
More synchronization
mechanisms

• D E A D L O C K
• R E A D E R S / W R I T E R L O C K S
• C O N D I T I O N V A R I A B L E S

Reading vs. writing

�  Recall data race:
¡  Multiple concurrent reads of same memory: not a problem
¡  Multiple concurrent writes of same memory: problem
¡  Multiple concurrent read & write of same memory:

problem

�  So far:
¡  If concurrent write/write or read/write might occur, use

synchronization to ensure one-thread-at-a-time

�  But this is unnecessarily conservative:
¡  Could still allow multiple simultaneous readers!

3

Example: hashtable

�  Consider a hashtable with one coarse-grained lock
¡  So only one thread can perform operations at a time

�  But suppose:
¡  There are many simultaneous lookup operations
¡ insert operations are very rare

�  Note: important that lookup does not actually mutate
shared memory (like a move-to-front list operation or
splay trees would)

4

Readers/writer locks

A new synchronization ADT: the readers/writer lock
�  A lock’s states fall into three categories:

¡  “not held”
¡  “held for writing” by one thread
¡  “held for reading” by one or more threads

�  new: make a new lock, initially “not held”
�  acquire_write: block if currently “held for reading” or “held

for writing”, else make “held for writing”
�  release_write: make “not held”
�  acquire_read: block if currently “held for writing”, else make/

keep “held for reading” and increment readers count
�  release_read: decrement readers count, if 0, make “not held”

0 ≤ writers ≤ 1
0 ≤ readers
writers*readers=0

5

Pseudocode example (not Java)

class Hashtable<K,V> {
 …
 // coarse-grained, one lock per table
 RWLock lk = new RWLock();
 V lookup(K key) {

 int bucket = hasher(key);
 lk.acquire_read();
 … read array[bucket] …
 lk.release_read();

 }
 void insert(K key, V val) {

 int bucket = hasher(key);
 lk.acquire_write();
 … write array[bucket] …

 lk.release_write();
 }
}

6

Semantic details

�  A readers/writer lock implementation (“not our problem”)
usually gives priority to writers:
¡  Once a writer blocks, no readers arriving later will get the lock

before the writer
¡  Otherwise an insert could starve (e.g., if readers are very

common)
�  Some libraries support upgrading from reader to writer
�  Re-entrant?

¡  Mostly an orthogonal issue
�  Why not use readers/writer locks with more fine-grained

locking, like on each bucket?
¡  Not wrong, but likely not worth it due to low contention

7

In Java

�  Java’s synchronized statement does not support readers/
writer

�  Instead, library java.util.concurrent.locks.
ReentrantReadWriteLock
¡  Different interface:

÷ methods readLock and writeLock return objects
that themselves have lock and unlock methods;

÷ need to release the lock explicitly (e.g., exceptions)
¡  Does not have writer priority or reader-to-writer

upgrading
÷ Always read the documentation!

8

