_mem_objects is the number of buffer objects that are passed in args.

mem_list is a list of valid buffer objects, if num_mem_objects > 0. The buffer object values
specified in mem_list are memory object handles (cl_mem values) returned by clCreateBuffer
or NULL.

args_mem_loc is a pointer to appropriate locations that args points to where memory object
handles (cl_mem values) are stored. Before the user function is executed, the memory object
handles are replaced by pointers to global memory.

Last Revision Date: 3/18/14 Page 230

event_wait_list, num_events_in_wait_list and event are as described in
clEnqueueNDRangeKernel.

clEnqueueNativeKernel returns CL_SUCCESS if the user function execution instance was
successfully queued. Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if context associated with command_queue and events in

event_wait_list are not the same.

 CL_INVALID_VALUE if user_func is NULL.

 CL_INVALID_VALUE if args is a NULL value and cb_args > 0, or if args is a NULL
value and num_mem_objects > 0.

 CL_INVALID_VALUE if args is not NULL and cb_args is 0.

 CL_INVALID_VALUE if num_mem_objects > 0 and mem_list or args_mem_loc are

NULL.

 CL_INVALID_VALUE if num_mem_objects = 0 and mem_list or args_mem_loc are not
NULL.

 CL_INVALID_OPERATION if the device associated with command_queue cannot execute

the native kernel.

 CL_INVALID_MEM_OBJECT if one or more memory objects specified in mem_list are
not valid or are not buffer objects.

 CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel

on the command-queue because of insufficient resources needed to execute the kernel.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for
data store associated with buffer objects specified as arguments to kernel.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_INVALID_OPERATION if SVM pointers are passed as arguments to a kernel and the

device does not support SVM or if system pointers are passed as arguments to a kernel
and/or stored inside SVM allocations passed as kernel arguments and the device does not
support fine grain system SVM allocations.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

Last Revision Date: 3/18/14 Page 231

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

NOTE:

The total number of read-only images specified as arguments to a kernel cannot exceed
CL_DEVICE_MAX_READ_IMAGE_ARGS. Each image array argument to a kernel declared with
the read_only qualifier counts as one image.

The total number of write-only images specified as arguments to a kernel cannot exceed
CL_DEVICE_MAX_WRITE_IMAGE_ARGS. Each image array argument to a kernel
declared with the write_only qualifier counts as one image.

The total number of read-write images specified as arguments to a kernel cannot exceed
CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS. Each image array argument to a kernel
declared with the read_write qualifier counts as one image.

Last Revision Date: 3/18/14 Page 232

5.11 Event Objects

Event objects can be used to refer to a kernel-instance command (clEnqueueNDRangeKernel,
clEnqueueNativeKernel), read, write, map and copy commands on memory objects
(clEnqueue{Read|Write|Map}Buffer, clEnqueueUnmapMemObject,
clEnqueue{Read|Write}BufferRect, clEnqueue{Read|Write|Map}Image,
clEnqueueCopy{Buffer|Image}, clEnqueueCopyBufferRect,
clEnqueueCopyBufferToImage, clEnqueueCopyImageToBuffer), clEnqueueSVMMemcpy,
clEnqueueSVMMemFill, clEnqueueSVMMap, clEnqueueSVMUnmap,
clEnqueueSVMFree, clEnqueueMarkerWithWaitList, clEnqueueBarrierWithWaitList
(refer to section 5.12) or user events.

An event object can be used to track the execution status of a command. The API calls that
enqueue commands to a command-queue create a new event object that is returned in the event
argument. In case of an error enqueuing the command in the command-queue the event
argument does not return an event object.

The execution status of an enqueued command at any given point in time can be one of the
following:

 CL_QUEUED – This indicates that the command has been enqueued in a command-
queue. This is the initial state of all events except user events.

 CL_SUBMITTED – This is the initial state for all user events. For all other events, this
indicates that the command has been submitted by the host to the device.

 CL_RUNNING – This indicates that the device has started executing this command. In

order for the execution status of an enqueued command to change from CL_SUBMITTED
to CL_RUNNING, all events that this command is waiting on must have completed
successfully i.e. their execution status must be CL_COMPLETE.

 CL_COMPLETE – This indicates that the command has successfully completed.

 Error code – The error code is a negative integer value and indicates that the command

was abnormally terminated. Abnormal termination may occur for a number of reasons
such as a bad memory access.

NOTE: A command is considered to be complete if its execution status is CL_COMPLETE or is
a negative integer value.

If the execution of a command is terminated, the command-queue associated with this
terminated command, and the associated context (and all other command-queues in this context)
may no longer be available. The behavior of OpenCL API calls that use this context (and
command-queues associated with this context) are now considered to be implementation-

Last Revision Date: 3/18/14 Page 233

defined. The user registered callback function specified when context is created can be used to
report appropriate error information.

The function

 cl_event clCreateUserEvent (cl_context context, cl_int *errcode_ret)

creates a user event object. User events allow applications to enqueue commands that wait on a
user event to finish before the command is executed by the device.

context must be a valid OpenCL context.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateUserEvent returns a valid non-zero event object and errcode_ret is set to CL_SUCCESS
if the user event object is created successfully. Otherwise, it returns a NULL value with one of
the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The execution status of the user event object created is set to CL_SUBMITTED.

The function

 cl_int clSetUserEventStatus (cl_event event, cl_int execution_status)

sets the execution status of a user event object.

event is a user event object created using clCreateUserEvent.

execution_status specifies the new execution status to be set and can be CL_COMPLETE or a
negative integer value to indicate an error. A negative integer value causes all enqueued
commands that wait on this user event to be terminated. clSetUserEventStatus can only be
called once to change the execution status of event.

clSetUserEventStatus returns CL_SUCCESS if the function was executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_EVENT if event is not a valid user event object.

Last Revision Date: 3/18/14 Page 234

 CL_INVALID_VALUE if the execution_status is not CL_COMPLETE or a negative integer

value.

 CL_INVALID_OPERATION if the execution_status for event has already been changed by
a previous call to clSetUserEventStatus.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

NOTE: If there are enqueued commands with user events in the event_wait_list argument of
clEnqueue*** commands, the user must ensure that the status of these user events being waited
on are set using clSetUserEventStatus before any OpenCL APIs that release OpenCL objects
except for event objects are called; otherwise the behavior is undefined.

For example, the following code sequence will result in undefined behavior of
clReleaseMemObject.

ev1 = clCreateUserEvent(ctx, NULL);
clEnqueueWriteBuffer(cq, buf1, CL_FALSE, ...,

1, &ev1, NULL);
clEnqueueWriteBuffer(cq, buf2, CL_FALSE,...);
clReleaseMemObject(buf2);
clSetUserEventStatus(ev1, CL_COMPLETE);

The following code sequence, however, works correctly.

ev1 = clCreateUserEvent(ctx, NULL);
clEnqueueWriteBuffer(cq, buf1, CL_FALSE, ...,

1, &ev1, NULL);
clEnqueueWriteBuffer(cq, buf2, CL_FALSE,...);
clSetUserEventStatus(ev1, CL_COMPLETE);
clReleaseMemObject(buf2);

The function

 cl_int clWaitForEvents (cl_uint num_events, const cl_event *event_list)

waits on the host thread for commands identified by event objects in event_list to complete. A
command is considered complete if its execution status is CL_COMPLETE or a negative value.
The events specified in event_list act as synchronization points.

Last Revision Date: 3/18/14 Page 235

clWaitForEvents returns CL_SUCCESS if the execution status of all events in event_list is
CL_COMPLETE. Otherwise, it returns one of the following errors:

 CL_INVALID_VALUE if num_events is zero or event_list is NULL.

 CL_INVALID_CONTEXT if events specified in event_list do not belong to the same
context.

 CL_INVALID_EVENT if event objects specified in event_list are not valid event objects.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the execution status of

any of the events in event_list is a negative integer value.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clGetEventInfo (cl_event event,

 cl_event_info param_name,
 size_t param_value_size,

 void *param_value,
 size_t *param_value_size_ret)

returns information about the event object.

event specifies the event object being queried.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetEventInfo is described in table 5.22.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.22.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_event_info Return Info. returned in param_value

Last Revision Date: 3/18/14 Page 236

Type
CL_EVENT_COMMAND_
QUEUE

cl_command_
queue

Return the command-queue associated with
event. For user event objects, a NULL value
is returned.

CL_EVENT_CONTEXT cl_context Return the context associated with event.
CL_EVENT_COMMAND_
TYPE

cl_command_
type

Return the command associated with event.
Can be one of the following values:

CL_COMMAND_NDRANGE_KERNEL
CL_COMMAND_NATIVE_KERNEL
CL_COMMAND_READ_BUFFER
CL_COMMAND_WRITE_BUFFER
CL_COMMAND_COPY_BUFFER
CL_COMMAND_READ_IMAGE
CL_COMMAND_WRITE_IMAGE
CL_COMMAND_COPY_IMAGE
CL_COMMAND_COPY_BUFFER_TO_IMAGE
CL_COMMAND_COPY_IMAGE_TO_BUFFER
CL_COMMAND_MAP_BUFFER
CL_COMMAND_MAP_IMAGE
CL_COMMAND_UNMAP_MEM_OBJECT
CL_COMMAND_MARKER
CL_COMMAND_ACQUIRE_GL_OBJECTS
CL_COMMAND_RELEASE_GL_OBJECTS

CL_COMMAND_READ_BUFFER_RECT
CL_COMMAND_WRITE_BUFFER_RECT
CL_COMMAND_COPY_BUFFER_RECT
CL_COMMAND_USER
CL_COMMAND_BARRIER
CL_COMMAND_MIGRATE_MEM_OBJECTS
CL_COMMAND_FILL_BUFFER
CL_COMMAND_FILL_IMAGE

CL_COMMAND_SVM_FREE
CL_COMMAND_SVM_MEMCPY
CL_COMMAND_SVM_MEMFILL
CL_COMMAND_SVM_MAP
CL_COMMAND_SVM_UNMAP

CL_EVENT_COMMAND_
EXECUTION_STATUS28

cl_int Return the execution status of the command
identified by event.

