Led e LCD in Arduino

Programmazione di sistemi multicore

Michele Martinelli Michele.martinelli@uniroma1.it

Marco Bernardi

m.bernardi@uniroma1.it

Georgia Koutsandria georgia.koutsandria@uniroma1.it

• Giovedi 24 Ottobre 2019 NON CI SARA LEZIONE!!!

- Controllare twiki per conoscere quando sarà recuperata
- Per la lezione di Lunedi 28 installare Processing:
 - <u>https://processing.org/download/</u>

Comunicazione Seriale in Arduino

 Serial.begin(speed) – Imposta la velocità dei dati in bit al secondo (baud) per la trasmissione seriale dei dati

Ex: Serial.begin(9600); // imposta la comunicazione a 9600 bit per secondo

 Serial.println(sensorValue) – Stampa in output (sul monitor seriale) il valore sensorValue

Ex: value = analogRead(A0);

Serial.println(value);

- Serial.available() verifica se ci sono dati da leggere nel buffer della seriale
- Serial.read() legge i dati da seriale
- Serial.flush() attende il completamento della trasmissione dei dati seriali in uscita.

Responder Experiment

In questo esercizio vedremo l'utilizzo di come si possa utilizzare più bottoni per controllare l'illuminazione di più LED.

Hardware Richiesto:

- 3 LED
- 4 Switch o bottoni
- 3 Resistenze da 220/330 Ω
- 4 Resistenze da 10 KΩ
- BreadBoard e cavi
- Arduino
- Cavo USB

Responder Experiment: Costruire il circuito

Il programma in Arduino


```
int Redled=8;
int Yellowled=7;
int Greenled=6;
int Key1=5;
int Key2=4;
int Key3=3;
int KeyRest=2;
int Red;
int Yellow;
int Green;
```

void setup()

```
pinMode(Redled,OUTPUT);
pinMode(Yellowled,OUTPUT);
pinMode(Greenled,OUTPUT);
pinMode(Keyl,INPUT);
pinMode(Key2,INPUT);
pinMode(Key3,INPUT);
pinMode(KeyRest,INPUT);
```

}

void loop()

{

Red=digitalRead(Key1); Yellow=digitalRead(Key2); Green=digitalRead(Key3); if(Red==HIGH)Red_YES(); if(Yellow==HIGH)Yellow_YES(); if(Green==HIGH)Green_YES();

void Red_YES() { while(digitalRead(KeyRest)==0) { digitalWrite(Redled,HIGH); digitalWrite(Greenled,LOW); digitalWrite(Yellowled,LOW); } clear_led(); }

void Yellow YES() while(digitalRead(KeyRest) == 0) digitalWrite(Redled,LOW); digitalWrite(Greenled,LOW); digitalWrite(Yellowled, HIGH); clear led(); void Green YES() while(digitalRead(KeyRest)==0) digitalWrite(Redled,LOW); digitalWrite(Greenled, HIGH); digitalWrite(Yellowled,LOW); clear led(); void clear led() digitalWrite(Redled,LOW);

digitalWrite(Greenled,LOW);
digitalWrite(Yellowled,LOW);

Responder Experiment

In questo esercizio impareremo come utilizzare un LED RGB (rosso verde blu) con un Arduino. Si utilizzerà la funzione analogWrite per controllare il colore del LED.

Hardware Richiesto:

- 1 LED RGB
- 3 Resistenze da 220/330 Ω
- BreadBoard e cavi
- Arduino
- Cavo USB

Responder Experiment: Costruire il circuito

Il pin più lungo del LED RGB è collegato al Ground. Il resto dei pin, che rappresenta un singolo canale Del LED, è collegato come se fosse un LED a sé Stante.

Il programma in Arduino


```
int redPin = 11;
int greenPin = 10;
int bluePin = 9;
```

```
void setup()
```

```
pinMode(redPin, OUTPUT);
pinMode(greenPin, OUTPUT);
pinMode(bluePin, OUTPUT);
```

```
void loop()
```

```
{
```

F.

```
setColor(255, 0, 0); // rosso
delay(1000);
setColor(0, 255, 0); // verde
delay(1000);
setColor(0, 0, 255); // blu
delay(1000);
setColor(255, 255, 0); // giallo
delay(1000);
setColor(80, 0, 80); // viola
delay(1000);
setColor(0, 255, 255); // acqua
delay(1000);
```

```
id a
```

Ł

void setColor(int red, int green, int blue

```
#ifdef COMMON_ANODE
red = 255 - red;
green = 255 - green;
blue = 255 - blue;
#endif
analogWrite(redPin, red);
analogWrite(greenPin, green);
analogWrite(bluePin, blue);
```

LCD

In questo esercizio impareremo come utilizzare un LCD con un Arduino. Si utilizzerà la libreria LiquidCrystal per controllare il colore del LED.

Hardware Richiesto:

- 1 LCD
- 1 Potenziometro 10KΩ
- BreadBoard e cavi
- Arduino
- Cavo USB

Liquid Crystal <LiquidCrystal.h>

- Begin(row,col) Imposta il numero di righe e colonne del LCD
 - Ex: lcd.Begin(16,2)
- print() scrive una stringa su LCS
 - Ex: lcd.print("hello, world!")
- setCursor() imposta il cursore su un punto specifico dove scrivere
 - Ex: lcd.setCursor(0,1) imposta la colonna 0 e la riga 1
- clear() Questa funzione cancella qualsiasi testo o dato già visualizzato sul display LCD.
- Home() Imposta il cursore alla posizione iniziale (0,0)

Circuito con LCD

Il display LCD necessita di sei pin di Arduino, tutti i pin devono essere output digitali.

Il display necessita anche di essere connesso ai 5V e alla messa a terra GND.

Il potenziometro viene utilizzato per controllare il contrasto del display.

Hello World!

// include the library code:
#include <LiquidCrystal.h>

```
// initialize the library by associating any needed LCD interface pin
// with the arduino pin number it is connected to
const int rs = 7, en = 8, d4 = 9, d5 = 10, d6 = 11, d7 = 12;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
```

```
void setup() {
   // set up the LCD's number of columns and rows:
   lcd.begin(16, 2);
   // Print a message to the LCD.
   lcd.print("hello, world!");
}
void loop() {
   // set the cursor to column 0, line 1
   // set the cursor to column 0, line 1
```

```
// (note: line 1 is the second row, since counting begins with 0):
```

```
lcd.setCursor(0, 1);
```

```
// print the number of seconds since reset:
```

```
lcd.print(millis() / 1000);
```

}

Lettura da seriale e scrittura su LCD

// include the library code:
#include <LiquidCrystal.h>

```
// initialize the library by associating any needed LCD interface pin
// with the arduino pin number it is connected to
const int rs = 7, en = 8, d4 = 9, d5 = 10, d6 = 11, d7 = 12;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
```

```
void setup() {
    // set up the LCD's number of columns and rows:
    lcd.begin(16, 2);
    Serial.begin(9600);
```

```
}
```

}

```
void loop() {
    if(Serial.available()){
        delay(50);
        lcd.clear();
```

```
while(Serial.available() > 0){
    lcd.write(Serial.read());
  }
}
```