6.170 Lecture 6 Procedure specifications

MIT EECS

Satisfying a specification; substitutability

Stronger and weaker specifications

Comparing by hand

Comparing via logical formulas

Comparing via transition relations

Specification style; checking preconditions

Satisfaction of a specification

Let P be an implementation and S a specification

P satisfies S iff

Every behavior of P is permitted by S "The behavior of P is a subset of S"

The statement "P is correct" is meaningless

Though often made!

If P does not satisfy S, either (or both!) could be "wrong"

"One person's feature is another person's bug."

It's usually better to change the program than the spec

Procedure specifications

Example of a procedure specification

```
// requires i > 0
// modifies nothing
// returns true iff i is a prime number
public static boolean isPrime (int i)
```

General form of a procedure specification

```
// requires
```

// modifies

// throws

// effects

// returns

A specification denotes a set of procedures

Some set of procedures satisfies a specification

Suppose a procedure takes an integer as an argument

```
Spec 1: "returns an integer ≥ its argument"
```

Spec 2: "returns a non-negative integer ≥ its argument"

Spec 3: "returns argument + 1"

Spec 4: "returns argument²"

Spec 5: "returns Integer.MAX VALUE"

Consider these implementations

```
Code 1: return arg * 2;

Code 2: return abs(arg);

Code 3: return arg + 5;

Code 4: return arg * arg;

Code 5: return Integer.MAX_VALUE;
```


Specification strength and substitutability

A stronger specification promises more

It constrains the implementation more The client can make more assumptions

Substitutability

A stronger specification can always be substituted for a weaker one

Comparing specifications and procedures

We wish to compare procedures to specifications

Determine whether the procedure satisfies the specification This indicates whether the implementer has succeeded

We wish to compare specifications to one another

Determine which specification (if either) is stronger A procedure satisfying a stronger specification can be used anywhere that a weaker specification is required

Three ways to compare (use whichever is most convenient)

- 1. By hand; examine each clause
- 2. Logical formulas representing the specification
- 3. Transition relations

Comparing by hand (comparison technique 1)

We can weaken a specification by

Making <u>requires</u> harder to satisfy (<u>strengthening requires</u>)

Preconditions: contravariant, all other clauses: covariant

Adding things to modifies clause (weakening modifies)

Making effects easier to satisfy (weakening effects)

Guaranteeing less about throws (weakening throws)

Guaranteeing less about <u>returns</u> value (weakening <u>returns</u>)

The strongest (most constraining) spec has the following:

requires clause: true

modifies clause: nothing

effects clause: false

throws clause: nothing

returns clause: false

(This particular spec is so strong as to be useless.)

Comparing logical formulas (comparison technique 2)

Specification S1 is stronger than S2 iff:

 \forall P, (P satisfies S1) \Rightarrow (P satisfies S2)

If each specification is a logical formula, this is equivalent to:

 $S1 \Rightarrow S2$

So, convert each spec to a formula (see following slides)

This specification:

// requires R

// modifies M

// effects E

is equivalent to this single logical formula:

 $R \Rightarrow (E \land (nothing but M is modified))$

What about throws and returns? Absorb them into effects.

Final result: S1 is stronger than S2 iff

 $(R_1 \Rightarrow (E_1 \land \text{only-modifies-}M_1)) \Rightarrow (R_2 \Rightarrow (E_2 \land \text{only-modifies-}M_2))$

Convert spec to formula, step 1: absorb throws, returns

```
6.170 style:
     requires (unchanged)
     modifies (unchanged)
     throws
                    correspond to resulting "effects"
     effects
     returns
Example (from java.util.ArrayList<T>):
     // requires: true
     // modifies: this[index]
     // throws: IndexOutOfBoundsException if index < 0 \parallel index \ge size()
     // effects: this<sub>post</sub>[index] = element
     // returns: this pre [index]
T set(int index, T element)
Equivalent spec, after absorbing throws and returns into effects:
     // requires: true
     // modifies: this[index]
     // effects: if index < 0 \parallel index \ge size() then throws IndexOutOfBoundsException
                else this<sub>nost</sub>[index] = element && returns this<sub>pre</sub>[index]
     T set(int index, T element)
```


Convert spec to formula: eliminate requires, modifies

Single logical formula

```
requires \Rightarrow ((not-modified) \land effects)
```

"not-modified" preserves every field not in modifies clause

Logical fact: If precondition is false, formula is true

Recall: $\forall x. \ x \Rightarrow \text{true}; \ \forall x. \ \text{false} \Rightarrow x; \ (x \Rightarrow y) \equiv (\neg x \lor y)$

Example:

```
// requires: true
// modifies: this[index]
// effects: E
T set(int index, T element)
```

Result:

true \Rightarrow (($\forall i \neq index. this_{pre}[i] = this_{post}[i]$) $\land E$)

Transition relations (comparison technique 3)

Transition relation relates prestates to poststates

Contains all possible (input,output) pairs

Transition relation maps procedure arguments to results

```
int increment(int i) {
  return i+1;
}

double mySqrt(double a) {
  if (Random.nextBoolean())
    return Math.sqrt(a);
  else
    return - Math.sqrt(a);
}
```

