
An Introduction to Milner’s CCS

Luca Aceto Kim G. Larsen
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1 Introduction

The aim of this collection of notes is to offer some support for the course onSe-
mantics and Verification by introducing three of the basic notions that we shall use
to describe, specify and analyze reactive systems, namely

• Milner’s Calculus of Communicating Systems (CCS) [12],

• the model of Labelled Transition Systems (LTSs) [9] and

• Hennessy-Milner Logic (HML) [7] and its extension with recursive defini-
tions of formulae [11].

TheSemantics and Verification course presents a general theory of reactive systems
and its applications. Our aims in this course are to show how

1. to describe actual systems using terms in our chosen models—that is, either
as terms in the process description language CCS or as labelled transition
systems—,

2. to offer specifications of the desired behaviour of systems either as terms of
our models or as a formulae in HML and

2

http://www.cs.auc.dk/~luca/SV/
http://www.cs.auc.dk/~luca/SV/


3. to manipulate these descriptions, possibly (semi-)automatically in order to
obtain an analysis of the behaviour of the model of the system under consid-
eration.

At the end of the course, the students will be able to describe non-trivial reactive
systems and their specifications using the aforementioned models, and verify the
correctness of a model of a system with respect to given specifications either man-
ually or by using automatic verification tools like theConcurrency Workbenchand
UPPAAL.

Our, somewhat ambitious, aim is therefore to present a model of reactive sys-
tems that supports their design, specification and verification. Moreover, since
many real-life systems are hard to analyze manually, we should like to have com-
puter support for our verification tasks. This means that all the models and lan-
guages that we shall use in this course need to have a formal syntax and semantics.
These requirements of formality are not only necessary in order to be able to build
computer tools for the analysis of systems’ descriptions, but are also fundamental
in agreeing upon what the terms in our models are actually intended to describe in
the first place. Moreover, as Donald Knuth once wrote,

“A person does not really understand something until after teaching
it to a computer, i.e. expressing it as an algorithm.. . . An attempt to
formalize things as algorithms leads to a much deeper understanding
than if we simply try to comprehend things in the traditional way.”

The pay-off of using formal models with an explicit formal semantics to describe
our systems will therefore be the possibility of devising algorithms for the anima-
tion, simulation and verification of system models. These would be impossible to
obtain if our models were specified only in an informal notation.

Now that we know what to expect from these notes, and from the lectures
that they are supposed to complement, it is time to get to work. We shall begin
our journey through the beautiful land of “Concurrency Theory” by introducing a
prototype description language for reactive systems and its semantics. However,
before setting off on such an enterprise, we should describe in more detail what we
actually mean with the term “reactive system”.

2 What Are Reactive Systems?

The “standard” view of computing systems is that, at a high level of abstraction,
these may be considered as black boxes that take inputs and provide appropriate
outputs. This view agrees with the description of algorithmic problems. Analgo-
rithmic problem is specified by giving its collection of legal inputs, and, for each
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legal input, its expected output. In an imperative setting, an abstract view of a com-
puting system may be given by describing how it transforms an initialstate—that
is a function from variables to their values—to a final state. This function will, in
general, bepartial—that is it may be undefined for some initial state—to capture
that the behaviour of a computing system may be non-terminating for some input
states. For example, the effect of the program

S = z ← x;x← y; y ← z

is described by the partial function[[S]] from states to states defined thus:

[[S]] = λs. s[x 7→ s(y), y 7→ s(x), z 7→ s(x)] ,

where the states[x 7→ s(y), y 7→ s(x), z 7→ s(x)] is the one in which the value of
variablex is the value ofy in states and that of variablesy andz is the value ofx
in states. The values of all of the other variables are those they had in states. This
state transformation is a way of formally describing that the intended effect ofS is
essentially to swap the values of the variablesx andy.

In this view of computing systems, non-termination is a highly undesirable
phenomenon. An algorithm that fails to terminate on some inputs is not one the
users of a computing system would expect to have to use. A moment of reflection,
however, should make us realize that we already use many computing systems
whose behaviour cannot be readily described as a function from inputs to outputs—
not least because, at some level of abstraction, these systems are inherently meant
to be non-terminating. Examples of such computing systems are:

• operating systems,

• communication protocols,

• control programs and

• software running in embedded system devices like mobile telephones.

At a high level of abstraction, the behaviour of a control program can be seen to be
governed by the following pseudo-code algorithm skeleton

loop
read the sensors values at regular intervals
depending on the sensors values trigger the relevant actuators

forever
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The aforementioned examples, and many others, are examples of computing sys-
tems that interact with their environment by exchanging information with it. Like
the neurons in a human brain, these systems react to stimuli from their computing
environment (in the example control program above these are variations in the val-
ues of the sensors) by possibly changing their state or mode of computation, and
in turn influence their environment by sending back some signals to it, or initiating
some operations whose effect it is to affect the computing environment (this is the
role played by the actuators in the example control program). David Harel and
Amir Pnueli coined the termreactive system in [6] to describe a system that, like
the aforementioned ones, computes by reacting to stimuli from its environment.

As the above examples and discussion indicate, reactive systems are inherently
parallel systems, and a key role in their behaviour is played by communication and
interaction with their computing environment. A “standard” computing system
can also be viewed as a reactive system in which interaction with the environment
only takes place at the beginning of the computation (when inputs are fed to the
computing device) and at the end (when the output is received). On the other hand,
all the example systems given before maintain a continuous interaction with their
environment, and we may think of both the computing system and its environment
as parallel processes that communicate one with the other. In addition, unlike with
“standard” computing systems, as again nicely exemplified by the skeleton of a
control program given above, non-termination is adesirable feature of a reactive
system. We certainly donot expect the operating systems running on our computers
or the control program monitoring a nuclear reactor to terminate!

Now that we have an idea of what reactive systems are, and of the key aspects
of their behaviour, we can begin to consider what an appropriate abstract model
for this class of systems should offer. In particular, such a model should allow
us to describe the behaviour of collections of (possibly non-terminating) parallel
processes that may compute independently and interact with one another. It should
provide us with facilities for the description of well-known phenomena that appear
in the presence of concurrency and are familiar to us from the world of operating
systems and parallel computation in general (e.g., deadlock, livelock, starvation
and so on). Finally, in order to abstract from implementation dependent issues
having to do with, e.g., scheduling policies, the chosen model should permit a
clean description ofnon-determinism—a most useful modelling tool in Computer
Science.

Our aim in the remainder of these notes will be to present a general purpose
theory that can be used to describe, and reason about,any collection of interacting
processes. The approach we shall present will make use of a collection of models
and formal techniques that is often referred to asProcess Theory. The key ingredi-
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ents in this approach are:

• (Process) Algebra,

• Automata/LTSs,

• Structural Operational Semantics and

• Logic.

These ingredients give the foundations for the development of (semi-)automatic
verification tools for reactive systems that support various formal methods for val-
idation and verification that can be applied to the analysis of highly non-trivial
computing systems. The development of these tools requires in turn advances in
algorithmics, and via the increasing complexity of the analyzed designs feeds back
to the theory development phase by suggesting the invention of new languages and
models for the description of reactive systems.

Unlike in the setting of sequential programs, where we often kid ourselves into
believing that the development of correct programs can be done without any re-
course to “formalism”, it is a well-recognized fact of life that the behaviour of
even very short parallel programs may be very hard to analyze and understand. In-
deed, analyzing these programs requires a careful analysis of issues related to the
interactions amongst their components, and even imagining all of these is often a
mind-boggling task. As a result, the techniques and tools that we shall present in
this course are becoming widely accepted in the academic and industrial commu-
nities that develop reactive systems.

3 Process Algebras

The first ingredient in the approach to the theory of reactive systems presented in
this course is a prototypical example of aprocess algebra. Process algebras are
prototype specification languages for reactive systems. They evolved from the in-
sights of many outstanding researchers over the last thirty years, and a brief history
of the evolution of the original ideas that led to their development may be found
in [1]. A crucial initial observation that is at the heart of the notion of process
algebra is due to Milner, who noticed that concurrent processes have an algebraic
structure. For example, once we have built two processesP andQ, we can form a
new process by combiningP andQ sequentially or in parallel. The result of these
combinations will be a new process whose behaviour depends on that ofP andQ
and on theoperation that we have used to compose them. This is the first sense
in which these description languages are algebraic: they consist of a collection of
operations for building new process descriptions from existing ones.

6



Since these languages aim at specifying parallel processes that may interact
with one another, a key issue that needs to be addressed is how to describe commu-
nication/interaction between processes running at the same time. Communication
amounts to information exchange between a process that produces the informa-
tion (thesender), and a process that consumes it (thereceiver). We often think of
this communication of information as taking place via somemedium that connects
the sender and the receiver. If we are to develop a theory of communicating sys-
tems based on this view, then we have to decide upon the communication medium
used in inter-process communication. Several possible choices immediately come
to mind. Processes may communicate via, e.g., (un)bounded buffers, shared vari-
ables, some unspecified ether, or the tuple spaces used by Linda-like languages.
Which one do we choose? The answer is not at all clear, and each specific choice
may in fact reduce the applicability of our language and the models that support it.
A language that can properly describe processes that communicate via, say, FIFO
buffers may not readily allow us to specify situations in which processes interact
via shared variables, say.

The solution to this riddle is both conceptually simple and general. One of the
crucial original insights of figures like Hoare and Milner is that we need not distin-
guish between active components like senders and receivers, and passive ones like
the aforementioned kinds of communication media. All of these may be viewed as
processes—that is, as systems that exhibit behaviour. All of these processes can in-
teract via message-passing modelled assynchronized communication, which is the
only basic mode of interaction. This is the key idea underlying Hoare’s CSP [8], a
highly influential proposal for a programming language for parallel programs, and
Milner’s CCS [12], the paradigmatic process algebra.

4 The Language CCS

We shall now introduce the language CCS. We begin by informally presenting the
process constructions allowed in this language and their semantics in Sect.4.1. We
then proceed to put our developments on a more formal footing in Sect.4.2.

4.1 Some CCS Process Constructions

It is useful to begin by thinking of a CCS process as a black box. This black box
may have a name that identifies it, and has aprocess interface. This interface de-
scribes the collection ofcommunication ports, also referred to aschannels, that the
process may use to interact with other processes that reside in its environment, to-
gether with an indication of whether it uses these ports for inputting or outputting
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Table 1: The interface for process CS

information. For example, the drawing in Table1 pictures the interface for a pro-
cess whose name is CS (for Computer Scientist). This process may interact with
its environment via three ports, or communication channels, namely coffee,coin
andpub. The port coffee is used for input, whereas the portscoin andpub are used
by process CS for output. In general, given a port namea, we usēa for output on
porta. We shall often refer to labels as coffee orcoin asactions.

A description like the one given in Table1 only gives static information about
a process. What we are most interested in is thebehaviour of the process being
specified. The behaviour of a process is described by giving a “CCS program”.
The idea being that, as we shall see soon, the process constructions that are used
in building the program allow us to describe both the structure of process and its
behaviour.

Let us begin by introducing the constructs of the language CCS by means of
examples. The most basic process of all is the process0 (read “nil”). This is
the most boring process imaginable, as it performs no action whatsoever. The
process0 offers the prototypical example of a deadlocked behaviour—one that
cannot proceed any further in its computation.

The most basic process constructor in CCS isaction prefixing. Two example
processes built using0 and action prefixing are

a match: strike.0 and

a complex match: take.strike.0.

Intuitively, a match is a process that dies when stricken (i.e., that becomes the
process0 after executing theaction strike), and a complex match is one that needs
to be taken before it can behave like a match. More in general, the formation rule
for action prefixing says that:
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If P is a process anda is a label, thena.P is a process.

The idea is that a label, like strike orpub, will denote an input or output action on
a communication port, and that the processa.P is one that begins by performing
actiona and behaves likeP thereafter.

We have already mentioned that processes can be given names, very much like
procedures can. This means that we can introduce names for (complex) processes,
and that we can use these names in defining other process descriptions. For in-
stance, we can give the name Match to the complex match thus:

Match
def= take.strike.0 .

The introduction of names for processes allows us to give recursive definitions of
process behaviours—compare with the recursive definition of procedures or meth-
ods in your favourite programming language. For instance, we may define the
behaviour of an everlasting clock thus:

Clock
def= tick.Clock .

Note that, since the process name Clock is a short-hand for the term on the right-
hand side of the above equation, we may repeatedly replace the name Clock with
its definition to obtain that

Clock
def= tick.Clock

= tick.tick.Clock

= tick.tick.tick.Clock
...

= tick. . . . .tick︸ ︷︷ ︸
n-times

.Clock ,

for each positive integern.
As another recursive process specification, consider that of a simple coffee

vending machine:

CM
def= coin.coffee.CM . (1)

This is a machine that is willing to input a coin, deliver coffee to its customer, and
thereafter return to its initial state.

The CCS constructs that we have presented so far would not allow us to de-
scribe the behaviour of a vending machine that allows its paying customer to
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choose between tea and coffee, say. In order to allow for the description of pro-
cesses whose behaviour may follow different patterns of interaction with their en-
vironment, CCS offers thechoice operator, which is denoted “+”. For example, a
vending machine offering either tea or coffee may be described thus:

CTM
def= coin.(coffee.CTM + tea.CTM) . (2)

The idea here is that, after having input a coin, the process CTM is willing to
deliver either coffee or tea, depending on its customer’s choice. In general, the
formation rule for choice states that:

If P andQ are processes, then so isP + Q.

The processP +Q is one that has the initial capabilities of bothP andQ. However,
choosing to perform initially an action fromP will pre-empt the further execution
of actions fromQ, and vice versa.

Exercise 4.1Give a CCS process that describes a coffee machine that may behave
like that given by (1), but may also steal the money it receives and fail at any time.

Exercise 4.2A finite process graphT is a quadruple(Q, A, δ, q0), where

• Q is a finite set of states,

• A is a finite set of labels,

• q0 ∈ Q is the start state and

• δ : Q×A→ 2Q is the transition function.

Using the operators introduced so far, give a CCS process that “describesT ”.

It is well-known that a computer scientist working in academia is a machine for
turning coffee into publications. The behaviour of such an academic may be de-
scribed by the CCS process

CS
def= pub.coin.coffee.CS . (3)

As made explicit by the above description, a computer scientist is initially keen
to produce a publication—possibly straight out of her doctoral dissertation—, but
she needs coffee to produce her next publication. Coffee is only available through
interaction with the departmental coffee machine CM. In order to describe systems
consisting of two or more processes running in parallel, and possibly interacting
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Table 2: The interface for process CM| CS

with each other, CCS offers theparallel composition operation |. For example,
the CCS expression CM| CS describes a system consisting of two processes—the
coffee machine CM and the computer scientist CS—that run in parallel one with
the other. These two processes may communicate via the communication ports
they share and use in complementary fashion, namely coffee and coin. By comple-
mentary, we mean that one of the processes uses the port for input and the other
for output. Potential communications are represented in Table2 by the solid lines
linking complementary ports. The port pub is instead used by the computer scien-
tist to communicate with its research environment, or, more prosaically, with other
processes that may be present in its environment and that are willing to input along
that port. One important thing to note is that the link between complementary ports
in Table2 denotes that it ispossible for the computer scientist and the coffee ma-
chine to communicate in the parallel composition CM| CS. However, we donot
require that they must communicate with one another. Both the computer scien-
tist and the coffee machine could use their complementary ports to communicate
with other reactive systems in their environment. For example, another computer
scientist CS′ can use the coffee machine CM, and, in so doing, make sure that he
can produce publications to beef up his curriculum vitae, and thus be a worthy
competitor for CS in the next competition for a tenured position. (See Table3.)
Alternatively, the computer scientist may have access to another coffee machine in
its environment, as pictured in Table4.