Valid values are:

CL_QUEUED (command has been enqueued
in the command-queue),

28 The error code values are negative, and event state values are positive. The event state values are ordered from
the largest value (CL_QUEUED) for the first or initial state to the smallest value (CL_COMPLETE or negative
integer value) for the last or complete state. The value of CL_COMPLETE and CL_SUCCESS are the same.

Last Revision Date: 3/18/14 Page 237

CL_SUBMITTED (enqueued command has
been submitted by the host to the device
associated with the command-queue),

CL_RUNNING (device is currently executing
this command),

CL_COMPLETE (the command has
completed), or

Error code given by a negative integer value.
(command was abnormally terminated – this
may be caused by a bad memory access etc.).
These error codes come from the same set of
error codes that are returned from the
platform or runtime API calls as return
values or errcode_ret values.

CL_EVENT_REFERENCE_
COUNT29

cl_uint Return the event reference count.

 Table 5.22 clGetEventInfo parameter queries.

Using clGetEventInfo to determine if a command identified by event has finished execution (i.e.
CL_EVENT_COMMAND_EXECUTION_STATUS returns CL_COMPLETE) is not a
synchronization point. There are no guarantees that the memory objects being modified by
command associated with event will be visible to other enqueued commands.

clGetEventInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.22 and param_value is
not NULL.

 CL_INVALID_VALUE if information to query given in param_name cannot be queried
for event.

 CL_INVALID_EVENT if event is a not a valid event object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

29 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 3/18/14 Page 238

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clSetEventCallback (cl_event event,
 cl_int command_exec_callback_type,
 void (CL_CALLBACK *pfn_event_notify)(cl_event event,
 cl_int event_command_exec_status,
 void *user_data),
 void *user_data)

registers a user callback function for a specific command execution status. The registered
callback function will be called when the execution status of command associated with event
changes to an execution status equal to or past the status specified by command_exec_status.

Each call to clSetEventCallback registers the specified user callback function on a callback
stack associated with event. The order in which the registered user callback functions are called
is undefined.

event is a valid event object.

command_exec_callback_type specifies the command execution status for which the callback is
registered. The command execution callback values for which a callback can be registered are:
CL_SUBMITTED, CL_RUNNING or CL_COMPLETE30. There is no guarantee that the callback
functions registered for various execution status values for an event will be called in the exact
order that the execution status of a command changes. Furthermore, it should be noted that
receiving a call back for an event with a status other than CL_COMPLETE, in no way implies that
the memory model or execution model as defined by the OpenCL specification has changed. For
example, it is not valid to assume that a corresponding memory transfer has completed unless the
event is in a state CL_COMPLETE.

pfn_event_notify is the event callback function that can be registered by the application. This
callback function may be called asynchronously by the OpenCL implementation. It is the
application’s responsibility to ensure that the callback function is thread-safe. The parameters to
this callback function are:

 event is the event object for which the callback function is invoked.

 event_command_exec_status represents the execution status of command for which
this callback function is invoked. Refer to table 5.22 for the command execution
status values. If the callback is called as the result of the command associated with

30The callback function registered for a command_exec_callback_type value of CL_COMPLETE will be called
when the command has completed successfully or is abnormally terminated.

Last Revision Date: 3/18/14 Page 239

event being abnormally terminated, an appropriate error code for the error that caused
the termination will be passed to event_command_exec_status instead.

 user_data is a pointer to user supplied data.

user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

All callbacks registered for an event object must be called. All enqueued callbacks shall be
called before the event object is destroyed. Callbacks must return promptly. The behavior of
calling expensive system routines, OpenCL API calls to create contexts or command-queues, or
blocking OpenCL operations from the following list below, in a callback is undefined.

 clFinish,
 clWaitForEvents,
 blocking calls to clEnqueueReadBuffer, clEnqueueReadBufferRect,

 clEnqueueWriteBuffer, clEnqueueWriteBufferRect,
blocking calls to clEnqueueReadImage and clEnqueueWriteImage,

 blocking calls to clEnqueueMapBuffer and clEnqueueMapImage,
 blocking calls to clBuildProgram, clCompileProgram or clLinkProgram,
 blocking calls to clEnqueueSVMMemcpy or clEnqueueSVMMap

If an application needs to wait for completion of a routine from the above list in a callback,
please use the non-blocking form of the function, and assign a completion callback to it to do the
remainder of your work. Note that when a callback (or other code) enqueues commands to a
command-queue, the commands are not required to begin execution until the queue is flushed.
In standard usage, blocking enqueue calls serve this role by implicitly flushing the queue. Since
blocking calls are not permitted in callbacks, those callbacks that enqueue commands on a
command queue should either call clFlush on the queue before returning or arrange for clFlush
to be called later on another thread.

clSetEventCallback returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_EVENT if event is not a valid event object.

 CL_INVALID_VALUE if pfn_event_notify is NULL or if command_exec_callback_type is
not CL_SUBMITTED, CL_RUNNING or CL_COMPLETE.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

Last Revision Date: 3/18/14 Page 240

 cl_int clRetainEvent (cl_event event)

increments the event reference count. The OpenCL commands that return an event perform an
implicit retain.

clRetainEvent returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_EVENT if event is not a valid event object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

To release an event, use the following function

 cl_int clReleaseEvent (cl_event event)

decrements the event reference count.

clReleaseEvent returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_EVENT if event is not a valid event object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The event object is deleted once the reference count becomes zero, the specific command
identified by this event has completed (or terminated) and there are no commands in the
command-queues of a context that require a wait for this event to complete.

NOTE: Developers should be careful when releasing their last reference count on events created
by clCreateUserEvent that have not yet been set to status of CL_COMPLETE or an error. If the
user event was used in the event_wait_list argument passed to a clEnqueue*** API or another
application host thread is waiting for it in clWaitForEvents, those commands and host threads
will continue to wait for the event status to reach CL_COMPLETE or error, even after the user has
released the object. Since in this scenario the developer has released his last reference count to
the user event, it would be in principle no longer valid for him to change the status of the event
to unblock all the other machinery. As a result the waiting tasks will wait forever, and associated

Last Revision Date: 3/18/14 Page 241

events, cl_mem objects, command queues and contexts are likely to leak. In-order command
queues caught up in this deadlock may cease to do any work.

Last Revision Date: 3/18/14 Page 242

5.12 Markers, Barriers and Waiting for Events

The function

 cl_int clEnqueueMarkerWithWaitList (cl_command_queue command_queue,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a marker command which waits for either a list of events to complete, or if the list is
empty it waits for all commands previously enqueued in command_queue to complete before it
completes. This command returns an event which can be waited on, i.e. this event can be waited
on to insure that all events either in the event_wait_list or all previously enqueued commands,
queued before this command to command_queue, have completed.

command_queue is a valid host command-queue.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

If event_wait_list is NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL,
the list of events pointed to by event_wait_list must be valid and num_events_in_wait_list must
be greater than 0. The events specified in event_wait_list act as synchronization points. The
context associated with events in event_wait_list and command_queue must be the same. The
memory associated with event_wait_list can be reused or freed after the function returns.

If event_wait_list is NULL, then this particular command waits until all previous enqueued
commands to command_queue have completed.

event returns an event object that identifies this particular command. Event objects are unique
and can be used to identify this marker command later on. event can be NULL in which case it
will not be possible for the application to query the status of this command or queue a wait for
this command to complete. If the event_wait_list and the event arguments are not NULL, the
event argument should not refer to an element of the event_wait_list array.

clEnqueueMarkerWithWaitList returns CL_SUCCESS if the function is successfully executed.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if context associated with command_queue and events in
event_wait_list are not the same.

Last Revision Date: 3/18/14 Page 243

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clEnqueueBarrierWithWaitList (cl_command_queue command_queue,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a barrier command which waits for either a list of events to complete, or if the list is
empty it waits for all commands previously enqueued in command_queue to complete before it
completes. This command blocks command execution, that is, any following commands
enqueued after it do not execute until it completes. This command returns an event which can be
waited on, i.e. this event can be waited on to insure that all events either in the event_wait_list or
all previously enqueued commands, queued before this command to command_queue, have
completed

command_queue is a valid host command-queue.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

If event_wait_list is NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL,
the list of events pointed to by event_wait_list must be valid and num_events_in_wait_list must
be greater than 0. The events specified in event_wait_list act as synchronization points. The
context associated with events in event_wait_list and command_queue must be the same. The
memory associated with event_wait_list can be reused or freed after the function returns.

If event_wait_list is NULL, then this particular command waits until all previous enqueued
commands to command_queue have completed.

event returns an event object that identifies this particular command. Event objects are unique
and can be used to identify this barrier command later on. event can be NULL in which case it
will not be possible for the application to query the status of this command or queue a wait for
this command to complete. If the event_wait_list and the event arguments are not NULL, the
event argument should not refer to an element of the event_wait_list array.

Last Revision Date: 3/18/14 Page 244

clEnqueueBarrierWithWaitList returns CL_SUCCESS if the function is successfully executed.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_INVALID_CONTEXT if context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 245

5.13 Out-of-order Execution of Kernels and Memory
Object Commands

The OpenCL functions that are submitted to a command-queue are enqueued in the order the
calls are made but can be configured to execute in-order or out-of-order. The properties
argument in clCreateCommandQueueWithProperties can be used to specify the execution
order.

