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Computer Network Performance Projects.
Project topic: task assignment and path planning for

swarms of aerial drones
Novella Bartolini

Abstract—This is a short summary of some discussions
we had in class, when I introduced some of the topics for
the project of the course of Computer Network Perfor-
mance. We hereby consider the problem of assigning tasks
to multiple cooperating drones, under several application
contexts, including complete exploration of an area of
interest, and maximization of number of critical targets
being visited within a given time.

I. INTRODUCTION

While nowadays single remotely controlled
drones are commonly used for monitoring regions
of interest in multiple applications, we outline sit-
uations in which monitoring target points in a se-
quence is not sufficient for the purpose of recon-
structing a sufficiently representative view of the
ongoing events, and the application requires moni-
toring from multiple drones working concurrently.

For instance, in critical scenarios where drones
are looking for survivors, or aim at distributing
medicines or water to trapped or disabled humans
or animals, it is of uttermost urgency for them to
deliver service within strict time constraints.

We consider also completely different application
contexts requiring simultaneous monitoring of mul-
tiple points in a region. In agriculture scenarios, for
example, especially in developing countries, drones
may be deployed with the objective of measuring
the spread of viruses in crop fields. In these contexts
it is important that multiple points of the region of
interest be monitored simultaneously or in a short
time window, to be able to correlate simultaneous
measurements of geographically distant points, and
reconstruct the front-line of a spreading disease.

In these applications, we need a monitoring net-
work formed by multiple aerial devices capable
of sampling multiple targets in parallel, with the
objective to minimize the overall sampling time or

maximize the monitoring jobs done within a given
time span.

In this work we formulate the problem of as-
signing monitoring tasks and planning paths for
multiple drones forming a swarm with the purpose
of achieving a common goal.

We contribute an analytic formulation of the
mentioned problems in terms of MILPs.

II. PROBLEM FORMULATION

We assume that the ultimate objective of the
monitoring swarm is to monitor a given set of target
points Ψ in the region of interest. Each drone flying
above a surface can monitor a finite area with a
certain precision, which depends on the type of
sensing devices mounted on-board, on the height
of the drone, on the presence of obstacles on the
ground and on several other factors. It follows that
even for applications requiring a continuous and
complete coverage of the area of a region of interest,
we can reasonably approximate this requirement to
the problem of monitoring a given set of target
points.

As a simplifying example, consider a smooth and
flat region of interest. With a rough approximation,
we can assume that a drone is able to monitor a
circular area of radius R (a function of its height
with respect to the ground). In this case, a potential
representation of Ψ could be the set of central
points of the tiles of a squared grid, with side of
length

√
2R, such that by monitoring the points

of Ψ we ensure the inspection of all the tiles and
consequently of the entire region of interest.

Let U be the set of aerial vehicles forming the
swarm, and let du be the home depot of drone u ∈
U , i.e. the point of the region of interest from which
the drone departs and to which it must go back for
recharging and device recollection.
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We introduce the following binary decision vari-
ables xuij ∈ {0, 1}, with i, j ∈ Ψ ∪ {du} and u ∈ U
to represent the decision to let the vehicle u traverse
the region from the region point i to the region point
j, exploring them in a sequence (xuij = 1) or not
(xuij = 0).

A. Coverage of target points
Depending on the formulation of the optimization

problem, we may want to tackle coverage by means
of an explicit constraint, by imposing coverage of
all the target points (or a given percentage of them),
or we may prefer to have coverage as an objective
to be maximized.

1) Coverage as a constraint: In order to impose
coverage completeness, we want every target point
to be covered by at least one vehicle. This implies
that for every target point i ∈ Ψ there must be an
edge adjacent to i which is traversed at least once,
by at least a vehicle u ∈ U . This translates into the
following set of constraints:∑

u∈U ,j∈Ψ∪{du}

xuij ≥ 1,∀i ∈ Ψ. (1)

The use of the equality sign in this constraint,
would instead imply that each point will be covered
exactly once by only one vehicle. Notice that,
depending on energy availability, or time require-
ments, and number of available drones, it may be
impossible for the given monitoring network to
cover all the target points. Observe that the intro-
duction of this constraint may affect feasibility of
the problem solution, especially if used jointly with
constraints on battery life or target exploration time.
Depending on the application, it may be helpful to
tackle coverage as an objective of the problem1, as
we show in the following paragraph.