In general, given two CCS expressionsP andQ, the processP |Q describes a
system in which

• P andQ may proceed independently and

• may communicate via complementary ports.
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Table 4: The interface for process CM| CS| CM′

Since academics like the computer scientist often live in a highly competitive “pub-
lish or perish” environment, it may be fruitful for her to make the coffee machine
CM private to her, and therefore inaccessible to her competitors. To make this
possible, the language CCS offers an operation calledrestriction, whose aim is to
delimit the scope of channel names in much the same way as variables have scope
in block structured programming languages. For instance, using the operations
\coin and\coffee, we may hide the coin and coffee ports from the environment of
the processes CM and CS. Define

SmUni
def= (CM | CS) \ coin\ coffee . (4)

As pictured in Table5, the restricted coin and coffee ports may now only be used
for communication between the computer scientist and the coffee machine, and are
not available for interaction with their environment. Their scope is restricted to the
process SmUni. The only port of SmUni that is visible to its environment, e.g., to
the competing computer scientist CS′, is the one via which the computer scientist
CS outputs her publications. In general, the formation rule for restriction is:

If P is a process andL is a set of port names, thenP \ L is a process.
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In P \L, the scope of the port names inL is restricted toP—those port names can
only be used for communication withinP .

Since a computer scientist cannot live on coffee alone, it is beneficial for her to
have access to other types of vending machines offering, say, chocolate, dried figs
and crisps. The behaviour of these machines may be easily specified by means of
minor variations on (1). For instance, we may define the processes

CHM
def= coin.choc.CHM

DFM
def= coin.figs.DFM

CRM
def= coin.crisps.CRM .

Note, however, that all of these vending machines follow a common behavioural
pattern, and may be seen as specific instances of ageneric vending machine that
inputs a coin, dispenses an item and restarts, namely the process

VM
def= coin.item.VM .

All of the aforementioned specific vending machines may be obtained as appropri-
ate “renamings” of VM. For example,

CHM
def= VM [choc/item] ,

where VM[choc/item] is a process that behaves like VM, but outputs chocolate
whenever VM dispenses the generic item. In general,

If P is a process andf is a function from labels to labels satisfying
certain requirements that will be made precise in Sect.4.2, thenP [f ]
is a process.

By introducing the relabelling operation, we have completed our informal tour
of the operations offered by the language CCS for the description of process be-
haviours. We hope that this informal introduction has given our readers a feeling
for the language, and that our readers will agree with us that CCS is indeed a
language based upon very few operations with an intuitively clear semantic inter-
pretation. In passing, we have also hinted at the fact that CCS processes may be
seen as defining automata which describe their behaviour—see Exercise4.2. We
shall now expand a little on the connection between CCS expressions and the au-
tomata describing their behaviour. The presentation will again be informal, as we
plan to highlight the main ideas underlying this connection rather than to focus im-
mediately on the technicalities. The formal connection between CCS expressions
and LTSs will be presented in Sect.4.2 using the tools of Structural Operational
Semantics.
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4.1.1 The Behaviour of Processes

The key idea underlying the semantics of CCS is that a process passes through
states during an execution; processes change their state by performing actions. For
instance, the process CS defined in (3) can perform actionpub and evolve into a
process whose behaviour is described by the CCS expression

CS1
def= coin.coffee.CS

in doing so. Process CS1 can then output a coin, thereby evolving into a process
whose behaviour is described by the CCS expression

CS2
def= coffee.CS .

Finally, this process can input coffee, and behave like our good old CS all over
again. Thus the processes CS, CS1 and CS2 are the only possible states of the
computation of process CS. Note, furthermore, that there is really no conceptual
difference between processes and their states! By performing an action, a pro-
cess evolves to another process that describes what remains to be executed of the
original one.

In CCS, processes change state by performing transitions, and these transitions
are labelled by the action that caused them. An example state transition is

CS
pub→ CS1 ,

which says that CS can perform actionpub, and become CS1 in doing so. The op-
erational behaviour of our computer scientist CS is therefore completely described
by the LTS

CS
pub→ CS1

coin→ CS2
coffee→ CS .

In much the same way, we can make explicit the set of states of the coffee machine
described in (1) by rewriting that equation thus:

CM
def= coin.CM1

CM1
def= coffee.CM .

Note that the computer scientist is willing to output a coin in state CS1, as wit-
nessed by the transition

CS1
coin→ CS2 ,

and the coffee machine is willing to accept that coin in its initial state, because of
the transition

CM
coin→ CM1 .
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Therefore, when put in parallel with one another, these two processes may commu-
nicate and change state simultaneously. The result of the communication should
be described as a state transition of the form

CM | CS1
?→ CM1 | CS2 .

However, we are now faced with an important design decision—namely, we should
decide what label to use in place of the “?” labelling the above transition. Should
we decide to use a standard label denoting input or output on some port, then a
third process might be able to synchronize further with the coffee machine and
the computer scientist, leading to multi-way synchronization. The choice made
by Milner in his design of CCS is different. In CCS, communication is viahand-
shake, and leads to a state transition that is unobservable, in the sense that it cannot
synchronize further. This state transition is labelled by anew labelτ . So the above
transition is indicated by

CM | CS1
τ→ CM1 | CS2 .

In this way, the behaviour of the process SmUni defined by (4) can be described by
the following LTS:

SmUni

pub

��
(CM | CS1) \ coin\ coffee

τ

��
(CM1 | CS2) \ coin\ coffee

τ

��
(CM | CS) \ coin\ coffee

pub

ii

Sinceτ actions are supposed to be unobservable, the following process seems to
be an appropriate high level specification of the behaviour exhibited by process
SmUni:

Spec
def= pub.Spec .

Indeed, we expect that SmUni and Spec describe the same observable behaviour,
albeit at different levels of abstraction. We shall see in the remainder of this course

17



that one of the big questions in process theory is to come up with notions of “be-
havioural equivalence” between processes that will allow us to establish formally
that, for instance, SmUni and Spec do offer the same behaviour. But this is getting
ahead of our story.

4.2 CCS, Formally

Having introduced CCS by example, we now proceed to present formal definitions
for its syntax and semantics.

We have already indicated in our examples how the operational semantics for
CCS can be given in terms of automata—which we have called Labelled Transition
Systems as customary in concurrency theory. These we now proceed to define, for
the sake of clarity.

Definition 4.1 [Labelled Transition Systems] Alabelled transition system (LTS)
is a triple(Proc, Act, { a→| a ∈ Act}), where:

• Proc is a set ofstates, ranged over bys;

• Act is a set ofactions, ranged over bya;

• a→⊆ Proc × Proc is a transition relation, for everya ∈ Act. As usual, we
shall use the more suggestive notations

a→ s′ in lieu of (s, s′) ∈ a→, and
write s

a9 (read “s refusesa”) iff s
a→ s′ for no states′.

For example, the LTS for the process SmUni defined by (4) is formally specified
thus:

Proc = {SmUni, (CM | CS1) \ coin\ coffee, (CM1 | CS2) \ coin\ coffee,

(CM | CS) \ coin\ coffee}
Act = {pub, τ}
pub→ = {(SmUni, (CM | CS1) \ coin\ coffee),

((CM | CS) \ coin\ coffee, (CM | CS1) \ coin\ coffee)} and
τ→ = {((CM | CS1) \ coin\ coffee, (CM1 | CS2) \ coin\ coffee),

((CM1 | CS2) \ coin\ coffee, (CM | CS) \ coin\ coffee)} .

The step from a process denoted by a CCS expression to the LTS describing its
operational behaviour is taken using the framework ofStructural Operational Se-
mantics (SOS) as pioneered by Plotkin in [15]. (The history of the development
of the ideas that led to SOS is recounted by Plotkin himself in [16].) The key idea
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underlying this approach is that the collection of CCS process expressions will be
the set of states of a (large) labelled transition system, whose actions will be either
input or output actions on communication ports orτ , and whose transitions will
be exactly those that can be proven to hold by means a collection of syntax-driven
rules. These rules will capture the informal semantics of the CCS operators pre-
sented above in a very simple and elegant way. The operational semantics of a
CCS expression is then obtained by selecting that expression as the start state in
the LTS for the whole language, and restricting ourselves to the collection of CCS
expressions that are reachable from it by following transitions.

The first step in our formal developments is to offer the formal syntax for the
language CCS. Since the set of ports plays a crucial role in the definition of CCS
processes, we begin by assuming a countably infinite collectionA of (channel)
names. (“Countably infinite” means that we have as many names as there are
natural numbers.) The set

Ā = {ā | a ∈ A}

is the set ofcomplementary names (or co-names for short). In our informal intro-
duction to the language, we have interpreted names as input actions and co-names
as output actions. We let

L = A ∪ Ā

be the set oflabels, and
Act = L ∪ {τ}

be the set ofactions. In our formal developments, we shall usea, b to range over
L, but, as we have already done in the previous section, we shall often use more
suggestive names for channels in applications and examples. By convention, we
assume that̄̄a = a for each labela. (This also makes sense intuitively because
the complement of output is input.) We also assume a given countably infinite
collectionK of process names (or constants). (This ensures that we never run out
of names for processes.)

Definition 4.2 The collectionP of CCS expressions is given by the following
grammar:

P,Q ::= K | α.P |
∑
i∈I

Pi | P | Q | P [f ] | P \ L ,

where

• K is a process name inK;

• α is an action inAct;

19



• I is an index set;

• f : Act→ Act is arelabelling function satisfying the following constraints:

f(τ) = τ and

f(ā) = f(a) for each labela ;

• L is a set of labels.

We write0 for an empty sum of processes, i.e.,

0 =
∑
i∈∅

Pi ,

andP1 + P2 for a sum of two processes, i.e.,

P1 + P2 =
∑

i∈{1,2}

Pi .

Moreover, we assume that the behaviour of each process constant is given by a
defining equation

K
def= P .

As it was already made clear by the previous informal discussion, the constantK
may appear inP .

Our readers can easily check that all of the processes presented in the previous
section are indeed CCS expressions. Another example of a CCS expression is
given by a counter, which is defined thus:

Counter0
def= up.Counter1 (5)

Countern
def= up.Countern+1 + down.Countern−1 (n > 0) . (6)

The behaviour of such a process is intuitively clear. For each non-negative integer
n, the process Countern behaves like a counter whose value isn; the ‘up’ actions
increase the value of the counter by one, and the ‘down’ actions decrease it by one.
It would also be easy to construct the (infinite state) LTS for this process based on
its syntactic description, and on the intuitive understanding of process behaviour
we have so far developed. However, intuition alone can lead us to wrong conclu-
sions, and most importantly cannot be fed to a computer! To formally capture our
understanding of the semantics of the language CCS, we therefore introduce the
collection of SOS rules in Table6. A transitionP

α→ Q holds for CCS expressions
P,Q if, and only if, it can be proven using these rules.
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Table 6: SOS Rules for CCS (α ∈ Act, a ∈ L)

P
α→ P ′

K
α→ P ′ K

def= P
α.P

α→ P

Pj
α→ P ′

j∑
i∈I Pi

α→ P ′
j

j ∈ I

P
α→ P ′

P | Q α→ P ′ | Q
Q

α→ Q′

P | Q α→ P | Q′
P

a→ P ′ Q
ā→ Q′

P | Q τ→ P ′ | Q′

P
α→ P ′

P [f ]
f(α)→ P ′[f ]

P
α→ P ′

P \ L
α→ P ′ \ L

α, ᾱ 6∈ L

A rule like

α.P
α→ P

is an axiom, as it has nopremises—that is, it has no transition above the solid
line. This means that proving that a process of the formα.P affords the transition
α.P

α→ P (theconclusion of the rule) can be done without establishing any further
sub-goal. Therefore each process of the formα.P affords the transitionα.P

α→ P .
As an example, we have that the following transition

pub.coin.coffee.CS
pub→ coin.coffee.CS (7)

is provable using the above rule for action prefixing.
On the other hand, a rule like

P
α→ P ′

K
α→ P ′ K

def= P

has a non-empty set of premises. This rule says that to establish that constant
K affords the transition mentioned in the conclusion of the rule, we have to first
prove that the body of the defining equation forK, namely the processP , affords
the transitionP

α→ P ′. Using this rule, pattern matching and transition (7), we can
prove the transition

CS
pub→ coin.coffee.CS ,

which we had informally derived before.

The aforementioned rule for constants has aside condition, namelyK
def= P ,

that describes a constraint that must be met in order for the rule to be applicable.
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Another example of a rule with a side condition is that for restriction, namely

P
α→ P ′

P \ L
α→ P ′ \ L

α, ᾱ 6∈ L

This rule states that every transition of a termP determines a transition of the
expressionP \ L, provided that neither the action producing the transition nor its
complement are inL. For example, as you can check, this side condition prevents
us from proving the existence of the transition

(coffee.CS) \ coffee
coffee→ CS\ coffee .

To get a feeling for the power of recursive definitions of process behaviours, con-
sider the process C defined thus:

C
def= up.(C | down.0) . (8)

What are the transitions that this process affords? Using the rules for constants
and action prefixing, you should have little trouble in arguing that the only initial
transition for C is

C
up→ C | down.0 . (9)

What next? Observing that down.0 down→ 0, we can infer that

C | down.0 down→ C | 0 .

Since it is reasonable to expect that the process C| 0 exhibits the same behaviour
as C—and we shall see later on that this does hold true—, the above transition
effectively brings our process back to its initial state, at least up to behavioural
equivalence. However, this is not all, because, as we have already proven (9), we
have that the transition

C | down.0
up→ (C | down.0) | down.0

is also possible. You might find it instructive to continue building a little more of
the transition graph for process C. As you may begin to notice, the LTS giving the
operational semantics of the process expression C looks very similar to that for
Counter0, as given in (5). Indeed, we shall prove later on that these two processes
exhibit the same behaviour in a very strong sense.

Exercise 4.3Use the rules of the SOS semantics for CCS to derive the LTS for the
process SmUni defined by (4).
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Exercise 4.4Draw (part of) the transition graph for the process name A whose
behaviour is given by the defining equation

A
def
= (a.A) \ b

The resulting transition graph should have infinitely many states. Can you think of
a CCS term that generates a finite state automaton that should intuitively have the
same behaviour of A?

Exercise 4.5Draw (part of) the transition graph for the process name A whose
behaviour is given by the defining equation

A
def
= (a0.A)[f ]

where we assume that the set of labels is{a0, a1, a2, . . .}, andf(ai) = ai+1 for
eachi.

The resulting transition graph should (again!) have infinitely many states. Can
you give an argument showing that there is no finite state automaton that could
intuitively have the same behaviour of A?

Exercise 4.6

1. Draw the transition graph for the process name Mutex1 whose behaviour is
given by the defining equation

Mutex1
def
= (User| Sem) \ {p, v}

User = p̄.enter.exit.v̄.User

Sem
def
= p.v.Sem .

2. Draw the transition graph for the process name Mutex2 whose behaviour is
given by the defining equation

Mutex2
def
= ((User|Sem)|User) \ {p, v}

where User and Sem are defined as before.

Would the behaviour of the process change if User was defined as

User
def
= p̄.enter.v̄.exit.User ?
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3. Draw the transition graph for the process name FMutex whose behaviour is
given by the defining equation

FMutex
def
= ((User| Sem) | FUser) \ {p, v}

where User and Sem are defined as before, and the behaviour of FUser is
given by the defining equation

FUser
def
= p̄.enter.(exit.v̄.FUser+ exit.v̄.0)

Do you think that Mutex2 and FMutex are offering the same behaviour? Can
you argue informally for your answer?

4.2.1 Value Passing CCS

So far, we have only introduced the so-calledpure CCS—that is, the fragment of
CCS where communication is pure synchronization and involves no exchange of
data. In many applications, however, processes exchange data when they com-
municate. To allow for a natural modelling of these examples, it is convenient,
although theoretically unnecessary as argued in [12, Sect. 2.8], to extend our lan-
guage to what is usually calledvalue passing CCS. We shall now introduce the new
features in this language, and their operational semantics, by means of examples.
In what follows, we shall assume for simplicity that the only data type is the set of
non-negative integers.

Assume that we wish to define a one-place buffer B which has the following
behaviour:

• If B is empty, then it is only willing to input one datum along a channel
called ‘in’. The received datum is stored for further output.