If the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of a command-queue is
not set, the commands enqueued to a command-queue execute in order. For example, if an
application calls clEnqueueNDRangeKernel to execute kernel A followed by a
clEnqueueNDRangeKernel to execute kernel B, the application can assume that kernel A
finishes first and then kernel B is executed. If the memory objects output by kernel A are inputs
to kernel B then kernel B will see the correct data in memory objects produced by execution of
kernel A. If the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of a command-
queue is set, then there is no guarantee that kernel A will finish before kernel B starts execution.

Applications can configure the commands enqueued to a command-queue to execute out-of-
order by setting the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of the
command-queue. This can be specified when the command-queue is created. In out-of-order
execution mode there is no guarantee that the enqueued commands will finish execution in the
order they were queued. As there is no guarantee that kernels will be executed in order, i.e.
based on when the clEnqueueNDRangeKernel calls are made within a command-queue, it is
therefore possible that an earlier clEnqueueNDRangeKernel call to execute kernel A identified
by event A may execute and/or finish later than a clEnqueueNDRangeKernel call to execute
kernel B which was called by the application at a later point in time. To guarantee a specific
order of execution of kernels, a wait on a particular event (in this case event A) can be used.
The wait for event A can be specified in the event_wait_list argument to
clEnqueueNDRangeKernel for kernel B.

In addition, a wait for events (clEnqueueMarkerWithWaitList) or a barrier
(clEnqueueBarrierWithWaitList) command can be enqueued to the command-queue. The
wait for events command ensures that previously enqueued commands identified by the list of
events to wait for have finished before the next batch of commands is executed. The barrier
command ensures that all previously enqueued commands in a command-queue have finished
execution before the next batch of commands is executed.

Similarly, commands to read, write, copy or map memory objects that are enqueued after
clEnqueueNDRangeKernel or clEnqueueNativeKernel commands are not guaranteed to wait
for kernels scheduled for execution to have completed (if the
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property is set). To ensure correct
ordering of commands, the event object returned by clEnqueueNDRangeKernel or
clEnqueueNativeKernel can be used to enqueue a wait for event or a barrier command can be
enqueued that must complete before reads or writes to the memory object(s) occur.

Last Revision Date: 3/18/14 Page 246

5.14 Profiling Operations on Memory Objects and
Kernels

This section describes profiling of OpenCL functions that are enqueued as commands to a
command-queue. The specific functions31 being referred to are:
clEnqueue{Read|Write|Map}Buffer, clEnqueue{Read|Write}BufferRect,
clEnqueue{Read|Write|Map}Image, clEnqueueUnmapMemObject,
clEnqueueSVMMemcpy, clEnqueueSVMMemFill, clEnqueueSVMMap,
clEnqueueSVMUnmap, clEnqueueSVMFree, clEnqueueCopyBuffer,
clEnqueueCopyBufferRect, clEnqueueCopyImage, clEnqueueCopyImageToBuffer,
clEnqueueCopyBufferToImage, clEnqueueNDRangeKernel and clEnqueueNativeKernel.
These enqueued commands are identified by unique event objects.

Event objects can be used to capture profiling information that measure execution time of a
command. Profiling of OpenCL commands can be enabled either by using a command-queue
created with CL_QUEUE_PROFILING_ENABLE flag set in properties argument to
clCreateCommandQueueWithProperties.

If profiling is enabled, the function

 cl_int clGetEventProfilingInfo (cl_event event,
 cl_profiling_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns profiling information for the command associated with event.

event specifies the event object.

param_name specifies the profiling data to query. The list of supported param_name types and
the information returned in param_value by clGetEventProfilingInfo is described in table 5.23

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.23.

31 clEnqueueAcquireGLObjects and clEnqueueReleaseGLObjects defined in section 9.6.6 of the
OpenCL 2.0 Extension Specification are also included.

Last Revision Date: 3/18/14 Page 247

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_profiling_info Return

Type
Info. returned in param_value

CL_PROFILING_COMMAND_QUEUED cl_ulong A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event is enqueued in a
command-queue by the host.

CL_PROFILING_COMMAND_SUBMIT cl_ulong A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event that has been
enqueued is submitted by the host to
the device associated with the
command-queue.

CL_PROFILING_COMMAND_START cl_ulong A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event starts execution on
the device.

CL_PROFILING_COMMAND_END cl_ulong A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event has finished
execution on the device.

CL_PROFILING_COMMAND_
COMPLETE

cl_ulong A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event and any child
commands enqueued by this
command on the device have finished
execution.

 Table 5.23 clGetEventProfilingInfo parameter queries.

The unsigned 64-bit values returned can be used to measure the time in nano-seconds consumed
by OpenCL commands.

Last Revision Date: 3/18/14 Page 248

OpenCL devices are required to correctly track time across changes in device frequency and
power states. The CL_DEVICE_PROFILING_TIMER_RESOLUTION specifies the resolution of
the timer i.e. the number of nanoseconds elapsed before the timer is incremented.

clGetEventProfilingInfo returns CL_SUCCESS if the function is executed successfully and the
profiling information has been recorded. Otherwise, it returns one of the following errors:

 CL_PROFILING_INFO_NOT_AVAILABLE if the CL_QUEUE_PROFILING_ENABLE flag
is not set for the command-queue, if the execution status of the command identified by
event is not CL_COMPLETE or if event refers to the clEnqueueSVMFree command or is
a user event object.

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.23 and param_value is
not NULL.

 CL_INVALID_EVENT if event is a not a valid event object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 249

5.15 Flush and Finish

The function

 cl_int clFlush (cl_command_queue command_queue)

issues all previously queued OpenCL commands in command_queue to the device associated
with command_queue. clFlush only guarantees that all queued commands to command_queue
will eventually be submitted to the appropriate device. There is no guarantee that they will be
complete after clFlush returns.

clFlush returns CL_SUCCESS if the function call was executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Any blocking commands queued in a command-queue and clReleaseCommandQueue perform
an implicit flush of the command-queue. These blocking commands are clEnqueueReadBuffer,
clEnqueueReadBufferRect, clEnqueueReadImage, with blocking_read set to CL_TRUE;
clEnqueueWriteBuffer, clEnqueueWriteBufferRect, clEnqueueWriteImage with
blocking_write set to CL_TRUE; clEnqueueMapBuffer, clEnqueueMapImage with
blocking_map set to CL_TRUE; clEnqueueSVMMemcpy with blocking_copy set to CL_TRUE;
clEnqueueSVMMap with blocking_map set to CL_TRUE or clWaitForEvents.

To use event objects that refer to commands enqueued in a command-queue as event objects to
wait on by commands enqueued in a different command-queue, the application must call a
clFlush or any blocking commands that perform an implicit flush of the command-queue where
the commands that refer to these event objects are enqueued.

The function

 cl_int clFinish (cl_command_queue command_queue)

blocks until all previously queued OpenCL commands in command_queue are issued to the
associated device and have completed. clFinish does not return until all previously queued
commands in command_queue have been processed and completed. clFinish is also a
synchronization point.

Last Revision Date: 3/18/14 Page 250

clFinish returns CL_SUCCESS if the function call was executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-
queue.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 3/18/14 Page 251

6. The OpenCL C Programming Language

7. OpenCL Numerical Compliance

8. Image Addressing and Filtering

Sections 6 – 8 are described in the OpenCL C 2.0 Specification document.

9. Optional Extensions

The list of optional features supported by OpenCL 2.0 is described in the OpenCL 2.0 Extension
Specification document.

Last Revision Date: 3/18/14 Page 252

10. OpenCL Embedded Profile

The OpenCL 2.0 specification describes the feature requirements for desktop platforms. This
section describes the OpenCL 2.0 embedded profile that allows us to target a subset of the
OpenCL 2.0 specification for handheld and embedded platforms. The optional extensions
defined in the OpenCL 2.0 Extension Specification apply to both profiles.

The OpenCL 2.0 embedded profile has the following restrictions:

1. 64 bit integers i.e. long, ulong including the appropriate vector data types and operations
on 64-bit integers are optional. The cles_khr_int6432 extension string will be reported if
the embedded profile implementation supports 64-bit integers.

2. Support for 3D images is optional.

If CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT and
CL_DEVICE_IMAGE3D_MAX_DEPTH are zero, the call to clCreateImage in the
embedded profile will fail to create the 3D image. The errcode_ret argument in
clCreateImage returns CL_INVALID_OPERATION. Declaring arguments of type
image3d_t in a kernel will result in a compilation error.

If CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_HEIGHT and
CL_DEVICE_IMAGE3D_MAX_DEPTH > 0, 3D images are supported by the OpenCL
embedded profile implementation. clCreateImage will work as defined by the OpenCL
specification. The image3d_t data type can be used in a kernel(s).

3. Support for 2D image array writes is optional. If the cles_khr_2d_image_array_writes

extension is supported by the embedded profile, writes to 2D image arrays are supported.

4. Image and image arrays created with an image_channel_data_type value of
CL_FLOAT or CL_HALF_FLOAT can only be used with samplers that use a filter mode of
CL_FILTER_NEAREST. The values returned by read_imagef and read_imageh33 for 2D
and 3D images if image_channel_data_type value is CL_FLOAT or
CL_HALF_FLOAT and sampler with filter_mode = CL_FILTER_LINEAR are
undefined.

5. The mandated minimum single precision floating-point capability given by

CL_DEVICE_SINGLE_FP_CONFIG is CL_FP_ROUND_TO_ZERO or
CL_FP_ROUND_TO_NEAREST. If CL_FP_ROUND_TO_NEAREST is supported, the
default rounding mode will be round to nearest even; otherwise the default rounding

32 Note that the performance of 64-bit integer arithmetic can vary significantly between embedded devices.
33 If cl_khr_fp16 extension is supported.

