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Damage	assessment	and	recovery	
after	network	failures



Failure of nodes in one network causes failure of nodes in a second network

Massive network failures in networks
may derive from single failures

Supervisory	 Control	And	Data	Acquisition	 (SCADA	systems)	cause	interdependency
communication	 network	– other	infrastructures

Structural	heterogeneity
Different	behaviors	of	propagation
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Problem Setting
Supply Graph G

– Damaged communications network
Demand Graph H

– Flows with required capacity for mission critical applications
Goal

– Make lowest cost repairs (restorations) in G to serve all flows in H

Demand graph

Required 
capacities

Supply graph

Damaged 
nodes/linksLink 

capacities



Network	management	under	failures
• Analysis	and	design	(models	of	failure	propagation,	
network	engineering)

• Assessment	(monitoring	and	network	tomography)
• Recovery	(algorithms	for	service	restoration)

Related	funded	projects	and	collaborations:	
ARL	(Army	Research	Lab)
DTRA	(Defense	and	Threat	Reduction	Agency)
Collaborations	with	Penn	State	University	and	IBM

Network	failures	



Cascading	failures

[1] H.	Khamfroush,	 N.	Bartolini,	T.	La	Porta,	A.	Swami,	J.	Dillman,
On	Propagation of	Phenomena in	Interdependent Networks,
in IEEE	Transactions on	Network	Science	and	Engineering,	Vol.	3,	n.	4,	July 2016.
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The Smart Grid

Electricity grid technology has remained

relatively unchanged since the 1960s. Now, it

is getting “smarter”: incorporating

information technology that enables

• Interdependent	networks:	functionality	or	performance	of	one	network	
depends	on	the	other	

Internet	controls	power	grid	&
grid	provides	power	for	the	Internet

Large scale interdependent networks



Failure of nodes in one network causes failure of nodes in a second network

Massive network failures in networks

© S. Buldyrev et al., Nature, Letters, Vol 464, 2010

Supervisory	 Control	And	Data	Acquisition	 (SCADA	systems)	cause	interdependency
communication	 network	– other	infrastructures

Structural	heterogeneity
Different	behaviors	of	propagation



Motivation

• Blackout	in	Italy,	Sep	2003	:	Power	outage	affected	all	Italy
• 56	million	people	have	been	affected

Power
Grid

Grid
Controller

Transportation
Network

9



Cascading	failures

• Two	inter-dependent	 networks	X	and	Y	with	respectively,
and							nodes	

• Red	links	represent	inter-connectivity	and	blue	links	represent	
intra-connectivity	links

• Given	the	initial	spreaders	set
• Calculate	the	probability	of	transition	into	a	new	state
• Expected	time	to	full	spread	or	end	of	the	propagation

Example: For	node	3	of	network	X
• Set	of	intra-connection	={1,2,3,5,6,7}	of	X
• Set	of	inter-connection={3,4}	of Y
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Problem	1:	characterize	the	propagation,	control	the	speed	of	propagation

Problem	2:	design	robust	networks	(with	failure	detection	capability	and	slow	
propagation)



Network	tomography

[1]	Ting He,	Novella	Bartolini,	Hana Khamfroush,	 InJung Kim,	Liang Ma,	Tom	La	Porta,
Service	Placement for	Detecting and	Localizing Failures Using	End-to-End	Observations,
in Proceedings of	the	36th	IEEE	International	Conference	on	Distributed	Computing	Systems	(IEEE	ICDCS	2016)

[2] N.	Bartolini,	T.	He,	H.	Khamfroush,
Fundamental Limits	of	Failure Identifiability by	Boolean Network	Tomography,
in IEEE	Proceedings of	the	International	Conference	on	Computer	Communications	 (IEEE	INFOCOM	2017)



Network	tomography
Network	Tomography:
Inferring	internal	network	state	through	external,	end-to-end	measurements

Relevance
Knowledge	of	the	network	state	is	important

§ Prompt	intervention	after	failure
§ Efficient	Routing
§ Resource	Allocation
§ Balancing	network	loads
§ QoS measurement:	 service	degradation