• If B is full, then it is only willing to output the successor of the value it stores,
and empties itself in doing so.

This behaviour of B can be modelled in value passing CCS thus:

B
def= in(x).B(x)

B(x) def= out(x + 1).B .

Note that the input prefix ‘in’ now carries a parameter that is a variable—in this
casex—whose scope is the process that is prefixed by the input action—in this ex-
ample, B(x). The intuitive idea is that process B is willing to input a non-negative
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integern, bind the received value tox and thereafter behave like B(n)—that is,
like a full one-place buffer storing the valuen. The behaviour of the process B(n)
is then described by the second equation above, where the scope of the formal pa-
rameterx is the whole right-hand side of the equation. Note that output prefixes,
like ‘out(x+1)’ above, may carry expressions—the idea being that the value being
output is the one that results from the evaluation of the expression.

The general SOS rule for input prefixing now becomes

a(x).P
a(n)→ P [n/x]

n ≥ 0

where we writeP [n/x] for the expression that results by replacing each free oc-
currence of the variablex in P with n. The general SOS rule for output prefixing
is instead

ā(e).P
ā(n)→ P

n is the result of evaluatinge

In value passing CCS, as we have already seen in our definition of the one place
buffer B, process names may be parameterized by value variables. The general
form that these parameterized constants may take is A(x1, . . . , xn), where A is a
process name,n ≥ 0 andx1, . . . , xn are distinct value variables. The operational
semantics for these constants is given by the rule

P [v1/x1, . . . , vn/xn] α→ P ′

A(e1, . . . , en) α→ P ′ A(x1, . . . , xn) def= P and eachei has valuevi

To become familiar with these rules, you should apply them to the one-place buffer
B, and derive its possible transitions.

In what follows, we shall restrict ourselves to CCS expressions that have no
free occurrences of value variables—that is, to CCS expressions in which each
occurrence of a value variable, sayy, is within the scope of an input prefix of the
form a(y) or of a parameterized constant A(x1, . . . , xn) with x = xi for some
1 ≤ i ≤ n. For instance, the expression

a(x).b̄(y + 1).0

is disallowed because the single occurrence of the value variabley is bound neither
by an input prefixing nor by a parameterized constant.

Since processes in value passing CCS may manipulate data, it is natural to
add anif bexpthen P elseQ construct to the language, where bexp is a boolean
expression. Assume, by way of example, that we wish to define a one-place buffer
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Pred that computes the predecessor function on the non-negative integers. This
may be defined thus:

Pred
def= in(x).Pred(x)

Pred(x) def= if x = 0 then out(0).Predelseout(x− 1).Pred .

We expect Pred(0) to output the value0 on channel ‘out’, and Pred(n + 1) to
outputn on the same channel for each non-negative integern. The SOS rules for
if bexpthen P elseQ will allow us to prove this formally. They are the expected
ones, namely

P
α→ P ′

if bexpthen P elseQ
α→ P ′ bexp is true

and
Q

α→ Q′

if bexpthen P elseQ
α→ Q′ bexp is false

Exercise 4.7Consider a one place buffer defined by

Cell
def
= in(x).Cell(x)

Cell(x)
def
= out(x).Cell .

Use the Cell to define a two-place bag and a two-place FIFO queue. Give specifi-
cations of the expected behaviour of these processes, and use the operational rules
given above to convince yourselves that your implementations are correct.

Exercise 4.8Consider the process B defined thus:

B
def
= push(x).(C(x)_B) + empty.B

C(x)
def
= push(y).(C(y)_C(x)) + pop(x).D

D
def
= o(x).C(x) + ē.B ,

where the linking combinator P_Q is as follows:

P_Q = (P[p′/p, e′/e, o′/o] |Q[p′/push, e′/empty, o′/pop]) \ {p′, o′, e′} .

Draw an initial fragment of the transition graph for this process. What behaviour
do you think B implements?

Exercise 4.9 (For the theoretically minded)Prove that the operational seman-
tics for value passing CCS we have given above is in complete agreement with the
semantics for this language via translation into the pure calculus given by Milner
in [12, Sect. 2.8].
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5 Behavioural Equivalence

We have previously remarked that CCS, like all other process algebras, can be used
to describe both implementations of processes and specifications of their expected
behaviours. A language like CCS therefore supports the so-calledsingle language
approach to process theory—that is, the approach in which a single language is
used to describe both actual processes and their specifications. An important in-
gredient of these languages is therefore a notion of behavioural equivalence or
behavioural approximation between processes. One process description, say SYS,
may describe an implementation, and another, say SPEC, may describe a speci-
fication of the expected behaviour. To say that SYS and SPEC are equivalent is
taken to indicate that these two processes describe essentially the same behaviour,
albeit possibly at different levels of abstraction or refinement. To say that, in some
formal sense, SYS is an approximation of SPEC means roughly that every aspect
of the behaviour of this process is allowed by the specification SPEC, and thus that
nothing unexpected can happen in the behaviour of SYS. This approach to program
verification is also sometimes calledimplementation verification.

We have already informally argued that some of the processes that we have met
so far ought to be considered behaviourally equivalent. For instance, we claimed
that the behaviour of the process SmUni defined in (4) should be considered equiv-
alent to that of the specification

Spec
def= pub.Spec ,

and that the process C in (8) behaves like a counter. Our order of business now will
be to introduce a suitable notion of behavioural equivalence that will allow us to
establish these expected equalities and many others.

Before doing so, it is however instructive to consider the criteria that we expect
a suitable notion of behavioural equivalence for processes to meet. First of all,
we have already used the term “equivalence” several times, and since this is a
mathematical notion that some of you may not have met before, it is high time to
define it precisely.

Definition 5.1 Let X be a set. Abinary relation overX is a subset ofX ×X, the
set of pairs of elements ofX. If R is a binary relation overX, we often writexRy
instead of(x, y) ∈ R.

An equivalence relation overX is a relation that satisfies the following con-
straints:

• R is reflexive—that is,x R x for eachx ∈ X;

• R is symmetric—that is,x R y impliesy R x, for all x, y ∈ X; and
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• R is transitive—that is,x R y andy R z imply x R z, for all x, y, z ∈ X.

A reflexive, transitive relation is apre-order.

An equivalence relation is therefore a more abstract version of the notion of equal-
ity that we are familiar with since elementary school.

Exercise 5.1Which of the following relations over the set of non-negative integers
IN is an equivalence relation?

• The identity relationI = {(n, n) | n ∈ IN}.

• The universal relationU = {(n, m) | n, m ∈ IN}.

• The standard≤ relation.

• The parity relationM2 = {(n, m) | n, m ∈ IN, n mod 2 = m mod 2}.

Since we expect that each process is a correct implementation of itself, a relation
used to support implementation verification should certainly be reflexive. More-
over, as we shall now argue, it should also be transitive—at least if it is to support
stepwise derivation of implementations from specifications. In fact, assume that
we wish to derive a correct implementation from a specification via a sequence of
refinement steps which are known to preserve some behavioural relationR. In this
approach, we might begin from our specification Spec and transform it into our
implementation Imp via a sequence of intermediate stages Speci (0 ≤ i ≤ n) thus:

Spec= Spec0 R Spec1 R Spec2 R · · ·R Specn = Imp .

Since each of the steps above preserves the relationR, we would like to conclude
that Imp is a correct implementation of Spec with respect toR—that is, that

SpecR Imp

holds. This is guaranteed to be true if the relationR is transitive.
From the above discussion, it follows that a relation supporting implementation

verification should at least be a preorder. The relations considered in the classic
theory of CCS, and in the main body of these notes, are also symmetric, and are
therefore equivalence relations.

Another intuitively desirable property that an equivalence relationR that sup-
ports implementation verification should have is that it is acongruence. This means
that process descriptions that are related byR can be used interchangeably as parts
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of a larger process description without affecting its overall behaviour. More pre-
cisely, if P R Q andC[ ] is a program fragment with “a hole”, then

C[P ] R C[Q] .

Finally, we expect our notion of relation supporting implementation verification to
be based on the observable behaviour of processes, rather than on their structure,
the actual name of their states or the number of transitions they afford. Ideally,
we should like to identify two processes unless there is some sequence of “inter-
actions” that an “observer” may have with them leading to different “outcomes”.
The lack of consensus on what constitutes an appropriate notion of observable be-
haviour for reactive systems has led to a large number of proposals for behavioural
equivalences for concurrent processes. (See the study [5], where van Glabbeek
presents the linear time-branching time spectrum—a lattice of known behavioural
equivalences and preorders over LTSs, ordered by inclusion.) In our search for a
reasonable notion of behavioral relation to support implementation verification, we
shall limit ourselves to presenting a tiny sample of these.

So let’s begin our search!

5.1 Trace Equivalence: A First Attempt

Labelled transition systems (LTSs) [9] are a fundamental model of concurrent com-
putation, which is widely used in light of its flexibility and applicability. In par-
ticular, they are the prime model underlying Plotkin’s Structural Operational Se-
mantics [15] and, following Milner’s pioneering work on CCS [12], are by now the
standard semantic model for various process description languages.

As we have already seen, LTSs model processes by explicitly describing their
states and their transitions from state to state, together with the actions that pro-
duced them. Since this view of process behaviours is very detailed, several notions
of behavioural equivalence and preorder have been proposed for LTSs. The aim
of such behavioural semantics is to identify those (states of) LTSs that afford the
same “observations”, in some appropriate technical sense.

Now, LTSs are essentially (possibly infinite state) automata, and the classic
theory of automata suggests a ready made notion of equivalence for them, and thus
for the CCS processes that denote them.

Let us say that atrace of a processP is a sequenceα1 · · ·αk ∈ Act∗ (k ≥ 0)
such that there exists a sequence of transitions

P = P0
α1→ P1

α2→ · · · αk→ Pk ,

for someP1, . . . , Pk. We writeTraces(P ) for the collection of traces ofP . Since
Traces(P ) describes all the possible finite sequences of interactions that we may
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have with processP , it is reasonable to require that our notion of behavioural
equivalence only relates processes that afford the same traces, or else we should
have a very good reason for telling them apart—namely a sequence of communi-
cations that can be performed with one, but not with the other. This means that, for
all processesP andQ, we require that

if P andQ are behaviourally equivalent, thenTraces(P ) = Traces(Q) . (10)

Taking the point of view of standard automata theory, and abstracting from the no-
tion of “accept state” that is missing altogether in our treatment, an automaton may
be completely identified by its set of traces, and thus two processes are equivalent
if, and only if, they afford the same traces.

This point of view is totally justified and natural if we view our LTSs as non-
deterministic devices that may generate or accept sequences of actions. However,
is it still a reasonable one if we view our automata as reactive machines that interact
with their environment?

To answer this questions, consider the coffee and tea machine CTM defined as
in (2), and compare it with the following one:

CTM′ def= coin.coffee.CTM′ + coin.tea.CTM′ . (11)

You should be able to convince yourselves that CTM and CTM′ afford the same
traces. However, if you were a user of the coffee and tea machine who wants coffee
and hates tea, which machine would you like to interact with? We certainly would
prefer to interact with CTM as that machine will give us coffee after receiving a
coin, whereas CTM′ may refuse to deliver coffee after having accepted our coin!

This informal discussion may be directly formalized within CCS by assuming
that the behaviour of the coffee starved user is described by the process

CA
def= coin.coffee.CA .

Consider now the terms

(CA | CTM) \ {coin, coffee, tea}

and
(CA | CTM′) \ {coin, coffee, tea}

that we obtain by forcing interaction between the coffee addict CA and the two
vending machines. Using the SOS rules for CCS, you should convince yourselves
that the former term can only perform an infinite computation consisting ofτ -
labelled transitions, whereas the second term can deadlock thus:

(CA |CTM′)\{coin, coffee, tea} τ→ (coffee.CA | tea.CTM′)\{coin, coffee, tea} .
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Note that the target term of this transition captures precisely the deadlock situation
that we intuitively expected to have, namely that the user only wants coffee, but
the machine is only willing to deliver tea. So trace equivalent terms may exhibit
different deadlock behaviour when made to interact with other parallel processes—
a highly undesirable state of affairs.

In light of the above example, we are forced to reject the law

α.(P + Q) = α.P + α.Q ,

which is familiar from the standard theory of regular languages, for our desired
notion of behavioural equivalence. (Can you see why?) Therefore we need to
refine our notion of equivalence in order to differentiate processes that, like the two
vending machines above, exhibit different reactive behaviour while still having the
same traces.

Exercise 5.2A completed trace of a processP is a sequenceα1 · · ·αk ∈ Act∗

(k ≥ 0) such that there exists a sequence of transitions

P = P0
α1→ P1

α2→ · · · αk→ Pk 9 ,

for someP1, . . . , Pk. The completed traces of a process may be seen as capturing
its deadlock behaviour, as they are precisely the sequences of actions that may lead
the process into a state from which no further action is possible.

1. Do the processes

(CA | CTM) \ {coin, coffee, tea}

and
(CA | CTM′) \ {coin, coffee, tea}

defined above have the same completed traces?

2. Is it true that if P and Q are two CCS processes affording the same com-
pleted traces andL is a set of labels, thenP \ L andQ \ L also have the
same completed traces?

5.2 Strong Bisimilarity

Our aim in this section will be to present one of the key notions in the theory of
processes, namelystrong bisimulation. In order to motivate this notion intuitively,
let us reconsider once more the two processes CTM and CTM′ that we used above
to argue that trace equivalence is not a suitable notion of behavioural equivalence
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for reactive systems. The problem was that, as fully formalized in Exercise5.2, the
trace equivalent processes CTM and CTM′ exhibited different deadlock behaviour
when made to interact with a third parallel process, namely CA. In hindsight, this
is not overly surprising. In fact, when looking purely at the (completed) traces of a
process, we focus only on the sequences of actions that the process may perform,
but do not take into account the communication capabilities of the intermediate
states that the process traverses as it computes. As the above example shows,
the communication potential of the intermediate statesdoes matter when we may
interact with the process at all times. In particular, there is a crucial difference
in the capabilities of the states reached by CTM and CTM′ after inputting a coin.
Indeed, after accepting a coin the machine CTM always enters a state in which it
is willing to output either coffee or tea, depending on what its user wants, whereas
the machine CTM′ can only enter a state in which it is willing to deliver either
coffee or tea, but not both.

The lesson that we may learn from the above discussion is that a suitable notion
of behavioural relation between reactive systems should allow us to distinguish
processes that may have different deadlock potential when made to interact with
other processes. Such a notion of behavioural relation must take into account the
communication capabilities of the intermediate states that processes may reach as
they compute. One way to ensure that this holds is to require that in order for two
processes to be equivalent, not only they should afford the same traces, but, in some
formal sense, the states that they reach should still be equivalent. You can easily
convince yourselves that trace equivalence does not meet this latter requirement,
as the states that CTM and CTM′ may reach after inputting a coin arenot trace
equivalent.

The classic notion of strong bisimulation equivalence, introduced by David
Park in [14], formalizes the informal requirements introduced above in a very ele-
gant way.

Definition 5.2 [Strong Bisimulation] A binary relationR over the set of states of
an LTS is abisimulation iff whenevers1 R s2 andα is an action:

- if s1
α→ s′1, then there is a transitions2

α→ s′2 such thats′1 R s′2;

- if s2
α→ s′2, then there is a transitions1

α→ s′1 such thats′1 R s′2.

Two statess ands′ arebisimilar, written s ∼ s′, iff there is a bisimulation that
relates them. Henceforth the relation∼ will be referred to asstrong bisimulation
equivalence or strong bisimilarity.

Since the operational semantics of CCS is given in terms of an LTS whose states
are CCS process expressions, the above definition applies equally well to CCS
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processes. Intuitively, a strong bisimulation is a kind of invariant relation between
processes that is preserved by transitions in the sense of Definition5.2.