Last Revision Date: 3/18/14 Page 253

mode will be round to zero.

6. The single precision floating-point operations (addition, subtraction and multiplication)
shall be correctly rounded. Zero results may always be positive 0.0. The accuracy of
division and sqrt are given by table 10.1.

If CL_FP_INF_NAN is not set in CL_DEVICE_SINGLE_FP_CONFIG, and one of the
operands or the result of addition, subtraction, multiplication or division would signal the
overflow or invalid exception (see IEEE 754 specification), the value of the result is
implementation-defined. Likewise, single precision comparison operators (<, >, <=, >=,
==, !=) return implementation-defined values when one or more operands is a NaN.

In all cases, conversions (section 6.2 and 6.13.7) shall be correctly rounded as described
for the FULL_PROFILE, including those that consume or produce an INF or NaN. The
built-in math functions (section 6.13.2) shall behave as described for the FULL_PROFILE,
including edge case behavior described in section 7.5.1 but with accuracy as described by
table 10.1.

Note: If addition, subtraction and multiplication have default round to zero rounding
mode, then fract, fma and fdim shall produce the correctly rounded result for round to
zero rounding mode.

This relaxation of the requirement to adhere to IEEE 754 requirements for basic floating-
point operations, though extremely undesirable, is to provide flexibility for embedded
devices that have lot stricter requirements on hardware area budgets.

7. Denormalized numbers for the half data type which may be generated when converting a

float to a half using variants of the vstore_half function or when converting from a half
to a float using variants of the vload_half function can be flushed to zero. Refer to
section 6.1.1.1.

8. The precision of conversions from CL_UNORM_INT8, CL_SNORM_INT8,

CL_UNORM_INT16 and CL_SNORM_INT16 to float is <= 2 ulp for the embedded profile
instead of <= 1.5 ulp as defined in section 8.3.1.1. The exception cases described in
section 8.3.1.1 and given below apply to the embedded profile.

For CL_UNORM_INT8

0 must convert to 0.0f and
255 must convert to 1.0f

For CL_UNORM_INT16

0 must convert to 0.0f and
65535 must convert to 1.0f

For CL_SNORM_INT8

Last Revision Date: 3/18/14 Page 254

-128 and -127 must convert to -1.0f,
0 must convert to 0.0f and
127 must convert to 1.0f

For CL_SNORM_INT16

-32768 and -32767 must convert to -1.0f,
0 must convert to 0.0f and
32767 must convert to 1.0f

 For CL_UNORM_INT_101010

0 must convert to 0.0f and
1023 must convert to 1.0f

9. Built-in atomic functions as defined in section 6.12.11 are optional.

The following optional extensions defined in the OpenCL 2.0 Extension Specification are
available to the embedded profile:

 cl_khr_int64_base_atomics
 cl_khr_int64_extended_atomics
 cl_khr_fp16
 cles_khr_int64. If double precision is supported i.e. CL_DEVICE_DOUBLE_FP_CONFIG

is not zero, then cles_khr_int64 must also be supported.

Table 10.1 describes the minimum accuracy of single precision floating-point arithmetic
operations given as ULP values for the embedded profile. The reference value used to compute
the ULP value of an arithmetic operation is the infinitely precise result.

Function Min Accuracy - ULP values34
x + y Correctly rounded
x – y Correctly rounded
x * y Correctly rounded

1.0 / x <= 3 ulp
x / y <= 3 ulp

acos <= 4 ulp

acospi <= 5 ulp
asin <= 4 ulp

34 0 ulp is used for math functions that do not require rounding.

Last Revision Date: 3/18/14 Page 255

asinpi <= 5 ulp
atan <= 5 ulp

atan2 <= 6 ulp
atanpi <= 5 ulp

atan2pi <= 6 ulp
acosh <= 4 ulp
asinh <= 4 ulp
atanh <= 5 ulp

cbrt <= 4 ulp
ceil Correctly rounded

copysign 0 ulp
cos <= 4 ulp

cosh <= 4 ulp
cospi <= 4 ulp

erfc <= 16 ulp
erf <= 16 ulp

exp <= 4 ulp
exp2 <= 4 ulp

exp10 <= 4 ulp
expm1 <= 4 ulp

fabs 0 ulp
fdim Correctly rounded
floor Correctly rounded
fma Correctly rounded

fmax 0 ulp
fmin 0 ulp
fmod 0 ulp
fract Correctly rounded
frexp 0 ulp
hypot <= 4 ulp
ilogb 0 ulp
ldexp Correctly rounded

log <= 4 ulp
log2 <= 4 ulp

log10 <= 4 ulp
log1p <= 4 ulp
logb 0 ulp
mad Any value allowed (infinite ulp)

maxmag 0 ulp
minmag 0 ulp

modf 0 ulp
nan 0 ulp

nextafter 0 ulp
pow(x, y) <= 16 ulp

pown(x, y) <= 16 ulp

Last Revision Date: 3/18/14 Page 256

powr(x, y) <= 16 ulp
remainder 0 ulp

remquo 0 ulp
rint Correctly rounded

rootn <= 16 ulp
round Correctly rounded
rsqrt <= 4 ulp

sin <= 4 ulp
sincos <= 4 ulp for sine and cosine values

sinh <= 4 ulp
sinpi <= 4 ulp
sqrt <= 4 ulp
tan <= 5 ulp

tanh <= 5 ulp
tanpi <= 6 ulp

tgamma <= 16 ulp
trunc Correctly rounded

half_cos <= 8192 ulp

half_divide <= 8192 ulp
half_exp <= 8192 ulp

half_exp2 <= 8192 ulp
half_exp10 <= 8192 ulp

half_log <= 8192 ulp
half_log2 <= 8192 ulp

half_log10 <= 8192 ulp
half_powr <= 8192 ulp
half_recip <= 8192 ulp
half_rsqrt <= 8192 ulp

half_sin <= 8192 ulp
half_sqrt <= 8192 ulp
half_tan <= 8192 ulp

native_cos Implementation-defined

native_divide Implementation-defined
native_exp Implementation-defined

native_exp2 Implementation-defined
native_exp10 Implementation-defined

native_log Implementation-defined
native_log2 Implementation-defined

native_log10 Implementation-defined
native_powr Implementation-defined
native_recip Implementation-defined
native_rsqrt Implementation-defined

native_sin Implementation-defined

Last Revision Date: 3/18/14 Page 257

native_sqrt Implementation-defined
native_tan Implementation-defined

 Table 10.1 ULP values for built-in math functions

The __EMBEDDED_PROFILE__ macro is added to the language (refer to section 6.10). It will
be the integer constant 1 for OpenCL devices that implement the embedded profile and is
undefined otherwise.

CL_PLATFORM_PROFILE defined in table 4.1 will return the string EMBEDDED_PROFILE if
the OpenCL implementation supports the embedded profile only.

The minimum maximum values specified in table 4.3 that have been modified for the OpenCL
embedded profile are listed below:

cl_device_info Return Type Description
CL_DEVICE_MAX_READ_IMAGE_ARGS cl_uint Max number of image objects

arguments of a kernel declared with
the read_only qualifier. The
minimum value is 8 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_WRITE_IMAGE_ARGS cl_uint Max number of image objects
arguments of a kernel declared with
the write_only qualifier. The
minimum value is 8 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_READ_WRITE_IMAGE_
ARGS

cl_uint Max number of image objects
arguments of a kernel declared with
the write_only or read_write
qualifier. The minimum value is 8 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE2D_MAX_WIDTH size_t Max width of 2D image in pixels. The
minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE2D_MAX_HEIGHT size_t Max height of 2D image in pixels. The
minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE3D_MAX_WIDTH size_t Max width of 3D image in pixels. The
minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

Last Revision Date: 3/18/14 Page 258

CL_DEVICE_IMAGE3D_MAX_HEIGHT size_t Max height of 3D image in pixels. The
minimum value is 2048.

CL_DEVICE_IMAGE3D_MAX_DEPTH size_t Max depth of 3D image in pixels. The
minimum value is 2048.

CL_DEVICE_IMAGE_MAX_BUFFER_SIZE size_t Max number of pixels for a 1D image
created from a buffer object.

The minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE_MAX_ARRAY_SIZE size_t Max number of images in a 1D or 2D
image array.

The minimum value is 256 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_SAMPLERS unsigned int Maximum number of samplers that
can be used in a kernel.

The minimum value is 8 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_PARAMETER_SIZE size_t Max size in bytes of all arguments that

can be passed to a kernel. The
minimum value is 256 bytes for
devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_SINGLE_FP_CONFIG cl_device_

fp_config
Describes single precision floating-
point capability of the device. This is
a bit-field that describes one or more
of the following values:

CL_FP_DENORM – denorms are supported

CL_FP_INF_NAN – INF and quiet NaNs are
supported.

CL_FP_ROUND_TO_NEAREST– round to
nearest even rounding mode supported

CL_FP_ROUND_TO_ZERO – round to zero
rounding mode supported

CL_FP_ROUND_TO_INF – round to positive
and negative infinity rounding modes
supported

Last Revision Date: 3/18/14 Page 259

CL_FP_FMA – IEEE754-2008 fused
multiply-add is supported.

CL_FP_CORRECTLY_ROUNDED_DIVIDE
_SQRT – divide and sqrt are correctly
rounded as defined by the IEEE754
specification.

CL_FP_SOFT_FLOAT – Basic floating-
point operations (such as addition, subtraction,
multiplication) are implemented in software.