2) Coverage as an objective of the optimization
problem: When the energy availability or the num-
ber of vehicles are limited such that it is not granted
that the exploration of all the targets is feasible, it
may be convenient to formulate the problem as a
coverage maximization problem.

Given the variables defined so far, we do not
have an explicit representation of this objective.
Indeed, while the expression

∑
u∈U ,j∈Ψ∪{du} x

u
ij is

equal to 0 when the target point i is not covered,

1Notice that coverage can never be tackled as both an objective or
a constraint simultaneously

this expression may have a value that is larger than
1, when the target is covered.

We may have two situations: (a) each target point
is explored no more than once by no more than one
vehicle, or (b) each target point is explored poten-
tially multiple times by the same or by multiple
vehicles.

In the first scenario (a), the expression∑
u∈U ,j∈Ψ∪{du} x

u
ij is either 0 (point i not covered)

or 1 (point i covered exactly once by one drone).
Hence if the purpose is to maximize the number
of covered points we need to use the following
objective function:

max
∑
i∈Ψ

∑
u∈U ,j∈Ψ∪{du}

xuij. (2)

In the second scenario (b), we need to introduce
a new binary variable δi ∈ {0, 1}, for i ∈ Ψ, to
represent the decision to cover target i a non null
number of times, by any number of drones (δi = 1),
or not covering it (δi = 0). We then need to have
the following objective function,

max
∑
i∈Ψ

δi. (3)

In scenario (b), to represent a relationship between
the values of the variables δi and xuij , we impose an
additional constraint

δi ≤
∑

u∈U ,j∈Ψ∪{du}

xuij, (4)

where the inequality bounds the value of the vari-
ables δi = 0 when the point i is not covered by
any vehicle, while all the covered points j will
have δj = 1 because of the max operator given
by equation 3.

B. Cyclic trajectory constraints
To impose a cyclic trajectory with an explicit

constraint acting on those variables, we impose the
following equation 5 which implies that any drone
that enters the point j should also leave it,∑
i∈Ψ∪{du}

xuij =
∑

k∈Ψ∪{du}

xujk,∀j ∈ Ψ ∪ {du}, u ∈ U ,

(5)
and with the following equation 6, we impose the
connectedness of the trajectory with the home depot
du of drone u,∑

j∈Ψ

xuduj = 1,∀u ∈ U . (6)
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Fig. 1. Path with subcycles(a), path with disconnected cycles (b)

Notice that the constraints of Equation 5 and 6 do
not preclude the formation of disconnected cycles
or subcycles like those in the Figure 1.

For the purpose of eliminating solutions con-
taining either sub-cycles or disconnected cycles we
could write an additional constraint, observing that
any cycle, not containing sub-cycles contains a
number of nodes which is equal to the number of
edges. Therefore, for any given subset of nodes Ψ,
i.e. ∀Ω ⊂ Ψ, s.t. it must hold that∑

i,j∈Ω

xuij ≤ |Ω| − 1.

In fact, if some nodes form a disconnected cycle
or a sub-cycle, by choosing Ω containing the only
nodes of the sub-cycle we observe a violation of this
constraint. Sub-cycles containing the home depot du
are instead not captured by this constraint, but are
already excluded by constraint 6, which imposes
that the depot is traversed only once in each drone
trajectory.

Nevertheless, in order to impose this condition for
any drone u and for any choice of Ω not containing
the depot du we would have |U |·2|Ψ| additional con-
straints, which would cause the problem formulation
to be exponential in the input size.

By contrast, by adding new auxiliary variables,
we can formulate the condition of avoidance of
disconnected cycles and sub-cycles, with a number
of variables and constraints which is polynomial in
the input size of the problem.