Before beginning to explore the properties of strong bisimilarity, let us remark
one of its most appealing features, namely a proof technique that it supports to
show that two processes are strongly bisimilar. Since two processes are strongly
bisimilar if there is a strong bisimulation that relates them, to prove that they are
related by∼ it suffices only to exhibit a strong bisimulation that relates them.

Consider, for instance, the two coffee and tea machines in our running example.
We can argue that CTM and CTM′ arenot strongly bisimilar thus. Assume, towards
a contradiction, that CTM and CTM′ are strongly bisimilar. This means that there
is a strong bisimulationR such that

CTM R CTM′ .

Recall that
CTM′ coin→ tea.CTM′ .

So, by the second requirement in Definition5.2, there must be a transition

CTM
coin→ P

for some processP such thatP R tea.CTM′. A moment of thought should be
enough to convince yourselves that the only process that CTM can reach by in-
putting a coin iscoffee.CTM + tea.CTM, so we are requiring that

coffee.CTM + tea.CTM R tea.CTM′ .

However, now a contradiction is immediately reached. In fact,

coffee.CTM + tea.CTM
coffee→ CTM ,

but tea.CTM′ cannot output coffee. Thus the first requirement in Definition5.2
cannot be met. It follows that our assumption that the two machines were strongly
bisimilar leads to a contradiction. We may therefore conclude that, as claimed, the
processes CTM and CTM′ are not strongly bisimilar.

Example 5.1 Consider the processesP andQ defined thus:

P
def= a.P1 + b.P2

P1
def= c.P

P2
def= c.P
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and

Q
def= a.Q1 + b.Q2

Q1
def= c.Q3

Q2
def= c.Q3

Q3
def= a.Q1 + b.Q2 .

We claim thatP ∼ Q. To prove that this does hold, it suffices to argue that the
following relation is a strong bisimulation

R= {(P,Q), (P,Q3), (P1, Q1), (P2, Q2)} .

We encourage you to check that this is indeed the case.

Exercise 5.3Consider the processesP andQ defined thus:

P
def
= a.P1

P1
def
= b.P + c.P

and

Q
def
= a.Q1

Q1
def
= b.Q2 + c.Q

Q2
def
= a.Q3

Q3
def
= b.Q + c.Q2 .

Show thatP ∼ Q holds by exhibiting an appropriate strong bisimulation.

Exercise 5.4Consider the processes

P
def
= a.(b.0 + c.0) and

Q
def
= a.b.0 + a.c.0 .

Show thatP andQ are not strongly bisimilar.

Before looking a few more examples, we now proceed to present some of the gen-
eral properties of strong bisimilarity. In particular, we shall see that∼ is an equiva-
lence relation, and that it is preserved by all of the constructs in the CCS language.

The following result states the most basic properties of strong bisimilarity, and
is our first theorem in these notes.
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Theorem 5.1 For all LTSs, the relation∼ is

1. an equivalence relation,

2. the largest strong bisimulation and

3. satisfies the following property:

s1 ∼ s2 iff for each actionα,

- if s1
α→ s′1, then there is a transitions2

α→ s′2 such thats′1 ∼ s′2;

- if s2
α→ s′2, then there is a transitions1

α→ s′1 such thats′1 ∼ s′2.

Proof: Consider an LTS(Proc, Act, { α→| α ∈ Act}). We prove each of the state-
ments in turn.

1. In order to show that∼ is an equivalence relation over the set of statesProc,
we need to argue that it is reflexive, symmetric and transitive. (See Defini-
tion 5.1.)

To prove that∼ is reflexive, it suffices only to provide a bisimulation that
contains the pair(s, s), for each states ∈ Proc. It is not hard to see that the
identity relation

I = {(s, s) | s ∈ Proc}

is such a relation.

We now show that∼ is symmetric. Assume, to this end, thats1 ∼ s2 for
some statess1 ands2 contained inProc. We claim thats2 ∼ s1 also holds.
To prove this claim, recall that, sinces1 ∼ s2, there is a bisimulationR that
contains the pair of states(s1, s2). Consider now the relation

R−1 = {(s′, s) | (s, s′) ∈ R} .

You should now be able to convince yourselves that the pair(s2, s1) is con-
tained inR−1, and that this relation is indeed a bisimulation. Therefore
s2 ∼ s1, as claimed.

We are therefore left to argue that∼ is transitive. Assume, to this end, that
s1 ∼ s2 ands2 ∼ s3 for some statess1, s2 ands3 contained inProc. We
claim thats1 ∼ s3 also holds. To prove this, recall that, sinces1 ∼ s2 and
s2 ∼ s3, there are two bisimulationsR andR′ that contain the pairs of states
(s1, s2) and(s2, s3), respectively. Consider now the relation

S = {(s′1, s′3) | (s′1, s′2) ∈ R and(s′2, s
′
3) ∈ R′, for somes′2} .
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The pair(s1, s3) is contained inS. (Why?) Moreover, using thatR and
R′ are bisimulations, you should be able to show that so isS. Therefore
s1 ∼ s3, as claimed.

2. We aim at showing that∼ is the largest strong bisimulation over the set of
statesProc. To this end, observe, first of all, that the definition of∼ states
that

∼ =
⋃
{R | R is a bisimulation} .

This yields immediately that each bisimulation is included in∼. We are
therefore left to show that the right-hand side of the above equation is itself
a bisimulation. This we now proceed to do.

Since we have already shown that∼ is symmetric, it is sufficient to prove
that if

(s1, s2) ∈
⋃
{R | R is a bisimulation} and s1

α→ s′1 , (12)

then there is a states′2 such thats2
α→ s′2 and

(s′1, s
′
2) ∈

⋃
{R | R is a bisimulation} .

Assume, therefore, that (12) holds. Since

(s1, s2) ∈
⋃
{R | R is a bisimulation} ,

there is a bisimulationR that contains the pair(s1, s2). AsR is a bisimu-
lation ands1

α→ s′1, we have that there is a states′2 such thats2
α→ s′2 and

(s′1, s
′
2) ∈ R. Observe now that pair(s′1, s

′
2) is also contained in⋃

{R | R is a bisimulation} .

Hence, we have argued that there is a states′2 such thats2
α→ s′2 and

(s′1, s
′
2) ∈ {R | R is a bisimulation} ,

which was to be shown.

3. We now aim at proving that∼ satisfies the following property:

s1 ∼ s2 iff for each actionα,

- if s1
α→ s′1, then there is a transitions2

α→ s′2 such thats′1 ∼ s′2;

- if s2
α→ s′2, then there is a transitions1

α→ s′1 such thats′1 ∼ s′2.
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The implication from left to right is an immediate consequence of the fact
that, as we have just shown,∼ is itself a bisimulation. We are therefore left
to prove the implication from right to left. To this end, assume thats1 ands2

are two states inProc having the following property:

(∗) for each actionα,

- if s1
α→ s′1, then there is a transitions2

α→ s′2 such that
s′1 ∼ s′2;

- if s2
α→ s′2, then there is a transitions1

α→ s′1 such that
s′1 ∼ s′2.

We shall now prove thats1 ∼ s2 holds by constructing a bisimulation that
contains the pair(s1, s2).

How can we build the desired bisimulationR? First of all, we must add the
pair(s1, s2) toR because we wish to use it to proves1 ∼ s2. SinceR should
be a bisimulation, each transitions1

α→ s′1 from s1 should be matched by a
transitions2

α→ s′2 from s2, for some states′2 such that(s′1, s
′
2) ∈ R. In light

of the aforementioned property, this can be easily achieved by adding to the
relationR all of the pairs of states contained in∼! Since we have already
shown that∼ is itself a bisimulation, no more pairs of states need be added
toR.

The above discussion suggests that we consider the relation

R = {(s1, s2)}∪ ∼ .

Indeed, by construction, the pair(s1, s2) is contained inR. Moreover, using
property (∗) and statement2 of the theorem, it is not hard to prove thatR is
a bisimulation. This shows thats1 ∼ s2, as claimed

The proof is now complete. 2

Exercise 5.5Prove that the relations we have built in the proof of Theorem5.1are
indeed bisimulations.

Exercise 5.6Assume that the defining equation for the constantK is K
def
= P .

Show thatK ∼ P holds.

Exercise 5.7Prove that two strongly bisimilar processes afford the same traces,
and thus that strong bisimulation equivalence satisfies the requirement for a be-
havioural equivalence we set out in (10). [Hint: Use induction on the length of the
traceα1 · · ·αk (k ≥ 0) to show that

P ∼ Q andα1 · · ·αk ∈ Traces(P ) implyα1 · · ·αk ∈ Traces(Q) .
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Exercise 5.8Show that the following relations are strong bisimulations:

{(P |Q,Q | P ) | whereP,Q are CCS processes}
{(P | 0, P ) | whereP is a CCS process}
{((P |Q) |R,P | (Q |R)) | whereP,Q,R are CCS processes} .

Conclude that, for allP,Q,R,

P |Q ∼ Q | P (13)

P | 0 ∼ P and (14)

(P |Q) |R ∼ P | (Q |R) . (15)

In what follows, we shall sometimes use the notationΠk
i=1Pi, wherek ≥ 0 and the

Pi are CCS processes, to stand for

P1 | P2 | · · · | Pk .

If k = 0, then, by convention, the above term is just0.
As mentioned before, one of the desirable properties for a notion of behavioural

equivalence is that it should allow us to “replace equivalent processes for equivalent
processes” in any larger process expression without affecting its behaviour. The
following proposition states that this is indeed possible for strong bisimilarity.

Proposition 5.1 Let P,Q,R be CCS processes. Assume thatP ∼ Q. Then

• α.P ∼ α.Q, for each actionα;

• P + R ∼ Q + R andR + P ∼ R + Q, for each processR;

• P |R ∼ Q |R andR | P ∼ R |Q, for each processR;

• P [f ] ∼ Q[f ], for each relabellingf ; and

• P \ L ∼ Q \ L, for each set of labelsL.

Proof: We limit ourselves to showing that∼ is preserved by parallel composition
and restriction. We consider these two operations in turn. In both cases, we assume
thatP ∼ Q.

• Let R be a CCS process. We aim at showing thatP | R ∼ Q | R. To
this end, we shall build a bisimulationR that contains the pair of processes
(P |R,Q |R).
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Consider the relation

R = {(P ′ |R′, Q′ |R′) | P ′ ∼ Q′ andP ′, Q′, R′ are CCS processes} .

You should readily be able to convince yourselves that the pair of processes
(P | R,Q | R) is indeed contained inR, and thus that all we are left to do
to complete our argument is to show thatR is a bisimulation. The proof
of this fact will, hopefully, also highlight that the above relationR was not
“built out of thin air”, and will epitomize the creative process that underlies
the building of bisimulation relations.

First of all, observe that, by symmetry, to prove thatR is a bisimulation, it is
sufficient to argue that if(P ′ |R′, Q′ |R′) is contained inR andP ′ |R′ α→ S
for some actionα and CCS processS, thenQ′ | R′ α→ T for some CCS
processT such that(S, T ) ∈ R. This we now proceed to do.

Assume that(P ′ | R′, Q′ | R′) is contained inR andP ′ | R′ α→ S for some
actionα and CCS processS. We now proceed with the proof by a case
analysis on the possible origins of the transitionP ′ | R′ α→ S. Recall that
the transition we are considering must be provable using the SOS rules for
parallel composition given in Table6. Therefore there are three possible
forms that the transitionP ′ |R′ α→ S may take, namely:

1. P ′ is responsible for the transition andR′ “stands still”—that is,P ′ |
R′ α→ S becauseP ′ α→ P ′′ andS = P ′′ |R′, for someP ′′,

2. R′ is responsible for the transition andP ′ “stands still”—that is,P ′ |
R′ α→ S becauseR′ α→ R′′ andS = P ′ |R′′, for someR′′, or

3. the transition under consideration is the result of a synchronization be-
tween a transition ofP ′ and one ofR′—that is,P ′ | R′ α→ S because

α = τ , P ′ a→ P ′′, R′ ā→ R′′ andS = P ′′ |R′′, for someP ′′ andR′′.

We now proceed by examining each of these possibilities in turn.

1. SinceP ′ α→ P ′′ andP ′ ∼ Q′, we have thatQ′ α→ Q′′ andP ′′ ∼ Q′′,
for someQ′′. Using the transitionQ′ α→ Q′′ as premise in the first rule
for parallel composition in Table6, we can infer that

Q′ |R′ α→ Q′′ |R′ .

By the definition of the relationR, we have that

(P ′′ |R′, Q′′ |R′) ∈ R .

We can therefore takeT = Q′′ |R′, and we are done.
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2. In this case, we have thatR′ α→ R′′. Using this transition as premise in
the second rule for parallel composition in Table6, we can infer that

Q′ |R′ α→ Q′ |R′′ .

By the definition of the relationR, we have that

(P ′ |R′′, Q′ |R′′) ∈ R .

We can therefore takeT = Q′ |R′′, and we are done.

3. SinceP ′ a→ P ′′ andP ′ ∼ Q′, we have thatQ′ a→ Q′′ andP ′′ ∼ Q′′,
for someQ′′. Using the transitionsQ′ a→ Q′′ andR′ ā→ R′′ as premises
in the third rule for parallel composition in Table6, we can infer that

Q′ |R′ τ→ Q′′ |R′′ .

By the definition of the relationR, we have that

(P ′′ |R′′, Q′′ |R′′) ∈ R .

We can therefore takeT = Q′′ |R′′, and we are done.

Therefore the relationR is a bisimulation, as claimed.

• Let L be a set of labels. We aim at showing thatP \ L ∼ Q \ L. To
this end, we shall build a bisimulationR that contains the pair of processes
(P \ L,Q \ L).

Consider the relation

R = {(P ′ \ L,Q′ \ L) | P ′ ∼ Q′} .

You should readily be able to convince yourselves that the pair of processes
(P \L,Q\L) is indeed contained inR. Moreover, following the lines of the
proof we have just gone through for parallel composition, it is an instructive
exercise to show that

– the relationR is symmetric and

– if (P ′ \ L,Q′ \ L) is contained inR andP ′ \ L
α→ S for some action

α and CCS processS, thenQ′ \L
α→ T for some CCS processT such

that(S, T ) ∈ R.

You are strongly encouraged to fill in the missing details in the proof. 2
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Exercise 5.9Prove that∼ is preserved by action prefixing, summation and rela-
belling.

Exercise 5.10For each set of labelsL and processP , we may wish to build the
processτL(P ) that is obtained by turning into aτ each actionα performed byP
with α ∈ L or ᾱ ∈ L. Operationally, the behaviour of the constructτL( ) can be
described by the following two rules:

P
α→ P ′

τL(P ) τ→ τL(P ′)
if α ∈ L or ᾱ ∈ L

P
µ→ P ′

τL(P )
µ→ τL(P ′)

if µ = τ or µ, µ̄ 6∈ L

Prove thatτL(P ) ∼ τL(Q), wheneverP ∼ Q.
Consider the question of whether the operationτL( ) can be defined in CCS

modulo∼—that is, can you find a CCS expressionCL[ ] with a “hole” (a place
holder when another process can be plugged) such that, for each processP ,

τL(P ) ∼ CL[P ] ?

Recall that we defined the specification of a counter thus:

Counter0
def= up.Counter1

Countern
def= up.Countern+1 + down.Countern−1 (n > 0) .

Moreover, we hinted at the fact that that process was “behaviourally equivalent” to
the process C defined by

C
def= up.(C | down.0) .

We can now show that, in fact, C and Counter0 are strongly bisimilar. To this end,
note that this follows if we can show that the relationR below

{(C |Πk
i=0Pi, Countern) | (1) k ≥ 0 ,

(2) Pi = 0 or Pi = down.0, for eachi ,
(3) the number ofi with Pi = down.0 is n}

is a strong bisimulation. (Can you see why?) Indeed we have that:

Proposition 5.2 The relationR defined above is a strong bisimulation.
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Proof: Assume that
C |Πk

i=1Pi R Countern .

