
6.170 Lecture 7
Abstract Data Types

MIT EECS

2MIT 6.170

Outline

1. What is an abstract data type (ADT)?
2. How to specify an ADT

immutable
mutable

3. The ADT methodology

3MIT 6.170

What is an ADT?

Procedural abstraction
Abstracts from the details of procedures
A specification mechanism

Data abstraction (Abstract Data Type, or ADT):
Abstracts from the details of data representation
A specification mechanism

+ a way of thinking about programs and designs

4MIT 6.170

Why We Need Abstract Data Types

Programming is not usually about
Inventing and describing algorithms

It is more often about
Organizing and manipulating data

Leads designers to start by
Designing data structures
Writing code to access and manipulate data

Problematical because
Decisions about data structures made too early
Duplication of effort in creating derived data
Very hard to change key data structures

5MIT 6.170

What Is an ADT, revisited

Abstract from organization to meaning of data
Abstract from structure to use
Avoid concern with

right_triangle = struct [base, altitude: float]
vs.
right_triangle = struct [base, hypot, angle: float]

Instead think of type as a set of operations
E.g., create, base, altitude, bottom_angle, ...

Force users to call operations to access data

6MIT 6.170

Are These Classes the Same or Different?

class Point { class Point {
public float x; public float r;
public float y; public float theta;

} }

Different: can't replace one with the other
Same: both classes implement the concept "2-d point"
Goal of ADT methodology

Express the sameness
Clients depend only on the concept "2-d point"

Good because:
Performance optimizations
Fix bugs
Delay decisions

7MIT 6.170

Concept of 2-d point, as ADT

class Point {
// A 2-d point exists somewhere in the plane, ...
public float x();
public float y();
public float r();
public float theta();
// ... can be created, ...
public Point(); // new point at (0,0)

// ... can be moved, ...
public void translate(float delta_x,

float delta_y);
public void scale_rot(float delta_r,

float delta_theta);
}

8MIT 6.170

Abstract data type = objects + operations

Point
x
y
r
theta
translate
scale_rot

rest of
program

abstraction barrier

Implementation hidden
No operations on objects of the type except those

provided by the abstraction

9MIT 6.170

How to Specify an ADT

immutable

class typename {
1. overview
2. creators
3. observers
4. producers

}

mutable

class typename {
1. overview
2. creators
3. observers
4. mutators

}

10MIT 6.170

Primitive Data Types Are ADTs

int is an immutable ADT:
creators: 1, 2, ...
producers: + - * / ...
observer: Integer.toString(int)

11MIT 6.170

Poly: overview and creators

class Poly {
// Overview: Polys are immutable polynomials
// with integer coefficients. A typical Poly
// is c0 + c1x + c2x2 + ...

public Poly()
// effects: makes a new Poly = 0

public Poly(int c, int n)
// effects: makes a new Poly = cxn, unless
// throws: NegExponent when n < 0

12MIT 6.170

Notes on Overview and Creators

Overview
Always state whether mutable or immutable
Define abstract model for use in specs of ops

Difficult and vital!
Appeal to math if appropriate
Give example (reuse in operation definitions)

Creators
New object, not part of prestate: in effects, not modifies
Overloading: distinguish procs of same name by arglist
Example: Poly(int,int) creator declared to return cxn

Key feature of all ADTs, state in specs is abstract

13MIT 6.170

Poly: observers

public int degree()
// returns: the degree of this,
// i.e. the largest exponent with a
// non-zero coefficient.
// note: Returns 0 if this = 0.

public int coeff(int d)
// returns: the coefficient of
// the term of this whose exponent is d

14MIT 6.170

Notes on Observers

Observers
Used to obtain information about objects of the type
Return values of other types
Never modify the abstract value
Specification uses the abstraction from the overview

this
The particular Poly object being worked on

That is, the target of the invocation

Poly x = new Poly(4, 3);
int c = x.coeff(3);
System.out.println(c); // prints 4

15MIT 6.170

Poly: producers

public Poly add(Poly q)
// returns: the Poly = this + q

public Poly mul(Poly q)
// returns: the Poly = this * q

public Poly minus()
// returns: the Poly = -this

}

16MIT 6.170

Notes on Producers

Producers
Operations on a type that create other objects of the type
Common in immutable types, e.g., java.lang.String

String substring(int offs, int len)

17MIT 6.170

IntSet: overview and creators

class IntSet {
// Overview: IntSets are mutable, unbounded
// sets of integers. A typical IntSet is
// { x1, ..., xn }.

public IntSet()
// effects: makes a new IntSet = {}

18MIT 6.170

IntSet: observers

public boolean isIn(int x)
// returns: true if x ∈ this
// else returns false

public int size()
// returns: the cardinality of this

public int choose()
// returns: some element of this
// throws: EmptyException when size()==0

19MIT 6.170

IntSet: mutators

public void insert(int x)
// modifies: this
// effects: this_post = this ∪ {x}

public void remove(int x)
// modifies: this
// effects: this_post = this - {x}

} // end IntSet

20MIT 6.170

Notes on Mutators

This is how we obtain a nonempty IntSet
Mutators

Operations that modify an element of the type
Almost never modify anything other than this
Mutable ADTs may have producers too, but less common

Must list this in modifies clause (if appropriate)

21MIT 6.170

Exposing the Rep

Point p1 = new Point();
Point p2 = new Point();
Line line = new Line(p1,p2);
p1.translate(5, 10); // move point p1

Is Line mutable or immutable?
Implementation dependent!

If Line creates an internal copy: immutable
If Line stores a reference to p1,p2: mutable

Lesson: storing a mutable object in an immutable
collection can expose the representation

22MIT 6.170

ADTs and Java Language Features

Java classes
Make operations in the ADT public
Make other ops and fields of the class private
Clients can only access ADT operations
May make client code over-specific

Java interfaces
Clients only see the ADT, not the implementation
Allow multiple implementations in same program
Cannot include creators (constructors) or fields

My suggestion
Write and rely upon careful specifications
Use classes or interfaces as appropriate

23MIT 6.170

Preview: subtyping

A stronger specification can be substituted for a weaker
Applies to types as well as to individual methods

Java subtypes are not necessarily true subtypes
A Java subtype is indicated via extends or implements

Java enforces signatures (types), but not behavior
A true subtype is indicated by a stronger specification

Also called a “behavioral subtype”
Every fact that can be proved about supertype objects can

also be proved about subtype objects

24MIT 6.170

Subtyping example

class A {
// returns: 0
int zero(int i) { return 0; }

}

// Java subtype of A, but not true subtype
class B extends A {

// returns negative of argument
int zero(int i) { return –i; } // overriding method

}

// True subtype of A, but not Java subtype
class C {

// returns: 0
int zero(int i) { return i – i; }

}

	6.170 Lecture 7Abstract Data Types
	Outline
	What is an ADT?
	Why We Need Abstract Data Types
	What Is an ADT, revisited
	Are These Classes the Same or Different?
	Concept of 2-d point, as ADT
	Abstract data type = objects + operations
	How to Specify an ADT
	Primitive Data Types Are ADTs
	Poly: overview and creators
	Notes on Overview and Creators
	Poly: observers
	Notes on Observers
	Poly: producers
	Notes on Producers
	IntSet: overview and creators
	IntSet: observers
	IntSet: mutators
	Notes on Mutators
	Exposing the Rep
	ADTs and Java Language Features
	Preview: subtyping
	Subtyping example

