
1

Specifications

6.170

MIT EECS

2

a useful discipline

 We often view a program in two distinct ways:

 The implementor's view (how to build it)

 The client's view (how to use it)

 It helps to apply these views to program parts:

 While implementing one part, consider yourself a
client of any other parts it depends on

 Try not to look at those other parts through an
implementor's eyes

 This helps dampen interactions between parts

 Formalized through the idea of a specification

3

Situation

Designing a component for a client to use

Questions:

How do you tell the client what the component
does?

What do you tell the implementer to deliver?

You need a specification

4

what is a specification?

 “Specification is the specific set of (high level)
requirements agreed to by the sponsor/user and the
manufacturer/producer of a system.” - Wikipedia

 A specification is a contract

 Between client and implementer,
describing each other’s expectations

 Facilitates simplicity

 Isolate client from implementation details

 Isolate implementor from what use is made of the part

 Discourages implicit, unwritten expectations

 Facilitates change

 Reduces the “Medusa” effect: the specification, rather than
the code, gets “turned to stone” by client dependencies

5

Specification for sqrt

Specification 1

requires: x >= 0

modifies: nothing

returns:

y such that |y*y-x| < eps

and y >= 0

Specification 2

requires: nothing

modifies: nothing

throws:

if (x < 0) throws

NegativeArgument;

returns: if (x < 0) y such that

|y*y-x| < eps and y >= 0

double y = sqrt(double x);

6

Things to Remember

Specification must give implementer enough room

If client violates precondition (requires clause),
implementation can do ANYTHING

Type system usually provides some parts of
specification

7

6.170 specifications

 The “precondition”: constraints that hold before the
method is called (if not, all bets are off)

 requires – spells out any obligations on client

 The “postcondition”: constraints that hold after the
method is called (if the precondition held)

 modifies – lists objects that may be affected by method;
any object not listed is guaranteed to be untouched

 throws – lists possible exceptions

 effects – gives guarantees on the final state of modified
objects

 returns – describes return value

8

Set Add Specification

static boolean add(Set<T> s, T o);

Requires: s != null and o != null

Modifies: s

Throws: IllegalArgument, OutOfResources

Effects: new s = s union { o }

Returns: true iff o not in s

Remarks:

Need to refer to original values and new values

Very precise, digital feel

Abstract specification of set

9

Google Specification

 Requires: nothing

 Modifies: nothing

 Effects: nothing

 Returns: no constraint

 Throws: InternalError

Remarks

What is the simplest implementation of this specification?

Illustrates limitations of specification-based approach

static List<URL> Google(String s);

10

Isn’t the interface sufficient?

The main reason for the interface is to define the
boundary between the implementers and users:

public interface List<E> {

public int get(int);

public void set(int, E);

public void add(E);

public void add(int, E);

…

T public static boolean sub(List<T>, List<T>);

}

Interface provides the syntax

But doesn’t say what it does

11

why not just read code?

T boolean sub(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}

12

code is complicated

 Code gives more detail than needed by client

 For large program, understanding or even reading
every line of code is an excessive burden

 Suppose you had to read source code of Java libraries
in order to use them

 Same applies to developers of different parts of the
libraries

 Client cares only about what code does, not how
it does it

13

Problems with Code

 Code may be wrong, code may be overly specific

 Code invariably gets rewritten, so client needs to
know what they can rely on

 what properties will be maintained over time?

 what properties might be changed by future
optimization, improved algorithms, or just bug fixes?

 Implementor needs to know what features the
client depends on, and which can be changed

 Nasty problem in practice: bugs become part of
specification…

14

what about comments?

 Much of the code on the planet is decorated with

short descriptions designed to convey the

general idea of what that the code does:

// Check whether “part” appears as a

// sub-sequence in “src”.

T boolean sub(List<T> src, List<T> part) {

...

}

 �ow, the client can often get along without

reading the code, and if there's ambiguity they

can just run a test to see what happens, right?

 e.g. what if src and part are both empty list?

15

beyond the “general idea”

 A description of a part becomes a specification if:

 The client can and agrees to rely only on information in
the description in their use of the part.