By the definition of the relationR, eachPi is either0 or down.0, and the number
of Pi = down.0 is n. We shall now show that

1. if C | Πk
i=1Pi

α→ P for some actionα and processP , then there is some
processQ such that Countern

α→ Q andP R Q, and

2. if Countern
α→ Q for some some actionα and processQ, then there is some

processP such thatC |Πk
i=1Pi

α→ P andP R Q.

We establish these two claims separately.

1. Assume thatC |Πk
i=1Pi

α→ P for some some actionα and processP . Then

• eitherα = up andP = C | down.0 |Πk
i=1Pi

• or n > 0, α = down andP = C | Πk
i=1P

′
i , where the vectors of

processes(P1, . . . , Pk) and(P ′
1, . . . , P

′
k) differ in exactly one position

`, and at that positionP` = down.0 andP ′
` = 0.

In the former case, argue that the matching transition is

Countern
up→ Countern+1 .

In the latter, argue that the matching transition is

Countern
down→ Countern−1 .

2. Assume that Countern
α→ Q for some some actionα and processQ. Then

• eitherα = up andQ = Countern+1

• or n > 0, α = down andQ = Countern−1.

Finding matching transitions fromC | Πk
i=1Pi is left as an exercise for the

reader.

2

Exercise 5.11Fill in the missing details in the above proof.

Exercise 5.12 (Simulation)Let us say that a binary relationR over the set of
states of an LTS is asimulation iff whenevers1 R s2 andα is an action:
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- if s1
α→ s′1, then there is a transitions2

α→ s′2 such thats′1 R s′2.

We say thats′ simulates s, written s <
∼ s′, iff there is a simulationR with s R s′.

Two statess ands′ are simulation equivalent, writtens ' s′, iff s <
∼ s′ ands′ <

∼ s
both hold.

1. Prove that<∼ is a preorder.

2. Build simulations showing that

a.0 <
∼ a.a.0 and

a.b.0 + a.c.0 <
∼ a.(b.0 + c.0) .

Do the converse relations hold?

3. Show that strong bisimilarity is included in simulation equivalence. Does
the converse inclusion also hold?

Exercise 5.13 (For the theoretically minded)Consider the processes

P
def
= a.b.c.0 + a.b.d.0 and

Q
def
= a.(b.c.0 + b.d.0) .

Argue, first of all, thatP andQ are not strongly bisimilar. Next show that:

1. P andQ have the same completed traces (see Exercise5.2);

2. for each processR and set of labelsL, the processes

(P |R) \ L and(Q |R) \ L

have the same completed traces.

SoP andQ have the same deadlock behaviour in all parallel contexts, even though
strong bisimilarity distinguishes them.

The lesson to be learned from these observations is that more generous notions
of behavioural relation may be necessary to validate some desirable equivalences.

5.3 Weak Bisimilarity

As we have seen in the previous section, strong bisimilarity affords many of the
properties that we expect a notion of behavioural relation to be used in implemen-
tation verification to have. (See the introduction to Section5.) In particular, strong
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bisimilarity is an equivalence relation that is preserved by all of the CCS opera-
tors, it is the largest strong bisimulation, supports a very elegant proof technique to
establish equivalences between process descriptions and it suffices to establish sev-
eral natural equivalences. For instance, you used strong bisimilarity in Exercise5.8
to justify the expected equalities

P |Q ∼ Q | P
P | 0 ∼ P and

(P |Q) |R ∼ P | (Q |R) .

Moreover, a wealth of other “structural equivalences” like the ones above may be
proven to hold modulo strong bisimilarity. (See [12, Propositions 7–8].)

Should we look any further for a notion of behavioural equivalence to support
implementation verification? Is there any item on our wish list that is not met by
strong bisimilarity?

You might recall that we stated early on in these notes thatτ actions in process
behaviours are supposed to beinternal, and thusunobservable. This is a natural
consequence of Milner’s design decision to letτ indicate the result of a successful
communication between two processes. Since communication is binary in CCS,
and observing the behaviour of a process means communicating with it in some
fashion, the unobservable nature ofτ actions is the upshot of the assumption that
they cannot be used for further communication. This discussion indicates that a
notion of behavioural equivalence should allow us to abstract from such steps in
process behaviours.

Consider, for instance, the processesa.τ.0 anda.0. Sinceτ actions should be
unobservable, we intuitively expect these to be observationally equivalent. Unfor-
tunately, however, the processesa.τ.0 anda.0 arenot strongly bisimilar. In fact,
the definition of strong bisimulation requires thateach transition in the behaviour of
one process should be matched byone transition of the other, regardless of whether
that transition is labelled by an observable action orτ , anda.τ.0 affords the trace
aτ , whereasa.0 does not.

In hindsight, this failure of strong bisimilarity to account for the unobservable
nature ofτ actions is expected because the definition of strong bisimulation treats
internal actions as if they were ordinary observable actions. What we should like to
have is a notion of bisimulation equivalence that affords all of the good properties
of strong bisimilarity, and abstracts fromτ actions in the behaviour of processes.
However, in order to fulfill this aim, first we need to understand what “abstracting
from τ actions” actually means. Does this simply mean that we can “erase” all of
the τ actions in the behaviour of a process? This would be enough to show that
a.τ.0 anda.0 are equivalent, as the former process is identical to the latter if we
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Start
↓ pub

(CMb | CS′) \ {coin, coffee}
τ ↙ ↘ τ
Good Bad
τ ↓

Start

where

Start
def= (CMb | CS) \ {coin, coffee} CS

def= pub.CS′

Good
def= (coffee.CMb | CS′′) \ {coin, coffee} CS′

def= coin.CS′′

Bad
def= (CMb | CS′′) \ {coin, coffee} CS′′

def= coffee.CS .

Table 7: The behaviour of(CMb | CS) \ {coin, coffee}

“erase theτ prefix”. But would this work in general?
To understand the issue better, let us make our old friend from the computer

science department, namely the process CS defined in (3), interact with a nasty
variation on the coffee machine CM from (1). This latest version of the coffee
machine delivered to the computer scientist’s office is given by:

CMb
def= coin.coffee.CMb + coin.CMb . (16)

Note that, upon receipt of a coin, the coffee machine CMb can decide to go back to
its initial state without delivering the coffee. You should be able to convince your-
selves that the sequences of transitions in Table7 describe the possible behaviours
of the system(CMb | CS) \ {coin, coffee}. Note that, there are two possibleτ -
transitions that stem from the process(CMb |CS′) \ {coin, coffee}, and that one of
them, namely

(CMb | CS′) \ {coin, coffee} τ→ (CMb | CS′′) \ {coin, coffee} ,

leads to a deadlocked state. Albeit directly unobservable, this transition cannot be
ignored in our analysis of the behaviour of this system because it pre-empts the
other possible behaviour of the machine. So, unobservable actions cannot be just
erased from the behaviour of processes because, in light of their pre-emptive power
in the presence of nondeterministic choices, they may affect what we may observe.

Note that the pre-emptive power of internal transitions is unimportant in the
standard theory of automata as there we are only concerned about the possibility
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of processing our input strings correctly. Indeed, as you may recall from your
courses in the theory of automata, the so-calledε-transitions donot increase the
expressive power of nondeterministic finite automata. In a reactive environment,
on the other hand, this power of internal transitions must be taken into account
in a reasonable definition of process behaviour because it may lead to undesirable
consequences, e.g., the deadlock situation in the above example. We therefore
expect that the behaviour of the process SmUni isnot equivalent to that of the
process(CMb | CS) \ {coin, coffee} since the latter may deadlock after outputting
a publication, whereas the former cannot.

In order to define a notion of bisimulation that allows us to abstract from inter-
nal transitions in process behaviours, and to differentiate the process SmUni from
(CMb | CS) \ {coin, coffee}, we begin by introducing a new notion of transition
relation between processes.

Definition 5.3 Let P andQ be CCS processes. We writeP
ε⇒ Q iff there is a

(possibly empty) sequence ofτ -labelled transitions that leads fromP to Q. (If the
sequence is empty, thenP = Q.)

For each actionα, we writeP
α⇒ Q iff there are processesP ′ andQ′ such that

P
ε⇒ P ′ α→ Q′ ε⇒ Q .

For each actionα, we useα̂ to stand forε if α = τ , and forα otherwise.

ThusP
α⇒ Q holds if P can reachQ by performing anα-labelled transition, pos-

sibly preceded and followed by sequences ofτ -labelled transitions. For example,
a.τ.0 a⇒ 0 anda.τ.0 a⇒ τ.0 both hold.

In the LTS depicted in Table7, apart from the obvious one steppub-labelled
transition, we have that

Start
pub⇒ Good

Start
pub⇒ Bad and

Start
pub⇒ Start .

Our order of business will now be to use the new transition relations presented
above to define a notion of bisimulation that can be used to equate processes that
offer the same observable behaviour despite possibly having very different amounts
of internal computations. The idea underlying the definition of the new notion of
bisimulation is that a transition of a process can now be matched by a sequence of
transitions from the other that has the same “observational content” and leads to a
state that is bisimilar to that reached by the first process.
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Definition 5.4 [Weak Bisimulation and Observational Equivalence] A binary rela-
tionR over the set of states of an LTS is aweak bisimulation iff whenevers1 R s2

andα is an action:

- if s1
α→ s′1, then there is a transitions2

α̂⇒ s′2 such thats′1 R s′2;

- if s2
α→ s′2, then there is a transitions1

α̂⇒ s′1 such thats′1 R s′2.

Two statess ands′ areobservationally equivalent (or weakly bisimilar), written
s ≈ s′, iff there is a weak bisimulation that relates them. Henceforth the relation
≈ will be referred to asobservational equivalence or weak bisimilarity.

We can readily argue thata.0 ≈ a.τ.0 by establishing a weak bisimulation that
relates these two processes. On the other hand, there is no weak bisimulation that
relates the process SmUni and the process Start in Table7. In fact, the process
SmUni is observationally equivalent to the process

Spec
def= pub.Spec ,

but the process Start is not.

Exercise 5.14Prove the claims that we have just made.

Exercise 5.15Prove that the behavioural equivalences claimed in Exercise4.6
hold with respect to observational equivalence.

The definition of weak bisimulation and observational equivalence is so natural,
at least to our mind, that it is easy to miss some of its crucial consequences. To
highlight some of these, consider the process

A?
def= a.0 + τ.B?

B?
def= b.0 + τ.A? .

Intuitively, this process describes a “polling loop” that may be seen as an imple-
mentation of a process that is willing to receive on porta and portb, and then
terminate. Indeed, it is not hard to show that

A?≈ B?≈ a.0 + b.0 .

(Prove this!) This seems to be non-controversial until we note that A? and B?
have a livelock (that is, a possibility of divergence), buta.0 + b.0 doesnot. The
above equivalences capture one of the main features of observational equivalence,
namely the fact that it supports what is called “fair abstraction from divergence”.
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Send
def= acc.Sending Rec

def= trans.Del

Sending
def= send.Wait Del

def= del.Ack

Wait
def= ack.Send+ error.Sending Ack

def= ack.Rec

Med
def= send.Med′

Med′
def= τ.Err + trans.Med

Err
def= error.Med

Table 8: The sender, receiver and medium in (17)

(See [2], where Baeten, Bergstra and Klop show that a proof rule embodying this
idea, namely Koomen’s fair abstraction rule, is valid with respect to observational
equivalence.) This means that observational equivalence assumes that if a process
can escape from a loop consisting of internal transitions, then it will eventually
do so. This property of observational equivalence, that is by no means obvious
from its definition, is crucial in using it as a correctness criterion in the verification
of communication protocols, where the communication media may lose messages,
and messages may have to be retransmitted some arbitrary number of times in order
to ensure their delivery.

Note moreover that0 is observationally equivalent to the process

Div
def= τ.Div .

This means that a process that can only diverge is observationally equivalent to
deadlock. This may seem odd at first sight. However, you will probably agree that,
assuming that we can only observe a process by communicating with it, these two
systems are observationally equivalent since both refuse each attempt at commu-
nicating with them. (They do so for different reasons, but these reasons cannot be
distinguished by an external observer.)

As an example of an application of observational equivalence to the verification
of a simple protocol, consider the process Protocol defined by

(Send|Med | Rec) \ L (L = {send, error, trans, ack}) (17)

consisting of a sender and a receiver that communicate via a potentially faulty
medium. The sender, the receiver and the medium are given in Table8. No that
the potentially faulty behaviour of the medium Med is described abstractly in the
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defining equation for process Med′ by means of an internal transition to an “error
state”. When it has entered that state, the medium informs the sender process that
it has lost a message, and therefore that the message must be retransmitted. The
sender will receive this message when in state Wait, and will proceed to retransmit
the message.

We expect the protocol to behave like a one-place buffer described thus:

ProtocolSpec
def= acc.del.ProtocolSpec.

Note, however, that the necessity of possibly having to retransmit a message some
arbitrary number of times before a successful delivery means that the process de-
scribing the protocol has a livelock. (Find it!) However, you should be able to
prove that

Protocol≈ ProtocolSpec

by building a suitable weak bisimulation.

Exercise 5.16Build the aforementioned weak bisimulation.

Theorem 5.2 For all LTSs, the relation≈ is

1. an equivalence relation,

2. the largest weak bisimulation and

3. satisfies the following property:

s1 ≈ s2 iff for each actionα,

- if s1
α→ s′1, then there is a transitions2

α̂⇒ s′2 such thats′1 ≈ s′2;

- if s2
α→ s′2, then there is a transitions1

α̂⇒ s′1 such thats′1 ≈ s′2.

Proof: The proof follows the lines of that of Theorem5.1, and is therefore omitted.
2

Exercise 5.17Fill in the details of the proof of the above theorem.

Exercise 5.18Show that strong bisimilarity is included in observational equiva-
lence.

Exercise 5.19Show that, for allP,Q, the following equivalences, that are usually
referred to asMilner’s τ -laws, hold:

α.τ.P ≈ α.P (18)

P + τ.P ≈ τ.P (19)

α.(P + τ.Q) ≈ α.(P + τ.Q) + α.Q . (20)
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Exercise 5.20Show that, for allP,Q, if P
ε⇒ Q andQ

ε⇒ P , thenP ≈ Q.

Exercise 5.21We say that a CCS process isτ -free iff none of the states that it can
reach by performing sequences of transitions affords aτ -labelled transition. For
example,a.0 is τ -free, buta.(b.0 | b̄.0) is not.

Prove that noτ -free CCS process is observationally equivalent toa.0 + τ.0.

Exercise 5.22Prove that, for each CCS processP , the processP \ (Act − {τ})
is observationally equivalent to0. Does this remain true if we consider processes
modulo strong bisimilarity?

The notion of observational equivalence that we have just defined seems to meet
many of our desiderata. There is, however, one important property that observa-
tional equivalence doesnot enjoy. In fact, unlike strong bisimilarity, observational
equivalence isnot a congruence. This means that, in general, we cannot substitute
observationally equivalent processes one for the other in a process context without
affecting the overall behaviour of the system.

To see this, observe that0 is observationally equivalent toτ.0. However, it is
not hard to see that

a.0 + 0 ≈ a.0 6≈ a.0 + τ.0 .

In fact, the transitiona.0 + τ.0 τ→ 0 can only be matched bya.0 + 0 ε⇒ a.0 + 0,
and the processes0 anda.0 + 0 are not observationally equivalent. Fortunately,
however, we have that:

Proposition 5.3 Let P,Q,R be CCS processes. Assume thatP ≈ Q. Then

• α.P ≈ α.Q, for each actionα;

• P |R ≈ Q |R andR | P ∼ R |Q, for each processR;

• P [f ] ≈ Q[f ], for each relabellingf ; and

• P \ L ≈ Q \ L, for each set of labelsL.

Proof: The proof follows the lines of that of Theorem5.1, and is left as an exercise
for the reader. 2

Exercise 5.23Prove Proposition5.3.