Specifications have transition relations, too

Contains just as much information as other forms of specification

Satisfaction via transition relations

A stronger specification has a smaller transition relation

```
Rule: P satisfies S iff P is a subset of S
     (when both are viewed as transition relations)
Sqrt specification (S_{sqrt})
         // requires x is a perfect square
         // returns positive or negative square root
          int sqrt (int x)
     Transition relation: \langle 0,0 \rangle, \langle 1,1 \rangle, \langle 1,-1 \rangle, \langle 4,2 \rangle, \langle 4,-2 \rangle, ...
Sqrt code (P<sub>sqrt</sub>)
         int sqrt (int x) {
              // ... always returns positive square root
     Transition relation: (0,0), (1,1), (4,2), ...
```

 P_{sqrt} satisfies S_{sqrt} because P_{sqrt} is a subset of S_{sqrt}

Beware transition relations in abbreviated form

"P satisfies S iff P is a subset of S" is a good rule

But it gives the wrong answer for transition relations in abbreviated form (The transition relations we have seen so far are in abbreviated form!)

```
anyOdd specification (S_{anyOdd})

// requires x = 0

// returns any odd integer int anyOdd (int x)

Abbreviated transition relation: \langle 0,1 \rangle, \langle 0,3 \rangle, \langle 0,5 \rangle, \langle 0,7 \rangle, ...

anyOdd code (P_{anyOdd})

int anyOdd (int x) {

return 3;

}

Transition relation: \langle 0,3 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle, \langle 3,3 \rangle, ...
```

The code satisfies the specification, but the rule says it does not

 P_{anyOdd} is not a subset of S_{anyOdd} because $\langle 1,3 \rangle$ is not in the specification's transition relation

We will see two solutions to this problem

Satisfaction via full transition relations (option 1)

The transition relation should make explicit everything an implementation may do

Problem: abbreviated transition relation for S does not indicate all possibilities

```
\begin{array}{lll} \textbf{anyOdd specification (S}_{anyOdd}): & // \  \, \text{same as before} \\ & // \  \, \underline{\text{requires}} \ x = 0 \\ & // \  \, \underline{\text{returns}} \ \text{any odd integer} \\ & \text{int anyOdd (int x)} \\ \textbf{Full transition relation: } \langle 0,1 \rangle, \langle 0,3 \rangle, \langle 0,5 \rangle, \langle 0,7 \rangle, \dots & // \  \, \text{on previous slide} \\ & \langle 1,0 \rangle, \langle 1,1 \rangle, \langle 1,2 \rangle, \dots, \langle 1, \operatorname{exception} \rangle, \langle 1, \operatorname{infinite loop} \rangle, \dots & // \  \, \text{new} \\ & \langle 2,0 \rangle, \langle 2,1 \rangle, \langle 2,2 \rangle, \dots, \langle 2, \operatorname{exception} \rangle, \langle 2, \operatorname{infinite loop} \rangle, \dots & // \  \, \text{new} \\ & \text{anyOdd code (P}_{anyOdd}) & // \  \, \text{same as before} \\ & \operatorname{int anyOdd (int x) \{} \\ & \operatorname{return 3;} \\ & \} \\ & \operatorname{Transition relation: } \langle 0,3 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle, \langle 3,3 \rangle, \dots & // \  \, \text{same as before} \\ \end{array}
```

The rule "P satisfies S iff P is a subset of S" gives the right answer for full relations

Downside: writing the full transition relation is bulky and inconvenient

It's more convenient to make the implicit notational assumption:

For elements not in the domain of S, any behavior is permitted.

(Recall that a relation maps a *domain* to a *range*.)

Satisfaction via abbreviated transition relations(option 2)

```
New rule: P satisfies S iff P | (Domain of S) is a subset of S
     where "P \mid D" = "P restricted to the domain D"
          i.e., remove from P all pairs whose first member is not in D
          (recall that a relation maps a domain to a range)
anyOdd specification (S_{anyOdd})
          // requires x = 0
          // returns any odd integer
          int anyOdd (int x)
     Abbreviated transition relation: (0,1), (0,3), (0,5), (0,7), ...
anyOdd\ code\ (P_{anyOdd})
          int anyOdd (int x) {
               return 3;
     Transition relation: (0,3), (1,3), (2,3), (3,3), ...
Domain of S = \{ 0 \}
P | (domain of S) = \langle 0,3 \rangle, which is a subset of S, so P satisfies S
The new rule gives the right answer even for abbreviated transition relations
     We'll use this version of the notation in 6.170
```


Abbreviated transition relations, summary

The abbreviated version of the transition relation can be misleading

The true transition relation contains all the pairs

When doing comparisons

Use the expanded transition relation, or

Restrict the domain when comparing

Either approach makes the "smaller is stronger rule" work

Review: strength of a specification

A stronger specification is satisfied by fewer procedures

A stronger specification has

weaker preconditions (note contravariance)

stronger postcondition

fewer modifications

Advantage of this view: can be checked by hand

A stronger specification has a (logically) stronger formula

Advantage of this view: mechanizable in tools

A stronger specification has a smaller transition relation

Advantage of this view: captures intuition of "stronger = smaller" (fewer choices)

Specification style

Typically have only one of effects and returns

A procedure has a side effect or is called for its value Exception: return old value, as for **HashMap.put**

The point of a specification is to be helpful

Formalism helps, overformalism doesn't

A specification should be

coherent (not too many cases)
informative (bad example: HashMap.get)
strong enough (to do something useful, to make guarantees)
weak enough (to permit (efficient) implementation)

Checking preconditions

Checking preconditions

- makes an implementation more robust
- provides better feedback to the client
- avoids silent errors

A quality implementation checks preconditions whenever it is inexpensive and convenient to do so