Challenges
Large	and	costly	overheads	due	to	active	probing

Problem	1:	Optimal	monitor	placement	for	detecting	and	localizing	failures
Problem	2:	Minimize	number	of	monitoring	paths
Problem	3:	Maximize	identifiability of	failures
Problem	4:	Design new	network	topologies	with	maximum	identifiability of	failures



Sensor	and	actuator	networks
(drones	+	terrestrial	robots	+	sensor	networks)

Related	funded	projects:	
NATO	Science	for	Peace	and	Security	G4936,	
Hybrid	Sensor	Networks	 for	Emergency	Critical	Scenarios
(2015-2018,		in	collaboration	with	GJU	and	MS&T)

PSU	seed	project,	
Digital	innovation	 in	food	security	using	a	28,000	farmer	living	lab	in	Kenya



Sensors	can	be	mounted	on	drones.	
In	this	case	they	are	typically	complex	sensing	devices	
interfaced	with	artificial	intelligence	 for	image	processing,	
event	recognition.

Monitoring	drones



Amatrice – Italy	(2016)

Why	a	network	and	not	a	single	drone	
doing	all	the	work?



In	the	aftermath	of	a	catastrophe,	drones	are	used	to	find	
people,	provide	medicines	to	inaccessible	and	possibly	
unknown	locations.

The	intervention	must	be	fast,	as	it	may	save	lives.

The	battery	of	the	drone,	especially	with	payload,	
ensures	a	limited	flight	time.

Better	to	use	multiple	coordinated	drones,	which	
autonomously	spread	through	the	area.

Why	a	network	and	not	a	single	
drone	doing	all	the	work?



� The	use	of	a	squad	in	inaccessible	terrains	is	also	
motivated	by	the	limited	supplies	available	on	site	

Examples:
low/high	temperatures	(imagine	you	are	monitoring	a	
glacier),		
absence	of	roads,	
absence	of	connectivity…

Why	a	network	and	not	a	single	
drone	doing	all	the	work?



Field	crops	at	Penn	State

Current	work	on	Sensor	and	Actuator	Networks



Farms	in	the	Philippines

Current	work	on	Sensor	and	Actuator	Networks



Farms	in	Uganda

Current	work	on	Sensor	and	Actuator	Networks



Current	work	on	Sensor	and	Actuator	Networks



• Different	concept	of	coverage	to	be	optimized!	
Dynamic	coverage:	a	point	is	covered	if	it	is	traversed,	
or	if	it	is	explored.	There	may	be	deadlines.

• Flight	at	different	heigths cause	different	sensing	
capabilities.	The	propeller	wings	cause	noise	in	the	
measurements.	Height	

• Battery	limitations	are	rigid,	you	can	recharge	the	device	
but	you	cannot	let	it	drop!

->		 Analytical	formulation	of	optimization	problems,				
algorithmic	solutions

Research	challenges



Boolean Network 
Tomography

N. Bartolini, A. Massini, et al.
Fundamental Limits of Failure Identifiability by Boolean 

Network Tomography,



Outline

• Motivation

• Network Tomography

• Definitions

• Problem Formulation

• General Network Monitoring Bounds

• Service Network Monitoring Bounds

• Performance Evaluation
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Motivation

• Identifying the state of network nodes is beneficial for 
many functions in network management
• Performance analysis
• Route selection
• Network recovery

• Direct measurement is not always available due to 
large traffic overhead, access control, etc.