We therefore introduce the auxiliary variables
zui ∈ {1, . . . , |Ψ|} to represent the ordinal position
of the target point i ∈ Ψ in the trajectory of drone
u. These variables should respect the following
constraint:

zuj−zui ≥ xuij+|Ψ|·(xuij−1),∀u ∈ U ,∀i, j ∈ Ψ, (7)

with also

zi ∈ {1, . . . , |Ψ|},∀i ∈ Ψ. (8)

Fig. 2. DJI Phantom 4 PRO

In summary, in the final problem formulation,
the equations 5, 6, 7 and 8 impose that each
drone traverses a path starting and ending in the
home depot, including a subset of the target points,
without traversing the same target more than once.

C. Energy consumption of a drone
It must be noted that, without a limitation on

execution time or battery life, the entire problem
could be solved by using a single drone, inspecting
all the target points in a sequence.

Nevertheless, the battery life of a drone imposes a
strict limitation on the number of target points that
can be inspected in a unique flight, before going
back to the depot point for recharging.

Just to make an example, the DJI Phantom 4 Pro
[1] shown in Figure 2, on sale for about e1200, with
no additional payload, can fly for about 30 minutes
and needs about 1hr to recharge its battery from
15% to 100%.

If we do not consider recharging and demand
drones to complete their tasks and go back to the
depot for recollection before the battery is com-
pletely depleted, we should give a model of energy
consumption for movement and for target point
inspection.

As a first approximation we can consider an
energy consumption for movement which is pro-
portional to the length of the traversed distance.
Under this approximation if edge xij is lij meters
long, the battery consumption for movement is
proportional to lij . Likewise, if φi is the necessary
time to inspect the target point i, we can consider
a contribution to the energy consumption related
to target inspection proportional to φi. It follows
that, as a first approximation we can model the
energy consumption of a drone along its path as
the summation of terms related to both inspected
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target points and traversed edges. We incorporate
these two energy consumption components into
an edge-based measure, so we model the energy
ωij that a drone spends for exploring the region
point i and moving to the region point j, with
i, j ∈ Ψ∪{du : u ∈ U} as follows: ωij , a·φi+b·lij
where a and b are dimensional coefficients which
reflect the energy consumption for a unit time of
inspection of a target and unit length of movement,
respectively, and where we consider φi = 0 if i is a
depot of a drone, i.e. i ∈ {du : u ∈ U}2.

Similarly to coverage, the energy consumption of
a drone can be tackled either as an objective to be
minimized or as a constraint. We explain the two
approaches in the following paragraphs.

1) Constraint on battery life: Given that the term
ωij represents the energy that a drone u spends on
point i and on the route from i to j, the total energy
spent by a drone along its trajectory, including
inspections on targets, is∑

ij∈Ψ∪{du}

ωij · xuij,

for u ∈ U . Assuming that the energy available
for the drones is heterogeneously distributed, i.e. a
drone u has bu available energy (in energy units),
with bu R bw, for any u,w ∈ U and u 6= w,
a constraint that imposes that drone u does not
consume more than its available energy in its route
is the following:∑

ij∈Ψ∪{du}

ωij · xuij ≤ bu,∀u ∈ U . (9)

2) Energy saving as an objective of the optimiza-
tion problem: Depending on the application context,
it may be beneficial to minimize the total energy
consumption of the drones. Let ςu be the energy
consumed by a drone in its route, it holds

ςu =
∑

ij∈Ψ∪{du}

ωij · xuij.

It is easy to see that a solution that minimizes the
total energy spent by the drones, also minimizes
the average energy spent. This is because, if a
route assignment solution minimizes

∑
u∈U ςu, it

also minimizes the value of
∑

u∈U ςu/|U|.

2We are implicitly assuming that the depot of a drone does not
coincide with any of the target points

Hence, for the purpose of minimizing either the
total or the mean energy spent by the drones,
the objective function of the optimization problem
should be the following:

min
∑
u∈U

∑
ij∈Ψ∪{du}

ωij · xuij. (10)

Nevertheless, it must be noted that this objective
may result in an uneven distribution of the energy
requirements of the drones.