The mandated minimum floating-point
capability is:
CL_FP_ROUND_TO_ZERO or
CL_FP_ROUND_TO_NEAREST
for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_CONSTANT_BUFFER_
SIZE

unsigned
long long

Max size in bytes of a constant buffer
allocation. The minimum value is 1
KB for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_CONSTANT_ARGS unsigned int Max number of arguments declared
with the __constant qualifier in a
kernel. The minimum value is 4 for
devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_LOCAL_MEM_SIZE cl_ulong Size of local memory arena in bytes.

The minimum value is 1 KB for
devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_COMPILER_AVAILABLE cl_bool Is CL_FALSE if the implementation

does not have a compiler available to
compile the program source.
Is CL_TRUE if the compiler is
available.

This can be CL_FALSE for the
embedded platform profile only.

CL_DEVICE_LINKER_AVAILABLE cl_bool Is CL_FALSE if the implementation
does not have a linker available.
Is CL_TRUE if the linker is available.

This can be CL_FALSE for the
embedded platform profile only.

Last Revision Date: 3/18/14 Page 260

This must be CL_TRUE if
CL_DEVICE_COMPILER_AVAILABLE is
CL_TRUE.

CL_DEVICE_QUEUE_ON_DEVICE_MAX_SI
ZE

cl_uint The max. size of the device queue in
bytes. The minimum value is 64 KB
for the embedded profile

CL_DEVICE_PRINTF_BUFFER_SIZE size_t Maximum size in bytes of the internal

buffer that holds the output of printf
calls from a kernel. The minimum
value for the EMBEDDED profile is 1
KB.

If CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_TRUE, the values assigned to
CL_DEVICE_MAX_READ_IMAGE_ARGS, CL_DEVICE_MAX_WRITE_IMAGE_ARGS,
CL_DEVICE_IMAGE2D_MAX_WIDTH, CL_DEVICE_IMAGE2D_MAX_HEIGHT,
CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT,
CL_DEVICE_IMAGE3D_MAX_DEPTH and CL_DEVICE_MAX_SAMPLERS by the
implementation must be greater than or equal to the minimum values specified in the embedded
profile version of table 4.3 given above.

Last Revision Date: 3/18/14 Page 261

Appendix A

A.1 Shared OpenCL Objects

This section describes which objects can be shared across multiple command-queues created
within a host process.

OpenCL memory objects, program objects and kernel objects are created using a context and can
be shared across multiple command-queues created using the same context. Event objects can be
created when a command is queued to a command-queue. These event objects can be shared
across multiple command-queues created using the same context.

The application needs to implement appropriate synchronization across threads on the host
processor to ensure that the changes to the state of a shared object (such as a command-queue
object, memory object, program or kernel object) happen in the correct order (deemed correct by
the application) when multiple command-queues in multiple threads are making changes to the
state of a shared object.

A command-queue can cache changes to the state of a memory object on the device associated
with the command-queue. To synchronize changes to a memory object across command-queues,
the application must do the following:

In the command-queue that includes commands that modify the state of a memory object, the
application must do the following:

 Get appropriate event objects for commands that modify the state of the shared memory
object.

 Call the clFlush (or clFinish) API to issue any outstanding commands from this

command-queue.

In the command-queue that wants to synchronize to the latest state of a memory object,
commands queued by the application must use the appropriate event objects that represent
commands that modify the state of the shared memory object as event objects to wait on. This is
to ensure that commands that use this shared memory object complete in the previous command-
queue before the memory objects are used by commands executing in this command-queue.

The results of modifying a shared resource in one command-queue while it is being used by
another command-queue are undefined.

Last Revision Date: 3/18/14 Page 262

A.2 Multiple Host Threads

All OpenCL API calls are thread-safe35 except clSetKernelArg and
clSetKernelArgSVMPointer. clSetKernelArg and clSetKernelArgSVMPointer are safe to
call from any host thread, and safe to call re-entrantly so long as concurrent calls operate on
different cl_kernel objects. However, the behavior of the cl_kernel object is undefined if
clSetKernelArg or clSetKernelArgSVMPointer are called from multiple host threads on the
same cl_kernel object at the same time36. Please note that there are additional limitations as to
which OpenCL APIs may be called from OpenCL callback functions -- please see section 5.11.

The behavior of OpenCL APIs called from an interrupt or signal handler is implementation-
defined

The OpenCL implementation should be able to create multiple command-queues for a given
OpenCL context and multiple OpenCL contexts in an application running on the host processor.

35 Please refer to the OpenCL glossary for the OpenCL definition of thread-safe. This definition may be different
from usage of the term in other contexts.

36 There is an inherent race condition in the design of OpenCL that occurs between setting a kernel argument and
using the kernel with clEnqueueNDRangeKernel. Another host thread might change the kernel arguments between
when a host thread sets the kernel arguments and then enqueues the kernel, causing the wrong kernel arguments to
be enqueued. Rather than attempt to share cl_kernel objects among multiple host threads, applications are strongly
encouraged to make additional cl_kernel objects for kernel functions for each host thread.

Last Revision Date: 3/18/14 Page 263

Appendix B — Portability

OpenCL is designed to be portable to other architectures and hardware designs. OpenCL uses at
its core a C99 based programming language. Floating-point arithmetic is based on the IEEE-
754 and IEEE-754-2008 standards. The memory objects, pointer qualifiers and weakly ordered
memory are designed to provide maximum compatibility with discrete memory architectures
implemented by OpenCL devices. Command-queues and barriers allow for synchronization
between the host and OpenCL devices. The design, capabilities and limitations of OpenCL are
very much a reflection of the capabilities of underlying hardware.

Unfortunately, there are a number of areas where idiosyncrasies of one hardware platform may
allow it to do some things that do not work on another. By virtue of the rich operating system
resident on the CPU, on some implementations the kernels executing on a CPU may be able to
call out to system services whereas the same calls on the GPU will likely fail for now. (Please
see section 6.9). Since there is some advantage to having these services available for debugging
purposes, implementations can use the OpenCL extension mechanism to implement these
services.

Likewise, the heterogeneity of computing architectures might mean that a particular loop
construct might execute at an acceptable speed on the CPU but very poorly on a GPU, for
example. CPUs are designed in general to work well on latency sensitive algorithms on single
threaded tasks, whereas common GPUs may encounter extremely long latencies, potentially
orders of magnitude worse. A developer interested in writing portable code may find that it is
necessary to test his design on a diversity of hardware designs to make sure that key algorithms
are structured in a way that works well on a diversity of hardware. We suggest favoring more
work-items over fewer. It is anticipated that over the coming months and years experience will
produce a set of best practices that will help foster a uniformly favorable experience on a
diversity of computing devices.

Of somewhat more concern is the topic of endianness. Since a majority of devices supported by
the initial implementation of OpenCL are little-endian, developers need to make sure that their
kernels are tested on both big-endian and little-endian devices to ensure source compatibility
with OpenCL devices now and in the future. The endian attribute qualifier is supported by the
OpenCL C programming language to allow developers to specify whether the data uses the
endianness of the host or the OpenCL device. This allows the OpenCL compiler to do
appropriate endian-conversion on load and store operations from or to this data.

We also describe how endianness can leak into an implementation causing kernels to produce
unintended results:

When a big-endian vector machine (e.g. AltiVec, CELL SPE) loads a vector, the order of the
data is retained. That is both the order of the bytes within each element and the order of the
elements in the vector are the same as in memory. When a little-endian vector machine (e.g.
SSE) loads a vector, the order of the data in register (where all the work is done) is reversed.
Both the order of the bytes within each element and the order of the elements with respect to one

Last Revision Date: 3/18/14 Page 264

another in the vector are reversed.

Memory:

 uint4 a =

In register (big-endian):

 uint4 a =

In register (little-endian):

uint4 a =

This allows little-endian machines to use a single vector load to load little-endian data, regardless
of how large each piece of data is in the vector. That is the transformation is equally valid
whether that vector was a uchar16 or a ulong2. Of course, as is well known, little-endian
machines actually37 store their data in reverse byte order to compensate for the little-endian
storage format of the array elements:

Memory (big-endian):

 uint4 a =

Memory (little-endian):

 uint4 a =

Once that data is loaded into a vector, we end up with this:

In register (big-endian):

 uint4 a = |

In register (little-endian):

 uint4 a =

37 Note that we are talking about the programming model here. In reality, little endian systems might choose to
simply address their bytes from "the right" or reverse the "order" of the bits in the byte. Either of these choices
would mean that no big swap would need to occur in hardware.

0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F 0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F 0x0F0E0D0C 0x0B0A0908 0x07060504 0x03020100 0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F 0x03020100 0x07060504 0x0B0A0908 0x0F0E0D0C 0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F
0x0C0D0E0F 0x08090A0B 0x04050607 0x00010203

Last Revision Date: 3/18/14 Page 265

That is, in the process of correcting the endianness of the bytes within each element, the machine
ends up reversing the order that the elements appear in the vector with respect to each other
within the vector. 0x00010203 appears at the left of the big-endian vector and at the right of
the little-endian vector.

When the host and device have different endianness, the developer must ensure that kernel
argument values are processed correctly. The implementation may or may not automatically
convert endianness of kernel arguments. Developers should consult vendor documentation for
guidance on how to handle kernel arguments in these situations.