• Built-in monitoring may fail detecting failures caused 
by misconfigured/unanticipated interactions between 
network layers (silent failures)

One solution: Network Tomography
25



Boolean Network 
Tomography (BNT)
• Diagnose the health of network elements from 

the health of end-to-end communications 
perceived between measurement points

• Node states can be measured indirectly via 
monitoring paths 

a b

c
d

m1

m2

m3

Path 1

Path 2

Path 1 & path 2 fail: can’t localize
Path1 fails, path 2 working: link ab failed
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Our Problem Setup
• Network is modeled as undirected graph G=(V,E), 

V representing nodes and E representing links

• Failure set, i.e. set of failed nodes: F⊆ V

• Total number of nodes: n

• Nodes states can be measured indirectly only  by 
monitoring paths

• Set of monitoring paths: P={p1,p2,…,pm}

• The state of a path is normal if all traversed nodes 
are in normal state

27



Our Problem Setup
• Failure set, i.e. set of failed nodes: F⊆ V

Notice that we focus on the failure of nodes only, as 
links can be modeled as virtual nodes.

28

v1

v2

v1

v2v12

Node v12 represents the status of link (v1 , v2)



Our Problem Setup

• Incident set of     : set of paths affected by the 
failure of node noted by

• Incident set of paths of a failure set F: 

• Test matrix T is an              matrix, where

if                 and zero otherwise

• The j-th column of T denoted with
is the characteristic vector of        and called binary 
encoding of 

II. RELATED WORK

Pioneered by Duffield [2], Boolean network tomography
has direct applications in network failure localization. The
early works focused on best-effort inference. For example,
Duffield et al. [2], [7] and Kompella et al. [1] aimed at
finding the minimum set of failures that can explain the
observed measurements, and Nguyen et al. [8] aimed at finding
the most likely failure set that explains the observations.
Later, the identifiability problem attracted attention. Ma et al.
characterized in [9] the maximum number of simultaneous
failures that can be uniquely localized, and then extended the
results in [10] to characterize the maximum number of failures
under which the states of specified nodes can be uniquely
identified as well as the number of nodes whose states can be
identified under a given number of failures.

The related optimization problems have also been studied.
The problem of optimally placing monitors to detect failed
nodes via round-trip probing was introduced and proven to be
NP-hard by Bejerano et al. in [11]. The work by Cheraghchi
et al. [5] aimed at determining the minimum number of
monitoring paths to uniquely localize a given number of
failures, under the assumption that any path can be monitored.
For monitoring paths that start/end at monitors, Ma et al. [12]
proposed polynomial time heuristics to deploy a minimum
number of monitors to uniquely localize a given number of
failures under various routing constraints. When monitoring is
performed at the service layer, He et al. [6] proposed service
placement algorithms to maximize the number of identifiable
nodes by monitoring the paths connecting clients and servers.

Our work also addresses the problem of maximizing the
number of identifiable nodes under failures. Unlike previous
work, we aim at establishing upper bounds based on general
information such as the number/length of monitoring paths,
the type of routing scheme, and constraints on the path end-
points. Besides the theoretical value, our results also provide
guidelines for network design to facilitate network monitoring.

III. PROBLEM FORMULATION

We use lower-case letters to denote scalars and vectors
and upper-case letters to denote matrices. For a vector p, p|i
denotes the i-th element in the vector. For a matrix M , M |i,j
denotes the element in the i-th row and j-th column; moreover,
M |i,∗ denotes the i-th row and M |∗,j the j-th column of M .

A. Network Model
We model the network as an undirected graph G = (V, E),

where V is a set of n nodes, and E is the set of links.
Each node may be in normal or failed state. Without loss

of generality, we assume that links do not fail, as link failures
can be modeled by the failures of logical nodes that represent
the links. The set of all failed nodes, denoted by F ⊆ V ,
defines the state of a network, and is called failure set.

B. Observation Model
We assume that node states cannot be measured di-

rectly, but only indirectly via monitoring paths. Let P =

{p1, p2, . . . , pm} be a given set of m monitoring paths. Ac-
cording to the needs of the discussion, each path pi ∈ P
is represented as either a set of nodes pi, or as an ordered
sequence of nodes p̂i, from one endpoint to the other. The
state of a path is normal if and only if all traversed nodes
(including endpoints) are in normal state. We call the incident
set of vi the set of paths affected by the failure of node vi and
denote it with Pvi . We also denote the incident set of paths
of a failure set F with PF ! ∪vi∈FPvi .