In light of Proposition5.3, observational equivalence is very close to being a con-
gruence over CCS. The characterization and the study of the largest congruence
relation included in observational equivalence is a very interesting chapter in pro-
cess theory. It is, however, one that we won’t touch upon in these notes. The
interested reader is referred to [12, Chapter 7] for an in depth treatment of this
beautiful topic.
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6 Hennessy-Milner Logic

In the previous section we have seen that implementation verification is a natural
approach to establishing the correctness of (models of) reactive systems described
in the language CCS. This is because CCS, like all other process algebras, can
be used to describe both actual systems and their specifications. However, when
establishing the correctness of our system with respect to a specification using a
notion of equivalence like observational equivalence, we are somehow forced to
specify the overall behaviour of the system under consideration.

Suppose, for instance, that all we want to know about our system is whether it
can perform ana-labelled transition “now”. Phrasing this correctness requirement
in terms of observational equivalence seems at best unnatural, and maybe cannot be
done at all! (See the paper [3] for an investigation of this issue.) In fact, checking
whether a process affords this property seems best done by first constructing the
collection of initial a-labelled transitions that are possible for the process under
consideration, and then checking whether this collection is empty.

We can imagine a whole array of similar properties of the behaviour of a pro-
cess we may be interested in specifying and checking. For instance, we may wish
to know whether our computer scientist

• is not willing to drink tea now,

• is willing to drink both coffee and tea now,

• is willing to drink coffee, but not tea, now,

• never drinks alcoholic beverages, or

• always produces a publication after drinking coffee.

No doubt, you will be able to come up with many others examples of similar prop-
erties of the computer scientist that we may wish to verify.

All of the aforementioned properties, and many others, seem best checked by
exploring the state space of the process under consideration, rather than by trans-
forming them into equivalence checking questions. However, before even thinking
of checking whether these properties hold of a process, either manually or automat-
ically, we need to have a language for expressing them. This language must have
a formal syntax and semantics, so that it can be understood by a computer, and al-
gorithms to check whether a process affords a property may be devised. Moreover,
the use of a language with a well defined and intuitively understandable seman-
tics will also allow us to overcome the imprecision that often accompanies natural
language descriptions. For instance, what do we really mean when we say that
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our computer scientist is willing to drink both coffee and tea now?

Do we mean that, in its current state, the computer scientist can perform either a
coffee-labelled transition or atea-labelled one? Or do we mean that these transi-
tions should be possible one after the other? And, may these transitions be pre-
ceded and/or followed by sequences of internal steps? Whether our computer sci-
entist affords the specified property clearly depends on the answer to the questions
above, and the use of a language with a formal semantics will help us understand
precisely what is meant. Moreover, giving a formal syntax to our specification
language will tell us what properties we can hope to express using it.

The approach to specification and verification of reactive systems that we shall
begin exploring in this section is often referred to as “model checking”. In this
approach we usually use different languages for describing actual systems and their
specifications. For instance, we may use CCS expressions or the LTSs that they
denote to describe actual systems, and some kind of logic to describe specifications.
In this section, we shall present a property language that has been introduced in
process theory by Hennessy and Milner in [7]. This logic is often referred to as
Hennessy-Milner logic (or HML for short), and, as we shall see in due course, has
a very pleasing connection with the notion of bisimilarity.

Definition 6.1 The set of Hennessy-Milner formulae over a set of actionsAct
(from now on referred to asM) is given by the following abstract syntax:

F ::= tt | ff | F ∧G | F ∨G | 〈a〉F | [a]F

wherea ∈ Act. If A = {a1, . . . , an} ⊆ Act (n ≥ 0), we use the abbreviation〈A〉F
for the formula〈a1〉F ∨ . . .∨〈an〉F and[A]F for the formula[a1]F ∧ . . .∧ [an]F .
(If A = ∅, then〈A〉F = ff and[A]F = tt.)

We are interested in using the above logic to describe properties of CCS processes,
or, more generally, of states in an LTS over the set of actionsAct. The meaning of
a formula in the languageM is given by characterizing the collection of processes
that satisfy it. Intuitively, this can be described as follows:

• All processes satisfytt.

• No process satisfiesff .

• A process satisfiesF ∧G (respectively,F ∨G) iff it satisfies bothF andG
(respectively, eitherF or G).

• A process satisfies〈a〉F for somea ∈ Act iff it affords ana-labelled transi-
tion leading to a state satisfyingF .
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• A process satisfies[a]F for somea ∈ Act iff all of its a-labelled transitions
lead to a state satisfyingF .

So, intuitively, a formula of the form〈a〉F states that it ispossible to perform
actiona and thereby satisfy propertyF . Whereas a formula of the form[a]F states
that no matter how a process performs actiona, the state it reaches in doing so will
necessarily have propertyF .

Logics that involve the use of expressions likepossibly and necessarily are
usually calledmodal logics, and, in some form or another, have been studied by
philosophers throughout history, notably byAristotle and in the middle ages. So
Hennessy-Milner logic is a modal logic—in fact, a so-called multi-modal logic,
since the logic involves modal operators that are parameterized by actions. The
semantics of formulae is given with respect to a given labelled transition system

(Proc, Act, { a→| a ∈ Act}) .

We shall use[[F ]] to denote the set of processes inProc that satisfyF . This we
now proceed to define formally.

Definition 6.2 We define[[F ]] ⊆ Proc for F ∈M by:

1. [[tt]] = Proc, 4. [[F ∨G]] = [[F ]] ∪ [[G]],

2. [[ff ]] = ∅ 5. [[〈a〉F ]] = 〈·a·〉[[F ]],

3. [[F ∧G]] = [[F ]] ∩ [[G]], 6. [[[a]F ]] = [·a·][[F ]],

where we use the set operators〈·a·〉, [·a·] : P(Proc)→ P(Proc) defined by

〈·a·〉S = {p ∈ Proc | ∃p′. p
a→ p′ andp′ ∈ S} and

[·a·]S = {p ∈ Proc | ∀p′. p
a→ p′ =⇒ p′ ∈ S}.

We writep |= F iff p ∈ [[F ]].
Two formulae areequivalent if, and only if, they are satisfied by the same

processes in every transition system.

Let us now re-examine the properties of our computer scientist that we mentioned
earlier, and let us see whether we can express them using HML. First of all, note
that, for the time being, we have defined the semantics of formulae inM in terms
of the one step transitions

a→. This means, in particular, that we are not considering
τ actions as unobservable. So, if we say that “a processP can do actiona now”,
then we really mean that the process can perform a transition of the formP

a→ Q
for someQ.
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How to express, for instance, that our computer scientist is willing to drink
coffee now? Well, one way to say so using our logic is to say that the computer
scientist has the possibility of doing a coffee-labelled transition. This suggests that
we use a formula of the form〈coffee〉F for some formulaF that should be satisfied
by the state reached by the computer scientist after having drunk her coffee. What
should thisF be? Since we are not requiring anything of the subsequent behaviour
of the computer scientist, it makes sense to setF = tt. So, it looks as if we can
express our natural language requirement in terms of the formula〈coffee〉tt. In fact,
since our property language has a formal semantics, we can actually prove that our
proposed formula is satisfied exactly by all the processes that have an outgoing
coffee-labelled transition. This can be done as follows:

[[〈coffee〉tt]] = 〈·coffee·〉[[tt]]
= 〈·coffee·〉Proc

= {P | P coffee→ P ′ for someP ′ ∈ Proc} .

So the formula we came up with does in fact say what we wanted.
Can we express using HML that the computer scientist cannot drink tea now?

Consider the formula[tea]ff . Intuitively this formula says that all the states that a
process can reach by doing a tea-labelled transition must satisfy the formulaff , i.e.,
false. Since no state has the property “false”, the only way that a process can satisfy
the property[tea]ff is that it has no tea-labelled transition. To prove formally that
our proposed formula is satisfied exactly by all the processes that have no outgoing
tea-labelled transition, we proceed as follows:

[[[tea]ff ]] = [·tea·][[ff ]]
= [·tea·]∅
= {P | ∀P ′. P

tea→ P ′ =⇒ P ′ ∈ ∅}
= {P | P tea9} .

The last equality above follows from the fact that, for each processP ,

P
tea9 iff (∀P ′. P

tea→ P ′ =⇒ P ′ ∈ ∅) .

To see that this holds, observe first of all that ifP
tea→ Q for someQ, then it is not

true thatP ′ ∈ ∅ for all P ′ such thatP
tea→ P ′. In fact, Q is a counter-example

to the latter statement. So the implication from right to left is true. To establish

the implication from left to right, assume thatP
tea9. Then it is vacuously true that

P ′ ∈ ∅ for all P ′ such thatP
tea→ P ′—indeed, since there is no suchP ′, there is no

counter-example to that statement!
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To sum up, we can express that a process cannot perform actiona ∈ Act with
the formula[a]ff .

Suppose now that we want to say that the computer scientist must have a biscuit
after drinking coffee. This means that it is possible for the computer scientist to
have a biscuit in all the states that she can reach by drinking coffee. This can be
expressed by means of the formula

[coffee]〈biscuit〉tt .

Exercise 6.1

1. Use the semantics of the logic to check that the above formula expresses the
desired property of the computer scientist.

2. Give formulae that express the following natural language requirements:

• the process is willing to drink both coffee and tea now;

• the process is willing to drink coffee, but not tea now;

• the process can always drink tea after having drunk two coffees in a
row.

3. What do the formulae〈a〉ff and[a]tt express?

Exercise 6.2Consider an everlasting clock whose behaviour is defined thus:

Clock
def
= tick.Clock .

Prove that the process Clock satisfies the formula

[tick](〈tick〉tt ∧ [tock]ff) .

Show also that, for eachn ≥ 0, the process Clock satisfies the formula

〈tick〉 · · · 〈tick〉︸ ︷︷ ︸
n-times

tt .

Exercise 6.3 (Mandatory) Find a formula inM that is satisfied bya.b.0+a.c.0,
but not bya.(b.0 + c.0).

Find a formula inM that is satisfied bya.(b.c.0 + b.d.0), but not bya.b.c.0 +
a.b.d.0.
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It is sometimes useful to have an alternative characterization of the satisfaction
relation|= presented in Definition6.2. This can be obtained by defining the binary
relation|= relating processes to formulae by structural induction on formulae thus:

• P |= tt, for eachP ,

• P |= ff , for noP ,

• P |= F ∧G iff P |= F andP |= G,

• P |= F ∨G iff P |= F or P |= G,

• P |= 〈a〉F iff P
a→ P ′ for someP ′ such thatP ′ |= F , and

• P |= [a]F iff P ′ |= F , for eachP ′ such thatP
a→ P ′.

Exercise 6.4Show that the above definition of the satisfaction relation is equiv-
alent to that given in Definition6.2. [Hint: Use induction on the structure of
formulae.]

Note that logical negation isnot one of the constructs in the abstract syntax for
M. However, the languageM is closed under negation, in the sense that, for each
formulaF ∈ M, there is a formulaF c ∈ M that is equivalent to the negation of
F . This formulaF c is defined by structural recursion onF as follows:

1. ttc = ff, 4. (F ∨G)c = F c ∧Gc,

2. ff c = tt 5. (〈a〉F )c = [a]F c,

3. (F ∧G)c = F c ∨Gc, 6. ([a]F )c = 〈a〉F c.

Note, for instance, that

(〈a〉tt)c = [a]ff and

([a]ff)c = 〈a〉tt.

Proposition 6.1 Let (Proc, Act, { a→ | a ∈ Act}) be a labelled transition system.
Then, for every formulaF ∈M, it holds that[[F c]] = Proc \ [[F ]].

Proof: The proposition can be proven by structural induction onF . The details
are left as an exercise to the reader. 2

Exercise 6.5
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1. Prove Proposition6.1.

2. Prove, furthermore, that(F c)c = F for every formulaF ∈ M. [Hint: Use
structural induction onF .]

As a consequence of Proposition6.1, we have that, for each processP and formula
F , exactly one ofP |= F andP |= F c holds. In fact, each process is either
contained in[[F ]] or in [[F c]]

In Exercise6.3 you were asked to come up with formulae that distinguished
processes that we know are not strongly bisimilar. As a further example, consider
the processes

A
def= a.A + a.0 and

B
def= a.a.B + a.0 .

These two processes arenot strongly bisimilar. In fact, A affords the transition

A
a→ A .

This transition can only be matched by either

B
a→ 0

or
B

a→ a.B .

However, neither0 nor a.B is strongly bisimilar to A, because this process can
perform ana-labelled transition and become0 in doing so. On the other hand,

a.B
a→ B

is the only transition that is possible froma.B, and B is not strongly bisimilar to0.
Based on this analysis, it seems that a property distinguishing the processes A

and B is〈a〉〈a〉[a]ff—that is, the process can perform a sequence of twoa-labelled
transitions, and in so doing reach a state from which noa-labelled transition is
possible. In fact, you should be able to establish that A satisfies this property, but
B does not. (Do so!)

Again, faced with two non-bisimilar processes, we have been able to find a for-
mula in the logicM that distinguishes them, in the sense that one process satisfies
it, but the other does not. Is this true in general? And what can we say about two
processes that satisfy precisely the same formulae inM? Are they guaranteed to
be strongly bisimilar?
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We shall now present a seminal theorem, due to Hennessy and Milner, that
answers both of these questions in one fell swoop by establishing a beautiful, and
very fruitful, connection between the apparently unrelated notions of strong bisim-
ilarity and the logicM. The theorem applies to a class of processes that we now
proceed to define.

Definition 6.3 [Image Finite Process] A processP is image finite iff the collection
{P ′ | P a→ P ′} is finite for each actiona.

An LTS is image finite if so is each of its states.

For example, the process!A defined thus:

!A def= a.0|!A

is not image finite. In fact, you should be able to prove by induction onn that, for
eachn ≥ 0,

!A a→ a.0 | · · · | a.0︸ ︷︷ ︸
n times

|0|!A .

Another example of a process that is not image finite is

A<ω def=
∑
i≥0

ai , (21)

wherea0 = 0 andai+1 = a.ai.
On the other hand all of the other processes that we have met so far in this text

are image finite.

Theorem 6.1 [Hennessy and Milner [7]] Let (Proc, Act, { a→| a ∈ Act}) be an
image finite LTS. Assume thatP,Q are states inProc. ThenP ∼ Q iff P andQ
satisfy exactly the same formulae inM.

Proof: We prove the two implications separately.

• Assume thatP ∼ Q andP |= F for some formulaF ∈M. Using structural
induction onF , we prove thatQ |= F . By symmetry, this is enough to
establish thatP andQ satisfy the same formulae inM.

The proof proceeds by a case analysis on the form ofF . We only present
the details for the caseF = [a]G for some actiona and formulaG. Our
inductive hypothesis is that, for all processesR andS, if R ∼ S andR |= G,
thenS |= G. Using this hypothesis, we shall prove thatQ |= [a]G. To this
end, assume thatQ

a→ Q′ for someQ′. We wish to show thatQ′ |= G. Now,
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sinceP ∼ Q andQ
a→ Q′, there is a processP ′ such thatP

a→ P ′ and
P ′ ∼ Q′. (Why?) By our assumption thatP |= [a]G, we have thatP ′ |= G.
The inductive hypothesis yields thatQ′ |= G. Therefore eachQ′ such that
Q

a→ Q′ satisfiesG, and we may conclude thatQ |= [a]G, which was to be
shown.

• Assume thatP andQ satisfy the same formulae inM. We shall prove that
P andQ are strongly bisimilar. To this end, note that it is sufficient to show
that the relation

R= {(R,S) | R,S ∈ Proc satisfy the same formulae inM}

is a strong bisimulation. To this end, assume thatR R S andR
a→ R′. We

shall now argue that there is a processS′ such thatS
a→ S′ andR′ R S′.

SinceR is symmetric, this suffices to establish thatR is a strong bisimula-
tion.

Assume, towards a contradiction, that there is noS′ such thatS
a→ S′ and

S′ satisfies the same properties asR′. SinceS is image finite, the set of
processesS can reach by performing ana-labelled transition is finite, say
{S1, . . . , Sn} with n ≥ 0. By our assumption, none of the processes in the
above set satisfies the same formulae asR′. So, for eachi ∈ {1, . . . , n},
there is a formulaFi such that

R′ |= Fi andSi 6|= Fi .