OpenCL provides a consistent programming model across architectures by numbering elements
according to their order in memory. Concepts such as even/odd and high/low follow
accordingly. Once the data is loaded into registers, we find that element 0 is at the left of the
big-endian vector and element 0 is at the right of the little-endian vector:

 float x[4];
 float4 v = vload4(0, x);

Big-endian:
v contains { x[0], x[1], x[2], x[3] }

Little-endian:

v contains { x[3], x[2], x[1], x[0] }

The compiler is aware that this swap occurs and references elements accordingly. So long as we
refer to them by a numeric index such as .s0123456789abcdef or by descriptors such as
.xyzw, .hi, .lo, .even and .odd, everything works transparently. Any ordering reversal is
undone when the data is stored back to memory. The developer should be able to work with a big
endian programming model and ignore the element ordering problem in the vector ... for most
problems. This mechanism relies on the fact that we can rely on a consistent element numbering.
Once we change numbering system, for example by conversion-free casting (using as_typen)
a vector to another vector of the same size but a different number of elements, then we get
different results on different implementations depending on whether the system is big- endian, or
little-endian or indeed has no vector unit at all. (Thus, the behavior of bitcasts to vectors of
different numbers of elements is implementation-defined, see section 6.2.4)

 An example follows:

 float x[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
 float4 v = vload4(0, x);
 uint4 y = (uint4) v; // legal, portable
 ushort8 z = (ushort8) v; // legal, not portable

// element size changed

Big-endian:

Last Revision Date: 3/18/14 Page 266

v contains { 0.0f, 1.0f, 2.0f, 3.0f }
y contains { 0x00000000, 0x3f800000,

0x40000000, 0x40400000 }
 z contains { 0x0000, 0x0000, 0x3f80, 0x0000,

0x4000, 0x0000, 0x4040, 0x0000 }
 z.z is 0x3f80

Little-endian:
v contains { 3.0f, 2.0f, 1.0f, 0.0f }
y contains { 0x40400000, 0x40000000,

0x3f800000, 0x00000000 }
z contains { 0x4040, 0x0000, 0x4000,

0x0000, 0x3f80, 0x0000, 0x0000, 0x0000
}

z.z is 0

Here, the value in z.z is not the same between big- and little-endian vector machines

OpenCL could have made it illegal to do a conversion free cast that changes the number of
elements in the name of portability. However, while OpenCL provides a common set of
operators drawing from the set that are typically found on vector machines, it can not provide
access to everything every ISA may offer in a consistent uniform portable manner. Many vector
ISAs provide special purpose instructions that greatly accelerate specific operations such as
DCT, SAD, or 3D geometry. It is not intended for OpenCL to be so heavy handed that time-
critical performance sensitive algorithms can not be written by knowledgeable developers to
perform at near peak performance. Developers willing to throw away portability should be able
to use the platform-specific instructions in their code. For this reason, OpenCL is designed to
allow traditional vector C language programming extensions, such as the AltiVec C
Programming Interface or the Intel C programming interfaces (such as those found in
emmintrin.h) to be used directly in OpenCL with OpenCL data types as an extension to OpenCL.
 As these interfaces rely on the ability to do conversion-free casts that change the number of
elements in the vector to function properly, OpenCL allows them too.

As a general rule, any operation that operates on vector types in segments that are not the same
size as the vector element size may break on other hardware with different endianness or
different vector architecture.

Examples might include:

 Combining two uchar8's containing high and low bytes of a ushort, to make a
ushort8 using .even and .odd operators (please use upsample() for this, see
section 6.13.3)

 Any bitcast that changes the number of elements in the vector. (Operations on the new

type are non-portable.)

Last Revision Date: 3/18/14 Page 267

 Swizzle operations that change the order of data using chunk sizes that are not the same
as the element size

Examples of operations that are portable:

 Combining two uint8's to make a uchar16 using .even and .odd operators. For
example to interleave left and right audio streams.

 Any bitcast that does not change the number of elements (e.g. (float4) unit4 --

we define the storage format for floating-point types)

 Swizzle operations that swizzle elements of the same size as the elements of the vector.

OpenCL has made some additions to C to make application behavior more dependable than C.
Most notably in a few cases OpenCL defines the behavior of some operations that are undefined
in C99:

 OpenCL provides convert_ operators for conversion between all types. C99 does not
define what happens when a floating-point type is converted to integer type and the
floating-point value lies outside the representable range of the integer type after rounding.
When the _sat variant of the conversion is used, the float shall be converted to the
nearest representable integer value. Similarly, OpenCL also makes recommendations
about what should happen with NaN. Hardware manufacturers that provide the saturated
conversion in hardware may use the saturated conversion hardware for both the saturated
and non-saturated versions of the OpenCL convert_ operator. OpenCL does not
define what happens for the non-saturated conversions when floating-point operands are
outside the range representable integers after rounding.

 The format of half, float, and double types is defined to be the binary16, binary32

and binary64 formats in the draft IEEE-754 standard. (The latter two are identical to the
existing IEEE-754 standard.) You may depend on the positioning and meaning of the
bits in these types.

 OpenCL defines behavior for oversized shift values. Shift operations that shift greater

than or equal to the number of bits in the first operand reduce the shift value modulo the
number of bits in the element. For example, if we shift an int4 left by 33 bits,
OpenCL treats this as shift left by 33%32 = 1 bit.

 A number of edge cases for math library functions are more rigorously defined than in

C99. Please see section 7.5.

Last Revision Date: 3/18/14 Page 268

Appendix C — Application Data Types

This section documents the provided host application types and constant definitions. The
documented material describes the commonly defined data structures, types and constant values
available to all platforms and architectures. The addition of these details demonstrates our
commitment to maintaining a portable programming environment and potentially deters changes
to the supplied headers.

C.1 Shared Application Scalar Data Types

The following application scalar types are provided for application convenience.

cl_char
cl_uchar
cl_short
cl_ushort
cl_int
cl_uint
cl_long
cl_ulong
cl_half
cl_float
cl_double

C.2 Supported Application Vector Data Types

Application vector types are unions used to create vectors of the above application scalar types.
The following application vector types are provided for application convenience.

cl_charn
cl_ucharn
cl_shortn
cl_ushortn
cl_intn
cl_uintn
cl_longn
cl_ulongn
cl_halfn
cl_floatn
cl_doublen

n can be 2, 3, 4, 8 or 16.

Last Revision Date: 3/18/14 Page 269

The application scalar and vector data types are defined in the cl_platform.h header file.

C.3 Alignment of Application Data Types

The user is responsible for ensuring that data passed into and out of OpenCL buffers are natively
aligned relative to the start of the buffer per requirements in section 6.1.5. This implies that
OpenCL buffers created with CL_MEM_USE_HOST_PTR need to provide an appropriately
aligned host memory pointer that is aligned to the data types used to access these buffers in a
kernel(s). As well, the user is responsible to ensure that data passed into and out of OpenCL
images are properly aligned to the granularity of the data representing a single pixel (e.g.
image_num_channels * sizeof(image_channel_data_type)) except for CL_RGB
and CL_RGBx images where the data must be aligned to the granularity of a single channel in a
pixel (i.e. sizeof(image_channel_data_type)).

OpenCL makes no requirement about the alignment of OpenCL application defined data types
outside of buffers and images, except that the underlying vector primitives (e.g.
__cl_float4) where defined shall be directly accessible as such using appropriate named
fields in the cl_type union (see section C.5). Nevertheless, it is recommended that the
cl_platform.h header should attempt to naturally align OpenCL defined application data types
(e.g. cl_float4) according to their type.

C.4 Vector Literals
Application vector literals may be used in assignments of individual vector components. Literal
usage follows the convention of the underlying application compiler.

cl_float2 foo = { .s[1] = 2.0f };
cl_int8 bar = {{ 2, 4, 6, 8, 10, 12, 14, 16 }};

C.5 Vector Components
The components of application vector types can be addressed using the
<vector_name>.s[<index>] notation.

For example:

foo.s[0] = 1.0f; // Sets the 1st vector component of foo
pos.s[6] = 2; // Sets the 7th vector component of bar

Last Revision Date: 3/18/14 Page 270

In some cases vector components may also be accessed using the following notations. These
notations are not guaranteed to be supported on all implementations, so their use should be
accompanied by a check of the corresponding preprocessor symbol.

C.5.1 Named vector components notation
Vector data type components may be accessed using the .sN, .sn or .xyzw field naming
convention, similar to how they are used within the OpenCL language. Use of the .xyzw field
naming convention only allows accessing of the first 4 component fields. Support of these
notations is identified by the CL_HAS_NAMED_VECTOR_FIELDS preprocessor symbol. For
example:

#ifdef CL_HAS_NAMED_VECTOR_FIELDS
cl_float4 foo;
cl_int16 bar;
foo.x = 1.0f; // Set first component
foo.s0 = 1.0f; // Same as above
bar.z = 3; // Set third component
bar.se = 11; // Same as bar.s[0xe]
bar.sD = 12; // Same as bar.s[0xd]

#endif

Unlike the OpenCL language type usage of named vector fields, only one component field may
be accessed at a time. 	
 This restriction prevents the ability to swizzle or replicate components as
is possible with the OpenCL language types. 	
 Attempting to access beyond the number of
components	
 for a type also results in a failure.

foo.xy // illegal - illegal field name combination
bar.s1234 // illegal - illegal field name combination
foo.s7 // illegal - no component s7

C.5.2 High/Low vector component notation
Vector data type components may be accessed using the .hi and .lo notation similar to that
supported within the language types. Support of this notation is identified by the
CL_HAS_HI_LO_VECTOR_FIELDS preprocessor symbol. For example:

#ifdef CL_HAS_HI_LO_VECTOR_FIELDS
cl_float4 foo;
cl_float2 new_hi = 2.0f, new_lo = 4.0f;
foo.hi = new_hi;
foo.lo = new_lo;

#endif

Last Revision Date: 3/18/14 Page 271

C.5.3 Native vector type notation
Certain native vector types are defined for providing a mapping of vector types to architecturally
builtin vector types. Unlike the above described application vector types, these native types are
supported on a limited basis depending on the supporting architecture and compiler.

These types are not unions, but rather convenience mappings to the underlying architectures'
builtin vector types. The native types share the name of their application counterparts but are
preceded by a double underscore "__".