The testing matrix T is an m × n matrix, where T |i,j = 1
if vj ∈ pi, and zero otherwise. The j-th column of T , denoted
with b(vj) ! T |∗,j , is the characteristic vector1 of Pvj . The
transpose of b(vj) is hereby called the binary encoding of vj .
Note that multiple nodes may have the same binary encoding.

C. Identifiability
The concept of identifiability refers to the capability of

inferring the states of individual nodes from the states of
the monitoring paths. Informally, we say that a node v is
1-identifiable, given a set of paths P , if its failure and the
failure of any other node w cause the failure of different sets
of monitoring paths in P , i.e. v and w have different incident
sets. This concept can be extended to the case of concurrent
failures of at most k nodes, where a node is k-identifiable in
P if any two sets of failures F1 and F2 of size at most k,
which differ at least in v (i.e., one contains v and the other
does not), cause the failures of different monitoring paths in
P , i.e. F1 and F2 have different incident sets.

He et al. in [6] formalized the concept of k-identifiability
that we reformulate as follows:
Definition III.1. Given a set of monitoring paths P and a
node vj ∈ V , vj is k-identifiable with respect to (wrt) P if for
any failure sets F1 and F2 such that F1 ∩ {vj} ≠ F2 ∩ {vj},
and |Fi| ≤ k (i ∈ {1 , 2}),

∨
vi∈F1

b(vi) ̸=
∨

vz∈F2
b(vz)

where with ”
∨

” we refer to the element-wise logical OR.

In the special case of k = 1 , Definition III.1 implies the
following Lemma (see [13] for a detailed proof).
Lemma III.1. A node vi is 1-identifiable wrt P if and only
if b(vi) ̸= 0, and ∀vj ̸= vi, b(vj) ̸= b(vi), i.e., its binary
encoding is not null and not identical with that of any other
node.

D. Bounding Identifiability
The set of monitoring paths P is usually the result of design

choices related to topology, monitoring endpoints, routing
scheme, etc. Given a collection of candidate path sets2 P under
all possible designs, the question is: how well can we monitor
the network using path measurements and which design is the
best? Using the notion of k-identifiability, we can measure

1A characteristic vector of a subset S of an ordered set of n elements
V = {v1, v2, . . . , vn} is a binary vector with ‘1’ only in the positions of
the elements of V that are included in S.

2For example, P may be the class of path sets of given cardinality, or paths
of a given length.
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the network using path measurements and which design is the
best? Using the notion of k-identifiability, we can measure

1A characteristic vector of a subset S of an ordered set of n elements
V = {v1, v2, . . . , vn} is a binary vector with ‘1’ only in the positions of
the elements of V that are included in S.

2For example, P may be the class of path sets of given cardinality, or paths
of a given length.

II. RELATED WORK

Pioneered by Duffield [2], Boolean network tomography
has direct applications in network failure localization. The
early works focused on best-effort inference. For example,
Duffield et al. [2], [7] and Kompella et al. [1] aimed at
finding the minimum set of failures that can explain the
observed measurements, and Nguyen et al. [8] aimed at finding
the most likely failure set that explains the observations.
Later, the identifiability problem attracted attention. Ma et al.
characterized in [9] the maximum number of simultaneous
failures that can be uniquely localized, and then extended the
results in [10] to characterize the maximum number of failures
under which the states of specified nodes can be uniquely
identified as well as the number of nodes whose states can be
identified under a given number of failures.

The related optimization problems have also been studied.
The problem of optimally placing monitors to detect failed
nodes via round-trip probing was introduced and proven to be
NP-hard by Bejerano et al. in [11]. The work by Cheraghchi
et al. [5] aimed at determining the minimum number of
monitoring paths to uniquely localize a given number of
failures, under the assumption that any path can be monitored.
For monitoring paths that start/end at monitors, Ma et al. [12]
proposed polynomial time heuristics to deploy a minimum
number of monitors to uniquely localize a given number of
failures under various routing constraints. When monitoring is
performed at the service layer, He et al. [6] proposed service
placement algorithms to maximize the number of identifiable
nodes by monitoring the paths connecting clients and servers.