 The implementor of the part promises to support
everything in the description, but otherwise is perfectly
at liberty

 But this is not common behavior!

 Clients often work out what a method/class does in
ambiguous cases by simply running it, then depending
on the results

 This leads to programs with unclear dependencies,
reducing simplicity and flexibility

16

Let’s look at this code again…

T boolean sub(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}

17

a more careful description of sub()

// Check whether “part” appears as a

// sub-sequence in “src”.

 needs to be given some caveats:

// * src and part cannot be null

// * If src is empty list, always returns false.

// * Results may be unexpected if partial matches

// can happen right before a real match; e.g.,

// list (1,2,1,3) will not be identified as a

// sub sequence of (1,2,1,2,1,3).

 or replaced with a more detailed description:

// This method scans the “src” list from beginning

// to end, building up a match for “part”, and

// resetting that match every time that...

18

or reorganize to be simple

 Complicated description suggests poor design

 Rewrite sub() to be more sensible, and easier to
describe. Then a good description would be:

// returns true iff sequences A, B exist such that

// src = A : part : B

// where “:” is sequence concatenation

T boolean sub(List<T> src, List<T> part)

 This is a decent specification

 Mathematical flavor is not necessary, but can help
avoid ambiguity

19

One Benefit of Specifications

 The discipline of writing specifications changes
the incentive structure of coding

 rewards code that is easy to describe and understand

 punishes code that is hard to describe and understand
(even if it is shorter or easier to write)

 If you find yourself writing complicated
specifications, it is an incentive to redesign

 sub() code that does exactly the right thing may be
slightly slower then hack that assumes no partial
matches before true matches – but cost of forcing
client to understand the details is too high

20

Another Example

 public static List<Integer> listAdd(List<Integer> lst1, List<Integer> lst2)

 requires lst1 and lst2 are not null. lst1 and lst2 are the same size

modifies none

effects none

returns a list of same size as lst1 and lst2 where the ith element is the sum

of the ith elements of lst1 and lst2

 static List<Integer> listAdd(List<Integer> lst1,
List<Integer> lst2) {

 List<Integer> res = new ArrayList<Integer>();

 for(int i = 0; i < lst1.size(); i++) {

 res.add(lst1.get(i) + lst2.get(i));

 }

 return res;

 }

21

Yet Another Example

 static void listAdd2(List<Integer> lst1, List<Integer> lst2)

 requires lst1 and lst2 are not null. lst1 and lst2 are the same size

modifies lst1

effects ith element of lst2 is added to the ith element of lst1

returns none

 static void listAdd2(List<Integer> lst1,
List<Integer> lst2) {

 for(int i = 0; i < lst1.size(); i++) {

 lst1.set(i, lst1.get(i) + lst2.get(i));

 }

 }

22

6.170 binarySearch

public static int binarySearch(T[] a, T key)

 requires: a is sorted in ascending order
 modifies: none
 effects: none
 returns:
 some i such that a[i] = key if such an i exists,
 otherwise -1

 Returning {(insertion point), - 1} is very ugly,
and an invitation to bugs and confusion; please read full
specification and think about why the designers did this,
and what the alternatives are. We'll return to the topic of
special values in a later lecture.

23

comparing specifications

 When is specification S1 weaker than S2?

 When ∀ P, (P satisfies S2) ⇒ (P satisfies S1)

 Intuitively, we weaken a specification when we
change it to give greater freedom to the implementor

 We can weaken a specification by

 Making requires harder to satisfy

 Adding things to modifies clause

 Making effects easier to satisfy

 What is the strongest (most constraining) requires clause?

 true

 What is the strongest (most constraining) effects clause?

 false

 What is the strongest (most constraining) modifies clause?

 modifies nothing

24

Another Benefit of Specifications

 Specification means that client doesn't need to
look at implementation

 So code may not even exist yet!

 Write specifications first, make sure system will
fit together, and then assign separate
implementors to different modules

 Allows teamwork and parallel development (this is
crucial, as you'll see towards the end of term)

 Also helps with testing, as we'll see shortly