For example, __cl_float4 is the native builtin vector type equivalent of the cl_float4
application vector type. The __cl_float4 type may provide direct access to the architectural
builtin __m128 or vector float type, whereas the cl_float4 is treated as a union.

In addition, the above described application data types may have native vector data type
members for access convenience. The native components are accessed using the .vN sub-vector
notation, where N is the number of elements in the sub-vector. In cases where the native type is
a subset of a larger type (more components), the notation becomes an index based array of the
sub-vector type.

Support of the native vector types is identified by a __CL_TYPEN__ preprocessor symbol
matching the native type name. For example:

#ifdef __CL_FLOAT4__ // Check for native cl_float4 type
cl_float8 foo;
__cl_float4 bar; // Use of native type
bar = foo.v4[1]; // Access the second native float4
vector

#endif

C.6 Implicit Conversions

Implicit conversions between application vector types are not supported.

C.7 Explicit Casts

Explicit casting of application vector types (cl_typen) is not supported. Explicit casting of
native vector types (__cl_typen) is defined by the external compiler.

Last Revision Date: 3/18/14 Page 272

C.8 Other operators and functions

The behavior of standard operators and function on both application vector types (cl_typen)
and native vector types (__cl_typen) is defined by the external compiler.

C.9 Application constant definitions

In addition to the above application type definitions, the following literal defintions are also
available.

CL_CHAR_BIT Bit width of a character
CL_SCHAR_MAX Maximum value of a type cl_char
CL_SCHAR_MIN Minimum value of a type cl_char
CL_CHAR_MAX Maximum value of a type cl_char
CL_CHAR_MIN Minimum value of a type cl_char
CL_UCHAR_MAX Maximum value of a type cl_uchar
CL_SHORT_MAX Maximum value of a type cl_short
CL_SHORT_MIN Minimum value of a type cl_short
CL_USHORT_MAX Maximum value of a type cl_ushort
CL_INT_MAX Maximum value of a type cl_int
CL_INT_MIN Minimum value of a type cl_int
CL_UINT_MAX Maximum value of a type cl_uint
CL_LONG_MAX Maximum value of a type cl_long
CL_LONG_MIN Minimum value of a type cl_long
CL_ULONG_MAX Maximum value of a type cl_ulong

CL_FLT_DIAG Number of decimal digits of precision for the type

cl_float
CL_FLT_MANT_DIG Number of digits in the mantissa of type cl_float
CL_FLT_MAX_10_EXP Maximum positive integer such that 10 raised to this

power minus one can be represented as a normalized
floating-point number of type cl_float

CL_FLT_MAX_EXP Maximum exponent value of type cl_float
CL_FLT_MIN_10_EXP Minimum negative integer such that 10 raised to this

power minus one can be represented as a normalized
floating-point number of type cl_float

CL_FLT_MIN_EXP Minimum exponent value of type cl_float
CL_FLT_RADIX Base value of type cl_float
CL_FLT_MAX Maximum value of type cl_float
CL_FLT_MIN Minimum value of type cl_float
CL_FLT_EPSILON Minimum positive floating-point number of type

Last Revision Date: 3/18/14 Page 273

cl_float such that 1.0 + CL_FLT_EPSILON !=
1 is true.

CL_DBL_DIG Number of decimal digits of precision for the type

cl_double
CL_DBL_MANT_DIG Number of digits in the mantissa of type cl_double
CL_DBL_MAX_10_EXP Maximum positive integer such that 10 raised to this

power minus one can be represented as a normalized
floating-point number of type cl_double

CL_DBL_MAX_EXP Maximum exponent value of type cl_double
CL_DBL_MIN_10_EXP Minimum negative integer such that 10 raised to this

power minus one can be represented as a normalized
floating-point number of type cl_double

CL_DBL_MIN_EXP Minimum exponent value of type cl_double
CL_DBL_RADIX Base value of type cl_double
CL_DBL_MAX Maximum value of type cl_double
CL_DBL_MIN Minimum value of type cl_double
CL_DBL_EPSILON Minimum positive floating-point number of type

cl_double such that 1.0 + CL_DBL_EPSILON
!= 1 is true.

CL_NAN Macro expanding to a value representing NaN
CL_HUGE_VALF Largest representative value of type cl_float
CL_HUGE_VAL Largest representative value of type cl_double
CL_MAXFLOAT Maximum value of type cl_float
CL_INFINITY Macro expanding to a value represnting infinity

These literal definitions are defined in the cl_platform.h header.

Last Revision Date: 3/18/14 Page 274

Appendix D — OpenCL C++ Wrapper API

The OpenCL C++ wrapper API provides a C++ interface to the platform and runtime API. The
C++ wrapper is built on top of the OpenCL 2.0 C API (platform and runtime) and is not a
replacement. It is required that any implementation of the C++ wrapper API will make calls to
the underlying C API and it is assumed that the C API is a compliant implementation of the
OpenCL 2.0 specification.

Refer to the OpenCL C++ Wrapper API specification for details. The OpenCL C++ Wrapper
API specification can be found at http://www.khronos.org/registry/cl/.

Last Revision Date: 3/18/14 Page 275

Appendix E — CL_MEM_COPY_OVERLAP

The following code describes how to determine if there is overlap between the source and
destination rectangles specified to clEnqueueCopyBufferRect provided the source and
destination buffers refer to the same buffer object.

Copyright (c) 2011 The Khronos Group Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and /or associated documentation files (the "Materials "), to deal in the Materials
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Materials, and to permit persons to
whom the Materials are furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Materials.

THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE USE OR OTHER DEALINGS IN
THE MATERIALS.

bool
check_copy_overlap(size_t src_offset[3],
 size_t dst_offset[3],
 size_t region[3],
 size_t row_pitch, size_t slice_pitch)
{
 const size_t src_min[] = {src_offset[0], src_offset[1], src_offset[2]};
 const size_t src_max[] = {src_offset[0] + region[0],
 src_offset[1] + region[1],
 src_offset[2] + region[2]};

 const size_t dst_min[] = {dst_offset[0], dst_offset[1], dst_offset[2]};
 const size_t dst_max[] = {dst_offset[0] + region[0],
 dst_offset[1] + region[1],
 dst_offset[2] + region[2]};

 // Check for overlap
 bool overlap = true;
 unsigned i;
 for (i=0; i != 3; ++i)

Last Revision Date: 3/18/14 Page 276

 {
 overlap = overlap && (src_min[i] < dst_max[i])
 && (src_max[i] > dst_min[i]);
 }

 size_t dst_start = dst_offset[2] * slice_pitch +
 dst_offset[1] * row_pitch + dst_offset[0];
 size_t dst_end = dst_start + (region[2] * slice_pitch +
 region[1] * row_pitch + region[0]);

 size_t src_start = src_offset[2] * slice_pitch +
 src_offset[1] * row_pitch + src_offset[0];
 size_t src_end = src_start + (region[2] * slice_pitch +
 region[1] * row_pitch + region[0]);

 if (!overlap)
 {
 size_t delta_src_x = (src_offset[0] + region[0] > row_pitch) ?
 src_offset[0] + region[0] - row_pitch : 0;
 size_t delta_dst_x = (dst_offset[0] + region[0] > row_pitch) ?
 dst_offset[0] + region[0] - row_pitch : 0;

 if ((delta_src_x > 0 && delta_src_x > dst_offset[0]) ||
 (delta_dst_x > 0 && delta_dst_x > src_offset[0]))
 {
 if ((src_start <= dst_start && dst_start < src_end) ||
 (dst_start <= src_start && src_start < dst_end))
 overlap = true;
 }

 if (region[2] > 1)
 {
 size_t src_height = slice_pitch / row_pitch;
 size_t dst_height = slice_pitch / row_pitch;

 size_t delta_src_y = (src_offset[1] + region[1] > src_height) ?
 src_offset[1] + region[1] - src_height : 0;
 size_t delta_dst_y = (dst_offset[1] + region[1] > dst_height) ?
 dst_offset[1] + region[1] - dst_height : 0;

 if ((delta_src_y > 0 && delta_src_y > dst_offset[1]) ||
 (delta_dst_y > 0 && delta_dst_y > src_offset[1]))
 {
 if ((src_start <= dst_start && dst_start < src_end) ||
 (dst_start <= src_start && src_start < dst_end))
 overlap = true;
 }
 }

Last Revision Date: 3/18/14 Page 277

 }

 return overlap;
}

Last Revision Date: 3/18/14 Page 278

Appendix F – Changes

F.1 Summary of changes from OpenCL 1.0

The following features are added to the OpenCL 1.1 platform layer and runtime (sections 4 and
5):

 Following queries to table 4.3
o CL_DEVICE_NATIVE_VECTOR_WIDTH_{CHAR | SHORT | INT | LONG | FLOAT |

DOUBLE | HALF}
o CL_DEVICE_HOST_UNIFIED_MEMORY
o CL_DEVICE_OPENCL_C_VERSION

 CL_CONTEXT_NUM_DEVICES to the list of queries specified to clGetContextInfo.

 Optional image formats: CL_Rx, CL_RGx and CL_RGBx.

 Support for sub-buffer objects – ability to create a buffer object that refers to a specific

region in another buffer object using clCreateSubBuffer.

 clEnqueueReadBufferRect, clEnqueueWriteBufferRect and
clEnqueueCopyBufferRect APIs to read from, write to and copy a rectangular region of
a buffer object respectively.

 clSetMemObjectDestructorCallback API to allow a user to register a callback function

that will be called when the memory object is deleted and its resources freed.

 Options that control the OpenCL C version used when building a program executable.
These are described in section 5.8.4.5.

 CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE to the list of queries

specified to clGetKernelWorkGroupInfo.