Our work also addresses the problem of maximizing the
number of identifiable nodes under failures. Unlike previous
work, we aim at establishing upper bounds based on general
information such as the number/length of monitoring paths,
the type of routing scheme, and constraints on the path end-
points. Besides the theoretical value, our results also provide
guidelines for network design to facilitate network monitoring.

III. PROBLEM FORMULATION

We use lower-case letters to denote scalars and vectors
and upper-case letters to denote matrices. For a vector p, p|i
denotes the i-th element in the vector. For a matrix M , M |i,j
denotes the element in the i-th row and j-th column; moreover,
M |i,∗ denotes the i-th row and M |∗,j the j-th column of M .

A. Network Model
We model the network as an undirected graph G = (V, E),

where V is a set of n nodes, and E is the set of links.
Each node may be in normal or failed state. Without loss

of generality, we assume that links do not fail, as link failures
can be modeled by the failures of logical nodes that represent
the links. The set of all failed nodes, denoted by F ⊆ V ,
defines the state of a network, and is called failure set.

B. Observation Model
We assume that node states cannot be measured di-

rectly, but only indirectly via monitoring paths. Let P =

{p1, p2, . . . , pm} be a given set of m monitoring paths. Ac-
cording to the needs of the discussion, each path pi ∈ P
is represented as either a set of nodes pi, or as an ordered
sequence of nodes p̂i, from one endpoint to the other. The
state of a path is normal if and only if all traversed nodes
(including endpoints) are in normal state. We call the incident
set of vi the set of paths affected by the failure of node vi and
denote it with Pvi . We also denote the incident set of paths
of a failure set F with PF ! ∪vi∈FPvi .

The testing matrix T is an m × n matrix, where T |i,j = 1
if vj ∈ pi, and zero otherwise. The j-th column of T , denoted
with b(vj) ! T |∗,j , is the characteristic vector1 of Pvj . The
transpose of b(vj) is hereby called the binary encoding of vj .
Note that multiple nodes may have the same binary encoding.

C. Identifiability
The concept of identifiability refers to the capability of

inferring the states of individual nodes from the states of
the monitoring paths. Informally, we say that a node v is
1-identifiable, given a set of paths P , if its failure and the
failure of any other node w cause the failure of different sets
of monitoring paths in P , i.e. v and w have different incident
sets. This concept can be extended to the case of concurrent
failures of at most k nodes, where a node is k-identifiable in
P if any two sets of failures F1 and F2 of size at most k,
which differ at least in v (i.e., one contains v and the other
does not), cause the failures of different monitoring paths in
P , i.e. F1 and F2 have different incident sets.

He et al. in [6] formalized the concept of k-identifiability
that we reformulate as follows:
Definition III.1. Given a set of monitoring paths P and a
node vj ∈ V , vj is k-identifiable with respect to (wrt) P if for
any failure sets F1 and F2 such that F1 ∩ {vj} ≠ F2 ∩ {vj},
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scheme, etc. Given a collection of candidate path sets2 P under
all possible designs, the question is: how well can we monitor
the network using path measurements and which design is the
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and |Fi| ≤ k (i ∈ {1 , 2}),

∨
vi∈F1

b(vi) ̸=
∨

vz∈F2
b(vz)

where with ”
∨

” we refer to the element-wise logical OR.

In the special case of k = 1 , Definition III.1 implies the
following Lemma (see [13] for a detailed proof).
Lemma III.1. A node vi is 1-identifiable wrt P if and only
if b(vi) ̸= 0, and ∀vj ̸= vi, b(vj) ̸= b(vi), i.e., its binary
encoding is not null and not identical with that of any other
node.

D. Bounding Identifiability
The set of monitoring paths P is usually the result of design

choices related to topology, monitoring endpoints, routing
scheme, etc. Given a collection of candidate path sets2 P under
all possible designs, the question is: how well can we monitor
the network using path measurements and which design is the
best? Using the notion of k-identifiability, we can measure

1A characteristic vector of a subset S of an ordered set of n elements
V = {v1, v2, . . . , vn} is a binary vector with ‘1’ only in the positions of
the elements of V that are included in S.