(Why? Couldn’t it be thatR′ 6|= Fi andSi |= Fi, for somei ∈ {1, . . . , n}?)
We are now in a position to construct a formula that is satisfied byR, but not
by S—contradicting our assumption thatR andS satisfy the same formulae.
In fact, the formula

〈a〉(F1 ∧ F2 ∧ · · · ∧ Fn)

is satisfied byR, but not byS. The easy verification is left to the reader.

The proof of the theorem is now complete. 2

Exercise 6.6Fill in the details that we have omitted in the above proof. What is
the formula that we have constructed to distinguishR and S in the proof of the
implication from right to left ifn = 0?

Remark 6.1 In fact, the implication from left to right in the above theorem holds
for arbitrary processes, not just image finite ones.
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The above theorem has many applications in the theory of processes, and in ver-
ification technology. For example, a consequence of its statement is that if two
image finite processes are not strongly bisimilar, then there is a formula inM that
tells us one reason why they are not. Moreover, as the proof of the above theorem
suggests, we can always construct this distinguishing formula.

Exercise 6.7 (For the Theoretically Minded) Consider the process Aω given by:

Aω def
= a.Aω .

Show that the processes A<ω and Aω + A<ω, where A<ω was defined in (21),

1. are not strongly bisimilar, but

2. satisfy the same properties inM.

Conclude that Theorem6.1 does not hold for processes that are not image finite.
[Hint: To prove that the two processes satisfy the same formulae inM, use struc-
tural induction on formulae. You will find it useful to first establish the following
statement:

Aω satisfies a formulaF ∈ M iff so doesai, wherei is the modal
depth ofF .

Themodal depth of a formula is the maximum nesting of the modal operators in
it.]

7 Hennessy-Milner Logic with Recursive Definitions

An HML formula can only describe afinite part of the overall behaviour of a pro-
cess. In fact, as each modal operator allows us to explore the effect of taking one
step in the behaviour of a process, using a single HML formula we can only de-
scribe properties of a fixed finite fragment of the computations of a process. How
much of the behaviour of a process we can explore using a single formula is en-
tirely determined by its so-calledmodal depth—i.e., by the maximum nesting of
modal operators in it. For example, the formula[a]〈a〉ff ∨ 〈b〉tt has modal depth
2, and checking whether a process satisfies it or not involves only an analysis of its
sequences of transitions whose length is at most 2. (We will return to this issue in
Sect.7.6, where a formal definition of the modal depth of a formula will be given.)

However, we often wish to describe properties that describe states of affairs
that may or must occur in arbitrarily long computations of a process. If we want to
express properties as, for example, that a process isalways able to perform a given
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Figure 1: Two processes.

action, we have to extend the logic. One way of doing this is to allow for infinite
conjunctions and disjunctions in our property language.

Example 7.1 Consider the processesp andq in Figure1. It is not hard to come up
with an HML formula thatp satisfies andq does not. In fact, after performing an
a-action,p will always be able to perform another one, whereasq may fail to do
so. This can be captured formally in HML as follows:

p |= [a]〈a〉tt but

q 6|= [a]〈a〉tt.

Since a difference in the behaviour of the two processes can already be found by
examining their behaviour after two transitions, a formula that distinguishes them
is “small”.

Assume, however, that we modify the labelled transition system forq by adding
a sequence of transitions tor thus:

r = r0
a→ r1

a→ r2
a→ r3 · · · rn−1

a→ rn (n ≥ 0).

No matter how we choose a non-negative integern, there is an HML formula that
distinguishes the processesp andq. In fact, we have that:

p |= [a]n+1〈a〉tt but

q 6|= [a]n+1〈a〉tt.

However, no formula in HML would work for all values ofn. (Prove this claim!)
This is unsatisfactory as there appears to be a general reason why the behaviours
of p andq are different. Indeed, the processp in Figure1 can always (i.e., at any
point in a computation) perform ana-action—that is,〈a〉tt is always true. Let us
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call thisinvariance propertyInv(〈a〉tt). We could describe it in an extension HML
as an infinite conjunction thus:

Inv(〈a〉tt) = 〈a〉tt ∧ [a]〈a〉tt ∧ [a][a]〈a〉tt ∧ · · · =
∞∧
i=0

[a]i〈a〉tt.

This formula can be read as follows:

In order for a process to be always able to perform ana-action, this
action should be possible now (as expressed by the conjunct〈a〉tt),
and, for each positive integeri, it should be possible in each state
that the process can reach by performing a sequence ofi actions (as
expressed by the conjunct[a]i〈a〉tt).

On the other hand, the processq has the option of terminating at any time by per-
forming thea-labelled transition leading to processr, or equivalently it is possible
from q to satisfy[a]ff . Let us call this propertyPos([a]ff). We can express it in
an extension of HML as the following infinite disjunction:

Pos([a]ff) = [a]ff ∨ 〈a〉[a]ff ∨ 〈a〉〈a〉[a]ff ∨ · · · =
∞∨
i=0

〈a〉i[a]ff.

This formula can be read as follows:

In order for a process to have the possibility of refusing ana-action at
some point, this action should either be refused now (as expressed by
the disjunct[a]ff ), or, for some positive integeri, it should be possible
to reach state in which ana can be refused by performing a sequence
of i actions (as expressed by the disjunct〈a〉i[a]ff ).

Even if it is theoretically possible to extend HML with infinite conjunctions and
disjunctions, infinite formulas are not particularly easy to handle (for instance they
are infinitely long, and we would have a hard time using them as inputs for an
algorithm). What do we do instead? The answer is in fact simple; let us introduce
recursion into our logic. Assuming for the moment thata is the only action, we
can then expressInv(〈a〉tt) by means of the following recursive equation:

X ≡ 〈a〉tt ∧ [a]X, (22)

where we writeF ≡ G if and only if the formulasF andG are satisfied by exactly
the same processes (i.e.,[[F ]] = [[G]].) The above recursive equation captures the in-
tuition that a process that can invariantly perform ana-labelled transition—that is,
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that can perform ana-labelled transition in all of its reachable states—can certainly
perform one now, and, moreover, each state that it reaches via one such transition
can invariantly perform ana-labelled transition. However, the mere fact of writing
down an equation like (22) does not mean that this equation makes sense! Indeed,
equations may be seen as implicitly defining the set of their solutions, and we are
all familiar with equations that have no solutions at all. For instance, the equation

x = x + 1 (23)

has no solution over the set of natural numbers, and there is noX ⊆ IN such that

X = IN \X . (24)

On the other hand, there are countably manyX ⊆ IN such that

X = {2} ∪X , (25)

namely all of the sets that contain the number2. There are also equations that have
a finite number of solutions, but not a unique one. As an example, consider the
equation

X = {10} ∪ {n− 1 | n ∈ X, n 6= 0} . (26)

The only finite set that is the solution for this equation is the set{0, 1, . . . , 10}, and
the only infinite solution is IN itself.

Exercise 7.1Check the claims that we have just made.

Since an equation like (22) is meant to describe a formula, it is therefore natural to
ask ourselves the following questions:

• Does (22) have a solution? And what precisely do we mean by that?

• If (22) has more than one solution, which one do we choose?

• How can we compute whether a process satisfies the formula described by
(22)?

Precise answers to these questions will be given in the remainder of this section.
However, it is appropriate here to discuss briefly the first two questions above.

Recall that the meaning of a formula (with respect to a labelled transition sys-
tem) is the set of processes that satisfy it. Therefore, it is natural to expect that a set
S of processes that satisfy the formula described by equation (22) should be such
that:

S = 〈·a·〉Proc ∩ [·a·]S.
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It is clear thatS = ∅ is a solution to the equation (as no process can satisfy both
〈a〉tt and [a]ff ). But p 6∈ ∅ so this cannot be the solution we are looking for.
Actually it turns out that it is themaximal solution we need here, namely where
S = {p}. The setS = ∅ is theminimal solution.

In other cases it is the minimal solution we are interested in. For instance we
can expressPos([a]ff) by the following equation:

Y ≡ [a]ff ∨ 〈a〉Y.

Here the maximal solution isY = {p, q, r} but, asp cannot terminate at all, this
is not the solution we are interested in. The minimal solution isY = {q, r} and is
exactly the set of processes that intuitively satisfyPos([a]ff).

When we write down a recursively defined property, we can indicate whether
we desire the minimal or the maximal solution by adding this information to the
equality sign. ForInv(〈a〉tt) we want the maximal solution, and in this case we
write

X
max= 〈a〉tt ∧ [a]X.

ForPos([a]ff) we will write

Y
min= [a]ff ∨ 〈a〉Y.

More generally we can express that the formulaF holds for each reachable state
(written Inv(F ), and read “invariantlyF ”) by means of the equation

X
max= F ∧ [Act]X

and thatF possibly holds at some point (writtenPos(F )) by

Y
min= F ∨ 〈Act〉Y.

Intuitively, we use maximal solutions for those properties that hold of a process
unless it has a finite computation that disproves the property. For instance, pro-
cessq doesnot have propertyInv(〈a〉tt) because it can reach a state in which no
a-labelled transition is possible. Conversely, we use minimal solutions for those
properties that hold of a process if it has a finite computation sequence which “wit-
nesses´´ the property. For instance, a process has propertyPos(〈a〉tt) if it has
a computation leading to a state that can perform ana-labelled transition. This
computation is a witness for the fact that the process can perform ana-labelled
transition at some point in its behaviour.

We shall appeal to the intuition given above in the following section, where we
present examples of recursively defined properties.

Exercise 7.2Give a formula, built using HML and the temporal operatorsPos
and/orInv , that expresses a property distinguishing the processes in Exercise6.7.
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7.1 Examples of recursive properties

Adding recursive definitions to Hennessy-Milner logic gives us a very powerful
language for specifying properties of processes. In particular this extension allows
us to express different kinds of “safety” and “liveness” properties. Before develop-
ing the theory of HML with recursion, we give some more examples of its uses.

Consider the formulaSafe(F ) that is satisfied by a processp whenever it has
a complete transition sequence

p = p0
a1→ p1

a2→ p2 · · ·

where each of the processespi satisfiesF . (A transition sequence iscomplete if it
is infinite or its last state affords no transition.) Thisinvariance of F under some
computation can be expressed in the following way:

X
max= F ∧ ([Act]ff ∨ 〈Act〉X).

It turns out to be the maximal solution that is of interest here as we will argue for
formally later.

A processp satisfies the propertyEven(F ) if each of its complete transition
sequences will contain at least one state that has the propertyF . This means that
eitherp satisfiesF , or p can perform some transition and every state that it can
reach can eventually reach a state that has propertyF . This can be expressed by
means of the following equation:

Y
min= F ∨ (〈Act〉tt ∧ [Act]Y ).

In this case we are interested in the minimal solution becauseEven(F ) should
only be satisfied by those processes that can be reached fromp by a finite number
of transitions.

Note that the definitions ofSafe(F ) andEven(F ), respectivelyInv(F ) and
Pos(F ), are mutuallydual, i.e., they can be obtained from one another by replacing

∨ by ∧, [A] by 〈A〉 and
min= by

max= . One can show that¬Inv(F ) ≡ Pos(¬F ) and
¬Safe(F ) ≡ Even(¬F ), where we write¬ for logical negation.

It is also possible to express thatF should be satisfied in each transition se-
quence untilG becomes true. There are two variants of this construction, namely

• F Us G, the so-calledstrong until, that says that sooner or laterp reaches a
state whereG is true and in all the states it reaches before this happensF
must hold.
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• FUwG, the so-calledweak until, that says thatF must hold in all states
p reaches until it gets into state whereG holds (but maybe this will never
happen!).

We express these operators as follows:

F Us G
min= G ∨ (F ∧ 〈Act〉tt ∧ [Act](FUsG)),

F Uw G
max= G ∨ (F ∧ [Act](FUwG)).

It should be clear that, as the names indicate,strong until is a stronger condition
thanweak until. We can use the “until” operators to expressEven(F ) andInv(F ).
ThusEven(G) ≡ tt Us G andInv(F ) ≡ F Uw ff .

Properties like “some time in the future” and “until” are examples of what
we call temporal properties. Tempora is Latin and means “time” and a logic that
expresses properties that depend on time is calledtemporal logic. The study of
temporal logics is very old and can be traced back to Aristoteles. Within the last 20
years, researchers in computer science have started showing interest in temporal
logic as within this framework it is possible to express properties of the behaviour
of programs that change over time [4, 17].

The modal µ-calculus [10] is a generalization of Hennessy-Milner logic with
recursion that allows for maximal and minimal definitions to be mixed freely. It
has been shown that the modalµ-calculus is expressive enough to describe any of
the standard operators that occur in the framework of temporal logic. In this sense
by extending Hennessy-Milner logic with recursion we obtain a temporal logic.

From the examples in this section we can see that minimal fixed points are used
to express that something will happen sooner or later, whereas the maximal fixed
points are used to express invariance of some state of affairs during computations,
or that something doesnot happen as a system evolves.

7.2 Syntax and semantics of Hennessy-Milner logic with recursion

The first step towards introducing recursion in HML is to add variables to the syn-
tax. To start with we only considerone recursively defined property. We will return
to the more general case of properties defined bymutual recursion later.

The syntax for Hennessy-Milner-logic with one variableX, M{X}, is given
by the following syntax:

F ::= X | tt | ff | F1 ∧ F2 | F1 ∨ F2 | 〈a〉F | [a]F.
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Figure 2: A process

Semantically a formulaF (that may contain a variableX) is interpreted as a func-
tionOF : P(Proc) → P(Proc) that, given a set of processes that are assumed to
satisfyX, gives us the set of processes that satisfyF .

Example 7.2 Consider the formulaF = 〈a〉X and letProc be the set of states in
the transition graph in Figure2. If X is satisfied byp1, then〈a〉X will be satisfied
by p3, i.e., we expect that

O〈a〉X({p1}) = {p3}.

If the set of states satisfyingX is {p1, p2} then〈a〉X will be satisfied by{p1, p3}.
Therefore we expect to have that

O〈a〉X({p1, p2}) = {p1, p3}.

The above intuition is captured formally in the following definition.

Definition 7.1 Let (Proc, Act, { a→ | a ∈ Act}) be a labelled transition system.
For eachS ⊆ Proc and formulaF , we defineOF (S) inductively by:

OX(S) = S

Ott(S) = Proc

Off (S) = ∅
OF1∧F2(S) = OF1(S) ∩ OF2(S)
OF1∨F2(S) = OF1(S) ∪ OF2(S)
O〈a〉F (S) = 〈·a·〉OF (S)
O[a]F (S) = [·a·]OF (S)
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Exercise 7.3Given the transition graph from Example7.2, use the above defini-
tion to calculateO[b]ff∧[a]X({p2}).

One can show that for every formulaF , the functionOF is monotonic over the
complete lattice(P(Proc),⊆). In other words, for all subsetsS1, S2 of Proc, if
S1 ⊆ S2 thenOF (S1) ⊆ OF (S2).

Exercise 7.4Show thatOF is monotonic for allF . Consider what will happen if
we introduce negation into our logic.

As mentioned before, the idea underlying the definition of the functionOF is that
if [[X]] ⊆ Proc gives the set of processes that satisfyX, thenOF ([[X]]) will be the
set of processes that satisfyF . What is this set[[X]] then? Syntactically we shall
assume that[[X]] is implicitly given by a recursive equation forX of the form

X
min= FX or X

max= FX .

As shown in the previous section, such an equation can be interpreted as the set
equation

[[X]] = OFX
([[X]]). (27)

AsOFX
is a monotonic function over a complete lattice we know that (27) has so-

lutions, i.e., thatOFX
has fixed points. In particular Tarski’s Fixed Point Theorem

gives us that there is a uniquemaximal fixed point, denoted byFIX OFX
, and also

a uniqueminimal one, denoted byfix OFX
, given respectively by

FIX OFX
=

⋃
{S ⊆ Proc | S ⊆ OFX

(S)} and

fix OFX
=

⋂
{S ⊆ Proc | OFX

(S) ⊆ S}.