By contrast, it may be beneficial to minimize the
maximum energy spent by any drone, which implies
some load balancing among the drones. In order to
do so, we can introduce a new decision variable (this
time a continuous one) γ to represent the maximum
energy spent by any drone, and minimize the value
of γ:

min γ (a)
γ ≥

∑
u∈U

∑
ij∈Ψ∪{du} ωij · xuij. (b)

(11)

Notice that without an explicit constraint, such
as the one represented by Equation 9, there is no
guarantee that the solution does not exceed the
energy availability of a drone.

D. Time to visit a target

For safety critical applications the waiting time
spent between the launch of the swarm and the
inspection of a target, is a very important perfor-
mance metric which needs to be accounted either as
a constraint or in the objective function. In order to
model visit time in our problem we modify the sub-
cycle elimination constraints of Equations 7 and 8.
We replace the integer variables zui with continuous
variables tui ∈ R+

0 representing the time at which
drone u visits the target point i ∈ Ψ or 0 if drone u
does not visit point i at all. We modify the constraint
given in Equation 7 in the following, where L is a
large upper bound on tui , ∀i, u:

tuj − tui ≥ ωijx
u
ij + L(xuij − 1),

∀i ∈ Ψ ∪ {du}, j ∈ Ψ, u ∈ U
(12)

tdu = 0, u ∈ U (13)

tui ≤
∑

j∈Ψ∪{du}

L · xuij, u ∈ U . (14)
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With Equation 12 we calculate the time to ex-
plore any target in the route of drone u and at
the same time we rule out potential sub-cycles or
disconnected cycles from the solution. Equation 13
sets the initial exploration time to 0, while Equation
14 sets to zero the exploration time of all the targets
not explored by drone u.

With this setting, the time to visit target i is τi =∑
u∈U t

u
i .

As a consequence, under the assumption that
all targets are inspected, the average inspection
time is

(1/|Ψ|) ·
∑
i∈Ψ

τi. (15)

Notice that another way to optimize the inspec-
tion time is to minimize the time to complete the
target inspection.

By introducing the decision variable τfinal as
objective function to be minimized, and adding the
following constraint to the formulation, we obtain a
representation of the time until the target inspection
is completed:

τfinal ≥ τi + φi, ∀i ∈ Ψ (16)

III. OPTIMIZATION PROBLEMS

A. Maximum Coverage under Battery Constraints
When energy available is constrained, it may

happen that the number of targets is too high to
be inspected by the monitoring network. In such a
case it makes sense to formulate the problem of
maximizing the number of targets being covered
under the limitation of energy available per drone.

The problem can be formulated as an ILP, as
follows:

max
∑

i∈Ψ

∑
u∈U,j∈Ψ∪{du} x

u
ij (a)

s.t.∑
i∈Ψ∪{du} x

u
ij =

∑
k∈Ψ∪{du} x

u
jk,∀j ∈ Ψ ∪ {du}, u ∈ U (b)∑

j∈Ψ x
u
duj = 1, ∀u ∈ U (c)

zuj − zui ≥ xuij + |Ψ| · (xuij − 1), ∀u ∈ U ,∀i, j ∈ Ψ (d)
zi ∈ {1, . . . , |Ψ|},∀i ∈ Ψ (e)∑

ij∈Ψ∪{du} ωij · xuij ≤ bu,∀u ∈ U (f)

xuij ∈ {0, 1} (g)

Problem 1. Max Coverage under Limited Battery

In Problem 1, the optimization function expressed
by equation (a) is the one already discussed in Equa-
tion 2 of Section II-A2. Constraints (b-e) ensure
that the trajectory of a drone u is a Hamiltonian

cycle on a subset of the target points of Ψ, including
the depot du and no sub-cycles, nor separate cycles,
as we discussed in Section II-B. Finally, constraint
(f) of Problem 1 ensures that every drone does not
consume more energy than the initially available bu.