2For example, P may be the class of path sets of given cardinality, or paths
of a given length.

II. RELATED WORK

Pioneered by Duffield [2], Boolean network tomography
has direct applications in network failure localization. The
early works focused on best-effort inference. For example,
Duffield et al. [2], [7] and Kompella et al. [1] aimed at
finding the minimum set of failures that can explain the
observed measurements, and Nguyen et al. [8] aimed at finding
the most likely failure set that explains the observations.
Later, the identifiability problem attracted attention. Ma et al.
characterized in [9] the maximum number of simultaneous
failures that can be uniquely localized, and then extended the
results in [10] to characterize the maximum number of failures
under which the states of specified nodes can be uniquely
identified as well as the number of nodes whose states can be
identified under a given number of failures.

The related optimization problems have also been studied.
The problem of optimally placing monitors to detect failed
nodes via round-trip probing was introduced and proven to be
NP-hard by Bejerano et al. in [11]. The work by Cheraghchi
et al. [5] aimed at determining the minimum number of
monitoring paths to uniquely localize a given number of
failures, under the assumption that any path can be monitored.
For monitoring paths that start/end at monitors, Ma et al. [12]
proposed polynomial time heuristics to deploy a minimum
number of monitors to uniquely localize a given number of
failures under various routing constraints. When monitoring is
performed at the service layer, He et al. [6] proposed service
placement algorithms to maximize the number of identifiable
nodes by monitoring the paths connecting clients and servers.

Our work also addresses the problem of maximizing the
number of identifiable nodes under failures. Unlike previous
work, we aim at establishing upper bounds based on general
information such as the number/length of monitoring paths,
the type of routing scheme, and constraints on the path end-
points. Besides the theoretical value, our results also provide
guidelines for network design to facilitate network monitoring.

III. PROBLEM FORMULATION

We use lower-case letters to denote scalars and vectors
and upper-case letters to denote matrices. For a vector p, p|i
denotes the i-th element in the vector. For a matrix M , M |i,j
denotes the element in the i-th row and j-th column; moreover,
M |i,∗ denotes the i-th row and M |∗,j the j-th column of M .

A. Network Model
We model the network as an undirected graph G = (V, E),

where V is a set of n nodes, and E is the set of links.
Each node may be in normal or failed state. Without loss

of generality, we assume that links do not fail, as link failures
can be modeled by the failures of logical nodes that represent
the links. The set of all failed nodes, denoted by F ⊆ V ,
defines the state of a network, and is called failure set.

B. Observation Model
We assume that node states cannot be measured di-

rectly, but only indirectly via monitoring paths. Let P =

{p1, p2, . . . , pm} be a given set of m monitoring paths. Ac-
cording to the needs of the discussion, each path pi ∈ P
is represented as either a set of nodes pi, or as an ordered
sequence of nodes p̂i, from one endpoint to the other. The
state of a path is normal if and only if all traversed nodes
(including endpoints) are in normal state. We call the incident
set of vi the set of paths affected by the failure of node vi and
denote it with Pvi . We also denote the incident set of paths
of a failure set F with PF ! ∪vi∈FPvi .

The testing matrix T is an m × n matrix, where T |i,j = 1
if vj ∈ pi, and zero otherwise. The j-th column of T , denoted
with b(vj) ! T |∗,j , is the characteristic vector1 of Pvj . The
transpose of b(vj) is hereby called the binary encoding of vj .
Note that multiple nodes may have the same binary encoding.

C. Identifiability
The concept of identifiability refers to the capability of

inferring the states of individual nodes from the states of
the monitoring paths. Informally, we say that a node v is
1-identifiable, given a set of paths P , if its failure and the
failure of any other node w cause the failure of different sets
of monitoring paths in P , i.e. v and w have different incident
sets. This concept can be extended to the case of concurrent
failures of at most k nodes, where a node is k-identifiable in
P if any two sets of failures F1 and F2 of size at most k,
which differ at least in v (i.e., one contains v and the other
does not), cause the failures of different monitoring paths in
P , i.e. F1 and F2 have different incident sets.