 Support for user events. User events allow applications to enqueue commands that wait
on a user event to finish before the command is executed by the device. Following new
APIs are added - clCreateUserEvent and clSetUserEventStatus.

 clSetEventCallback API to register a callback function for a specific command

execution status.

The following modifications are made to the OpenCL 1.1 platform layer and runtime (sections 4
and 5):

 Following queries in table 4.3

Last Revision Date: 3/18/14 Page 279

o CL_DEVICE_MAX_PARAMETER_SIZE from 256 to 1024 bytes
o CL_DEVICE_LOCAL_MEM_SIZE from 16 KB to 32 KB.

 The global_work_offset argument in clEnqueueNDRangeKernel can be a non-NULL

value.

 All API calls except clSetKernelArg are thread-safe.

The following features are added to the OpenCL C programming language (section 6) in
OpenCL 1.1:

 3-component vector data types.

 New built-in functions
o get_global_offset work-item function defined in section 6.12.1.
o minmag, maxmag math functions defined in section 6.12.2.
o clamp integer function defined in section 6.12.3.
o (vector, scalar) variant of integer functions min and max in section 6.12.3.
o async_work_group_strided_copy defined in section 6.12.10.
o vec_step, shuffle and shuffle2 defined in section 6.12.12.

 cl_khr_byte_addressable_store extension is a core feature.

 cl_khr_global_int32_base_atomics, cl_khr_global_int32_extended_atomics,

cl_khr_local_int32_base_atomics and cl_khr_local_int32_extended_atomics
extensions are core features. The built-in atomic function names are changed to use the
atomic_ prefix instead of atom_.

 Macros CL_VERSION_1_0 and CL_VERSION_1_1.

The following features in OpenCL 1.0 are deprecated in OpenCL 1.1:

 The clSetCommandQueueProperty API is no longer supported in OpenCL 1.1.
 The __ROUNDING_MODE__ macro is no longer supported in OpenCL C 1.1.
 The –cl-strict-aliasing option that can be specified in options argument to

clBuildProgram is no longer supported in OpenCL 1.1.

The following new extensions are added to section 9 in OpenCL 1.1:

 cl_khr_gl_event – Creating a CL event object from a GL sync object.
 cl_khr_d3d10_sharing – Sharing memory objects with Direct3D 10.

The following modifications are made to the OpenCL ES Profile described in section 10 in
OpenCL 1.1:

 64-bit integer support is optional.

Last Revision Date: 3/18/14 Page 280

F.2 Summary of changes from OpenCL 1.1

The following features are added to the OpenCL 1.2 platform layer and runtime (sections 4 and
5):

 Custom devices and built-in kernels are supported.

 Device partitioning that allows a device to be partitioned based on a number of
partitioning schemes supported by the device.

 Extend cl_mem_flags to describe how the host accesses the data in a cl_mem object.

 clEnqueueFillBuffer and clEnqueueFillImage to support filling a buffer with a pattern

or an image with a color.

 Add CL_MAP_WRITE_INVALIDATE_REGION to cl_map_flags. Appropriate
clarification to the behavior of CL_MAP_WRITE has been added to the spec.

 New image types: 1D image, 1D image from a buffer object, 1D image array and 2D

image arrays.

 clCreateImage to create an image object.

 clEnqueueMigrateMemObjects API that allows a developer to have explicit control
over the location of memory objects or to migrate a memory object from one device to
another.

 Support separate compilation and linking of programs.

 Additional queries to get the number of kernels and kernel names in a program have been

added to clGetProgramInfo.

 Additiional queries to get the compile and link status and options have been added to
clGetProgramBuildInfo.

 clGetKernelArgInfo API that returns information about the arguments of a kernel.

 clEnqueueMarkerWithWaitList and clEnqueueBarrierWithWaitList APIs.

The following features are added to the OpenCL C programming language (section 6) in
OpenCL 1.2:

 Double-precision is now an optional core feature instead of an extension.

 New built in image types: image1d_t, image1d_array_t and image2d_array_t.

Last Revision Date: 3/18/14 Page 281

 New built-in functions

o Functions to read from and write to a 1D image, 1D and 2D image arrays
described in sections 6.12.14.2, 6.12.14.3 and 6.12.14.4.

o Sampler-less image read functions described in section 6.12.14.3.
o popcount integer function described in section 6.12.3.
o printf function described in section 6.12.13.

 Storage class specifiers extern and static as described in section 6.8.

 Macros CL_VERSION_1_2 and __OPENCL_C_VERSION__.

The following APIs in OpenCL 1.1 are deprecated in OpenCL 1.2:

 clEnqueueMarker, clEnqueueBarrier and clEnqueueWaitForEvents
 clCreateImage2D and clCreateImage3D
 clUnloadCompiler and clGetExtensionFunctionAddress
 clCreateFromGLTexture2D and clCreateFromGLTexture3D

The following queries are deprecated in OpenCL 1.2:

 CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE in table 4.3 queried using
clGetDeviceInfo.

F.3 Summary of changes from OpenCL 1.2

The following features are added to the OpenCL 2.0 platform layer and runtime (sections 4 and
5):

 Shared virtual memory.

 Device queues used to enqueue kernels on the device.

 Pipes.

 Images – support for 2D image from buffer, depth images and sRGB images.

The following features are added to the OpenCL C programming language (section 6) in
OpenCL 1.2:

 Clang Blocks.

 Kernels enqueing kernels to a device queue.

Last Revision Date: 3/18/14 Page 282

 Program scope variables in global address space.

 Generic address space.

 C1x atomics.

 New built-in functions (sections 6.13.9, 6.13.11, 6.13.15 and 6.14).

 Support images with the read_write qualifier.

 3D image writes are a core feature.

 The CL_VERSION_2_0 macro.

The following APIs are deprecated in OpenCL 2.0:

 clCreateCommandQueue, clCreateSampler and clEnqueueTask

The following queries are deprecated in OpenCL 2.0:

 CL_DEVICE_HOST_UNIFIED_MEMORY in table 4.3 queried using clGetDeviceInfo.
 CL_IMAGE_BUFFER in table 5.9 is deprecated.
 CL_DEVICE_QUEUE_PROPERTIES is replaced by

CL_DEVICE_QUEUE_ON_HOST_PROPERTIES.
 The explicit memory fence functions defined in section 6.12.9 of the OpenCL 1.2

specification.
 The OpenCL 1.2 atomic built-in functions for 32-bit integer and floating-point data types

defined in section 6.12.11 of the OpenCL 1.2 specification.

Last Revision Date: 3/18/14 Page 283

Index - APIs

clBuildProgram, 187
clCompileProgram, 189
clCreateBuffer, 94
clCreateCommandQueueWithProperties,

88
clCreateContext, 81
clCreateContextFromType, 83
clCreateImage, 118
clCreateKernel, 208
clCreateKernelsInProgram, 209
clCreatePipe, 149
clCreateProgramWithBinary, 183
clCreateProgramWithBuiltInKernels, 185
clCreateProgramWithSource, 182
clCreateSamplerWithProperties, 178
clCreateSubBuffer, 97
clCreateSubDevices, 76
clCreateUserEvent, 232
clEnqueueBarrierWithWaitList, 242
clEnqueueCopyBuffer, 107
clEnqueueCopyBufferRect, 109
clEnqueueCopyBufferToImage, 140
clEnqueueCopyImage, 133
clEnqueueCopyImageToBuffer, 138
clEnqueueFillBuffer, 112
clEnqueueFillImage, 136
clEnqueueMapBuffer, 114
clEnqueueMapImage, 143
clEnqueueMarkerWithWaitList, 241
clEnqueueMigrateMemObjects, 157
clEnqueueNativeKernel, 228
clEnqueueNDRangeKernel, 224
clEnqueueReadBuffer, 100
clEnqueueReadBufferRect, 102
clEnqueueReadImage, 129
clEnqueueSVMFree, 168
clEnqueueSVMMap, 173
clEnqueueSVMMemcpy, 169
clEnqueueSVMMemFill, 171
clEnqueueSVMUnmap, 174
clEnqueueUnmapMemObject, 154
clEnqueueWriteBuffer, 100
clEnqueueWriteBufferRect, 103

clEnqueueWriteImage, 129
clFinish, 248
clFlush, 248
clGetCommandQueueInfo, 91
clGetContextInfo, 85
clGetDeviceIDs, 58
clGetDeviceInfo, 60
clGetEventInfo, 234
clGetEventProfilingInfo, 245
clGetImageInfo, 146
clGetKernelArgInfo, 221
clGetKernelInfo, 217
clGetKernelWorkGroupInfo, 218
clGetMemObjectInfo, 159
clGetPipeInfo, 150
clGetPlatformIDs, 56
clGetPlatformInfo, 56
clGetProgramBuildInfo, 204
clGetProgramInfo, 201
clGetSamplerInfo, 180
clGetSupportedImageFormats, 126
clLinkProgram, 192
clReleaseCommandQueue, 91
clReleaseContext, 84
clReleaseDevice, 79
clReleaseEvent, 239
clReleaseKernel, 210
clReleaseMemObject, 152
clReleaseProgram, 186
clReleaseSampler, 180
clRetainCommandQueue, 90
clRetainContext, 84
clRetainDevice, 79
clRetainEvent, 239
clRetainKernel, 210
clRetainMemObject, 152
clRetainProgram, 186
clRetainSampler, 179
clSetEventCallback, 237
clSetKernelArg, 211, 213, 214
clSetKernelArgSVMPointer, 213
clSetKernelExecInfo, 214
clSetMemObjectDestructorCallback, 153

Last Revision Date: 3/18/14 Page 284

clSetUserEventStatus, 232
clSVMAlloc, 164
clSVMFree, 167

clUnloadPlatformCompiler, 200
clWaitForEvents, 233