B. MinMaxEnergy
The problem of ensuring complete coverage of

all the target points in the area of interest, when
minimizing the energy spent by the drone which
consumes the most, is formulated as follows, in
agreement with Equations 11(a-b).

min γ (a)
s.t.
γ ≥

∑
u∈U

∑
ij∈Ψ∪{du} ωij · xuij (b)∑

u∈U,j∈Ψ∪du
xuij ≥ 1, ∀i ∈ Ψ (c)∑

i∈Ψ∪{du} x
u
ij =

∑
k∈Ψ∪{du} x

u
jk, ∀j ∈ Ψ ∪ {du}, u ∈ U (d)∑

j∈Ψ x
u
duj = 1, ∀u ∈ U (e)

zuj − zui ≥ xuij + |Ψ| · (xuij − 1), ∀u ∈ U , ∀i, j ∈ Ψ (f)
zi ∈ {1, . . . , |Ψ|}, ∀i ∈ Ψ (g)
xuij ∈ {0, 1} (h)

Problem 2. Minimization of the Maximum Energy

C. Minimization of the Average Inspection Time
Notice that, any solution which minimizes the

average inspection time of the targets, also min-
imizes the sum of these inspection times. Hence,
in our minimization we can get rid of the constant
factor (1/|Ψ|) from the expression of the average
inspection time of Equation 15.

min
∑

i∈Ψ τi (a)
s.t.∑

u∈U,j∈Ψ∪du
xuij ≥ 1, ∀i ∈ Ψ (b)∑

i∈Ψ∪{du} x
u
ij =

∑
k∈Ψ∪{du} x

u
jk, ∀j ∈ Ψ ∪ {du}, u ∈ U (c)∑

j∈Ψ x
u
duj = 1,∀u ∈ U (d)

tuj − tui ≥ ωijx
u
ij + L(xuij − 1),

∀i ∈ Ψ ∪ {du}, j ∈ Ψ, u ∈ U (e)
tdu = 0, u ∈ U (f)
tui ≤

∑
j∈Ψ∪{du} x

u
ij , u ∈ U (g)

τi =
∑

u∈U t
u
i (h)

xuij ∈ {0, 1} (i)
tui , τi ∈ R+

0 (j)

Problem 3. Minimization of the Average Inspection Time

The constraint (b) of problem 3 is for target
coverage completeness, constraints (c-d) are for
having cyclic trajectories for each drone, constraints
(e-g) are for making tui assume the value of the
inspection time of target i by drone u, or 0 if



6

not inspected. Finally constraint (h) is meant to
calculate the inspection time of each target point.

D. MinCompletionTime
In the following we aim at minimizing the com-

pletion time of the target points inspections. In
order to do so, we consider the definition of τfinal
given in Equation 16, which we use to replace the
objective function of Problem 3 and its constraint
(h).

We obtain the following new problem:

min τfinal (a)
s.t.∑

u∈U,j∈Ψ∪du
xuij ≥ 1, ∀i ∈ Ψ (b)∑

i∈Ψ∪{du} x
u
ij =

∑
k∈Ψ∪{du} x

u
jk,∀j ∈ Ψ ∪ {du}, u ∈ U (c)∑

j∈Ψ x
u
duj = 1, ∀u ∈ U (d)

tuj − tui ≥ ωijx
u
ij + L(xuij − 1),

∀i ∈ Ψ ∪ {du}, j ∈ Ψ, u ∈ U (e)
tdu = 0, u ∈ U (f)
tui ≤

∑
j∈Ψ∪{du} x

u
ij , u ∈ U (g)

τfinal ≥
∑

u∈U t
u
i + φi, ∀i ∈ Ψ (h)

xuij ∈ {0, 1} (i)
tui , τfinal ∈ R+

0 (j)

Problem 4. Minimization of the Completion Time

The constraint (b) of problem 3 is for target
coverage completeness, constraints (c-d) are for
having cyclic trajectories for each drone, constraints
(e-g) are for making tui assume the value of the
inspection time of target i by drone u, or 0 if
not inspected. Finally constraint (h) is meant to
calculate the maximum time needed to complete the
target inspection.

IV. CONCLUSION

The student will be required to formulate and/or
implement one of the variants of the centralized task
assignment problem for swarms of aerial drones,
and to perform an experiment where some important
performance characteristics will be evaluated under
varying workload conditions.
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