He et al. in [6] formalized the concept of k-identifiability
that we reformulate as follows:
Definition III.1. Given a set of monitoring paths P and a
node vj ∈ V , vj is k-identifiable with respect to (wrt) P if for
any failure sets F1 and F2 such that F1 ∩ {vj} ≠ F2 ∩ {vj},
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denote it with Pvi . We also denote the incident set of paths
of a failure set F with PF ! ∪vi∈FPvi .

The testing matrix T is an m × n matrix, where T |i,j = 1
if vj ∈ pi, and zero otherwise. The j-th column of T , denoted
with b(vj) ! T |∗,j , is the characteristic vector1 of Pvj . The
transpose of b(vj) is hereby called the binary encoding of vj .
Note that multiple nodes may have the same binary encoding.

C. Identifiability
The concept of identifiability refers to the capability of

inferring the states of individual nodes from the states of
the monitoring paths. Informally, we say that a node v is
1-identifiable, given a set of paths P , if its failure and the
failure of any other node w cause the failure of different sets
of monitoring paths in P , i.e. v and w have different incident
sets. This concept can be extended to the case of concurrent
failures of at most k nodes, where a node is k-identifiable in
P if any two sets of failures F1 and F2 of size at most k,
which differ at least in v (i.e., one contains v and the other
does not), cause the failures of different monitoring paths in
P , i.e. F1 and F2 have different incident sets.

He et al. in [6] formalized the concept of k-identifiability
that we reformulate as follows:
Definition III.1. Given a set of monitoring paths P and a
node vj ∈ V , vj is k-identifiable with respect to (wrt) P if for
any failure sets F1 and F2 such that F1 ∩ {vj} ≠ F2 ∩ {vj},
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where with ”
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” we refer to the element-wise logical OR.

In the special case of k = 1 , Definition III.1 implies the
following Lemma (see [13] for a detailed proof).
Lemma III.1. A node vi is 1-identifiable wrt P if and only
if b(vi) ̸= 0, and ∀vj ̸= vi, b(vj) ̸= b(vi), i.e., its binary
encoding is not null and not identical with that of any other
node.

D. Bounding Identifiability
The set of monitoring paths P is usually the result of design

choices related to topology, monitoring endpoints, routing
scheme, etc. Given a collection of candidate path sets2 P under
all possible designs, the question is: how well can we monitor
the network using path measurements and which design is the
best? Using the notion of k-identifiability, we can measure

1A characteristic vector of a subset S of an ordered set of n elements
V = {v1, v2, . . . , vn} is a binary vector with ‘1’ only in the positions of
the elements of V that are included in S.

2For example, P may be the class of path sets of given cardinality, or paths
of a given length.
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Duffield et al. [2], [7] and Kompella et al. [1] aimed at
finding the minimum set of failures that can explain the
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the most likely failure set that explains the observations.
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failures that can be uniquely localized, and then extended the
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points. Besides the theoretical value, our results also provide
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1 0 0 0 1 0 1 0



Test matrix T
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p1

p2

p3

v1

v2

v4

v5 v7

v6

Which nodes are 2-identifiable? None of them!

v3

v8

𝑇 =
1 1 1 0 0 1 1 0
0 0 0 0 1 1 1 0
1 0 0 0 1 0 1 0



Test matrix T
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p1

p2

p3

v1

v2

v4

v5 v7

v6

Which nodes are 2-identifiable? 

v3

v8

𝑇 =

1 1 1 0 0 1 1 0
0 0 0 0 1 1 1 0
1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1

p4



Test matrix T
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p1

p2

p3

v1

v2

v4

v5 v7

v6

Which nodes are 2-identifiable? v8

v3

v8

𝑇 =

1 1 1 0 0 1 1 0
0 0 0 0 1 1 1 0
1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1

p4