A setS with the property thatS ⊆ OFX
(S) is called apost fixed point for OFX

.
CorrespondinglyS is pre fixed point for OFX

if OFX
(S) ⊆ S.

In what follows, for a functionf : P(Proc) −→ P(Proc) we define

f0 = idP(Proc)
the identity function onP(Proc) and

fm+1 = f ◦ fm.

WhenProc is finite we have the following characterization of the maximal and
minimal fixed points.

Theorem 7.1 If Proc is finite thenFIX OFX
= (OFX

)M (Proc) for someM and
fix OFX

= (OFX
)m(∅) for somem.

Proof: Follows directly from the fixed point theorem for finite complete lattices.
See AppendixA for the details. 2
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7.3 Maximal fixed points and invariant properties

In this section we shall have a closer look at the meaning of formulae defined by
means of maximal fixed point. More precisely we consider an equation of the form

X
max= FX

and define[[X]] ⊆ Proc by

[[X]] = FIX OFX
.

We have previously given an informal argument for whyinvariant properties are
obtained as maximal fixed points. In what follows we will formalize this argument,
and prove its correctness.

As we saw in the previous section, the propertyInv(F ) is obtained as the
maximal fixed point to the recursive equation

X = F ∧ [Act]X.

We will now show thatInv(F ) defined in this way indeed expresses thatF holds
under all transitions sequences.

For this purpose we letI : 2Proc −→ 2Proc be the corresponding semantic
function, i.e.,

I(S) = [[F ]] ∩ [·Act·]S.

By Tarski´s Fixed Point Theorem this equation has exactly one maximal solution
given by

FIX I =
⋃
{S | S ⊆ I(S)}

To show thatFIX I indeed characterizes precisely the set of processes for which
all derivation satisfy the propertyF , we need a direct (and obviously correct) for-
mulation of this set. This is given by the setInv defined as follows:

Inv = {p | ∀s ∈ Act∗, p′ ∈ Proc . p
s→ p′ ⇒ p′ ∈ [[F ]]}.

The correctness ofInv(F ) with respect to this description can now be formulated
as follows:

Theorem 7.2 For every labelled transition system(Proc, Act, { a→ | a ∈ Act}), it
holds thatInv = FIX I.

Proof: We prove the statement by proving each of the inclusionsInv ⊆ FIX I
andFIX I ⊆ Inv separately.
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Inv ⊆ FIX I: To prove this inclusion it is sufficient to show thatInv ⊆ I(Inv)
(Why?). To this end, letp ∈ Inv . Then, for alls, p′,

p
s→ p′ implies thatp′ ∈ [[F ]]. (28)

We must establish thatp ∈ I(Inv), or equivalently thatp ∈ [[F ]] and that
p ∈ [·Act·]Inv . We obtain the first one of these two statements by letting
s = ε in (28) becausep

ε→ p always holds.

To prove thatp ∈ [·Act·]Inv , we have to show that, for each processp′ and
actiona,

p
a→ p′ impliesp′ ∈ Inv ,

which is equivalent to proving that, for each sequence of actionss′ and pro-
cessp′′,

p
a→ p′ andp′

s′→ p′′ imply p′′ ∈ [[F ]].

However, this follows immediately by lettings = as′ in (28).

FIX I ⊆ Inv : First we note that, sinceFIX I is a fixed point ofI, it holds that:

FIX I = [[F ]] ∩ [·Act·]FIX I. (29)

To prove thatFIX I ⊆ Inv , assume thatp ∈ FIX I and thatp
s→ p′. We

shall show thatp′ ∈ [[F ]] by induction on|s|, the length ofs.

Base cases = ε: Thenp = p′ and therefore, by (29), it holds thatp′ ∈ [[F ]],
which was to be shown.

Inductive steps = as′: Thenp
a→ p′′

s′→ p′ for somep′′. By (29), it follows
that p′′ ∈ FIX I. As |s′| < |s| andp′′ ∈ FIX I, by the induction
hypothesis we may conclude thatp′ ∈ [[F ]], which was to be shown.

This completes the proof of the second inclusion.

2

7.4 Mutually recursive equational system

As you may have noticed, so far we have only allowed one equation with one
variable in our recursive definitions. Amutually recursive equational system has
the form
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X1 = FX1

...

Xn = FXn ,

whereX = {X1, . . . , Xn} is a set of variables and, fori ≤ n, the formulaFXi is
inMX , and can therefore contain any variable fromX . An example of such an
equational system is

X = [a]Y
Y = 〈a〉X .

An equational system is sometimes given by specifying a (finite) set of variables
X together with a declaration. Adeclaration is a functionD : X → MX that
associates a formula with each variable—D(X) = FX in the notation used above.

To define the semantics of such an equational system it is not enough to con-
sider simply the complete lattice consisting of subsets of processes. Instead such
a system is interpreted overn-dimensional vectors of sets of processes, , where
n is the number of variables inX . Thus the new domain isD = (P(Proc))n

(n-times cross product ofP(Proc) with itself) with a partial order defined “com-
ponent wise”:

(S1, . . . , Sn) ≤ (S′1, . . . , S
′
n) if S1 ⊆ S′1 andS2 ⊆ S′2 and . . . andSn ⊆ S′n.

(D,≤) defined in this way yields a complete lattice with the least upper bound and
the greatest lower bound also defined component wise:⊔

{(Ai
1, . . . , A

i
n) | i ∈ I} = (

⋃
{Ai

1 | i ∈ I}, . . . ,
⋃
{Ai

n | i ∈ I}) and

d
{(Ai

1, . . . , A
i
n) | i ∈ I} = (

⋂
{Ai

1 | i ∈ I}, . . . ,
⋂
{Ai

n | i ∈ I}).

The semantic function[[D]] : D → D that is used to obtain the maximal and
minimal solutions of the system of recursive equations described by the declaration
D is obtained from the syntax in the following way:

[[D]]([[X1]], . . . , [[Xn]]) =
(OFX1

([[X1]], . . . , [[Xn]]), . . . ,OFXn
([[X1]], . . . , [[Xn]])) , (30)

where each argument[[Xi]] (1 ≤ i ≤ n) can be replaced by an arbitraryS ⊆ Proc.
The function[[D]] turns out to be monotonic over the complete lattice(D,≤),

and we can obtain both the maximal and minimal fixed point for the equational
system in the same way as for the case of one variable.
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Exercise 7.5

1. Show that(P(Proc)n,≤,
⊔

,
d

), with≤,
⊔

and
d

defined as described in
the text above, is a complete lattice.

2. Show that (30) defines a monotonic function

[[D]] : P(Proc)n −→ P(Proc)n .

3. Compute the least and largest solutions of the system of equations

X = [a]Y
Y = 〈a〉X

over the transition system associated with the CCS term

A0 = a.A1 + a.a.0
A1 = a.A2 + a.0
A2 = a.A1 .

7.5 A Proof System for Maximal Properties

In this section we will introduce a proof system that allows us to determine whether
a processp satisfies a given propertyF , defined over variables which are declared
as a maximal solution to a recursive equational system. In particular we will prove
that the proof system issound andcomplete in a sense that we will explain more
precisely later. For the sake of simplicity, in our presentation we restrict ourselves
to the setting in which there is only one recursion variable, namelyX, with defining
equation

X
max= FX .

The interested reader is referred to [11] for generalizations of the material we
present in what follows.

The proof system is given in Table9. It consists of a collection of inference
rules of the form

Premises
Conclusion

As it is customary with inference rules, we can read them top-down or bottom-
up. When read top-down, a rule intuitively states that if we have shown all of
the premises above the solid line, then we can use the rule to infer the conclusion
below the solid line. When read bottom-up, the rule says that in order to prove

72



TT Γ ` p : tt

AND
Γ ` p : F1 Γ ` p : F2

Γ ` p : F1 ∧ F2

OR
Γ ` p : F1

Γ ` p : F1 ∨ F2

Γ ` p : F2

Γ ` p : F1 ∨ F2

DIAMOND
Γ ` p′ : F

Γ ` p : 〈a〉F
if p

a→ p′

BOX
Γ ` p1 : F · · · Γ ` pn : F

Γ ` p : [a]F
if {p1,...,pn}={p | p

a→ p′}

MAX1 Γ, p : X ` p : X

MAX2
Γ, p : X ` p : FX

Γ ` p : X
X

max
= FX

Table 9: Proof system for maximal properties
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∅ ` p : X
MAX2

p : X ` p : 〈a〉tt ∧ [a]X
AND

p : X ` p : [a]X
BOX

p : X ` p : X

p : X ` p : 〈a〉tt
DIAMOND

p : X ` p : tt

Figure 3: Proof forp |= Inv(〈a〉tt)

the conclusion, it is sufficient to establish the premises—which now become our
sub-goals. A rule without premises is usually called anaxiom.

The statements of the proof system are of the formΓ ` p : F , whereΓ is a set
of hypotheses of the form

{p1 : X, . . . , pn : X} .

We also refer to such statements assequents. The intuitive interpretation of the
sequentΓ ` p : F is as follows:

Given that the sequence of hypothesesΓ = {p1 : X, . . . , pn : X}
holds (i.e.,pi ∈ [[X]] for eachi), the processp satisfies the propertyF
(i.e.,p ∈ [[F ]]).

For instance, the statement in axiomTT states the intuitively obvious fact that each
processp satisfies the formulatt, no matter what our assumptions are. On the other
hand, axiomMAX1 says thatp satisfiesX, if we assume so.

We say that a statementΓ ` p : F is provable if there exists a proof tree with
only axioms occurring in the leaves (application of the rulesTT or MAX1) and
whose root isΓ ` p : F . If Γ ` p : F is provable, we simply writeΓ ` p : F .

Example 7.3 Let us consider the processp from Example7.1. We can use the
proof system in Table9 to show thatp |= Inv(〈a〉tt). In Figure3, we have a proof
for this statement from an empty set of hypotheses. The leftmost leaf in that proof
is an instance of the axiomMAX1, and the rightmost one follows by using axiom
TT.

Proof systems like the one Table9 are meant allow for purely symbolic reasoning
about some reality of interest. Therefore the most desirable property of a proof
system is that it only allows us to prove statements that are true in the universe of
discourse. This property is calledsoundness. If a proof system is powerful enough
to prove each true statement, then it is calledcomplete.
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We would like to prove that the proof system in Table9 is sound and complete,
i.e., that the following holds:

∅ ` p : F iff p ∈ [[F ]]. (31)

The claim of soundness of the proof system is expressed by the implication in (31)
from left to right, whereas its completeness is stated in the opposite implication.

Lemma 7.1 Let (Proc, Act, { a→ |a ∈ Act}) be a labelled transition system. Then,
for every processp and formulaF , it holds that

p ∈ [[F ]] iff there is anS ⊆ Proc such thatS ⊆ OFX
(S) and p ∈ OF (S). (32)

Exercise 7.6Prove that Lemma7.1 holds. (Hint: Use induction on the structure
of the formulaF .)

By Lemma7.1the soundness and completeness of the proof system reduces to the
statement

∅ ` p : F iff there is anS ⊆ Proc such thatS ⊆ OFX
(S) and p ∈ OF (S).

The result we prove is more general than (31) as it involves non-empty sets of
assumptions.

Theorem 7.3 (Soundness) Assume thatX is given by the equationX
max= FX in

a maximal equational systemE. Then

p1 : X, . . . , pn : X ` p : F impliesS ⊆ OFX
(S) ∪ {p1, . . . , pn} for

someS such thatp ∈ OF (S).

Proof: We prove the statement by induction on the depth of the derivation tree
needed to prove thatp1 : X, . . . , pn : X ` p : F . We proceed by case analysis by
investigating the last rule used in the proof.

Base case:The statement follows by applying axiomTT or Max1.

We examine these two possibilities separately.

TT In this caseF = tt andOF (S) = Proc for all S. It is therefore easy
to find a subsetS of Proc such thatS ⊆ OFX

(S) ∪ {p1, . . . , pn} and
p ∈ OF (S); we can, for instance, takeS = ∅.

MAX1 Here we have thatp1 : X, . . . , pn : X, p : X ` p : X. It is again
easy to see that there exists anS with the wanted property; choose
S = {p}.
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Inductive step: Now we consider the cases where the proof is completed by an
application of an inference rule. Our induction hypothesis is that the state-
ment holds for the statements that appear in the premises of the rules.

MAX2 We have concluded thatp1 : X, . . . , pn : X ` p : X from

p1 : X, . . . , pn : X, p : X ` p : FX .

By the induction hypothesis it must be the case thatS ⊆ OFX
(S) ∪

{p1, . . . , pn, p} andp ∈ OFX
(S), for someS. We want anS′ such that

S′ ⊆ OFX
(S′) ∪ {p1, . . . , pn} andp ∈ OX(S′). To obtain this we can

let S′ = S ∪ {p}.

The proofs for the missing rules are left to the reader as an exercise. 2

Exercise 7.7Complete the proof for Theorem7.3. Why is it sufficient to choose
S′ = S ∪ {p} in the case when the ruleMAX2 was considered?

Exercise 7.8Prove that Theorem7.3 implies (31).

Now we know that our proof system issound—anything we can prove by using the
proof rules holds in the denotational semantics. Fortunately it is also the case that
the proof system iscomplete, i.e., each statement that holds in the semantics can
be proven by the system—at least if the transition graph is finite.

Theorem 7.4 (Completeness) Letp be a process in afinite transition graph. If
there is anS ⊆ Proc such thatS ⊆ OFX

(S)∪ {p1, . . . , pn} andp ∈ OF (S), then
we have thatp1 : X, . . . , pn : X ` p : F .

Proof: Assume that(Proc, Act, {a ∈ Act | a→}) is a finite transition graph, i.e.,
that Proc = {q1, . . . , qk} for somek. Assume that there exists anS such that
S ⊆ OFX

(S) ∪ {p1, . . . , pn} andp ∈ OF (S). Now we prove that

p1 : X, . . . , pn ` p : F

by induction on|Proc \ {p1, . . . pn}|, i.e., the number of elements in the comple-
ment of{p1, . . . , pn}.

Base case:Then we have that{p1, . . . , pn} = Proc. We prove this case by (an
inner) structural induction onF . We only give the details of the proof for
three of the cases; the remaining cases we leave to the reader as an exercise.

F = tt: Follows immediately from the ruleTT.
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F = F1 ∧ F2: Now we have thatS ⊆ OFX
(S) ∪ {p1, . . . , pn} andp ∈

OF1∧F2(S). The definition ofOF1∧F2 gives thatp ∈ OF1(S) andp ∈
OF1(S). From the hypothesis for the inner induction it now follows
thatp1 : X, . . . pk : X ` F1 andp1 : X, . . . pk : X ` F2. The rule
AND gives us immediately thatp1 : X, . . . , pn ` p : F1 ∧ F2.

F = X: Here it is clear thatp ∈ {p1, . . . , pn}, and the result follows by
MAX1.

Inductive step: Assume that the theorem holds for allP ⊆ Proc with |P | <
n− k. Towards proving the statement we also assume that there exists anS
such thatS ⊆ OFX

(S) ∪ {p1, . . . , pn} andp ∈ OF (S). We will show that
p1 : X, . . . , pn ` p : F . Again we proceed by structural induction onF .

The only interesting case is whenF = X. If p ∈ {p1, . . . , pn}, we sim-
ply useMAX1. Therefore we may assume thatp 6∈ {p1, . . . , pn}. By the
inductive hypothesis we know that that,

∃R.(R ⊆ OFX
(R) andp ∈ OFX

(R) ∪ {p1, . . . , pn, p}) implies
p1 : X, . . . , pn : X, p : X ` p : FX

(33)

By our assumption there is anS such thatS ⊆ OFX
(S) ∪ {p1, . . . , pn} and

p ∈ OX(S). Obviously

S ⊆ OFX
(S) ∪ {p1, . . . , pn, p}. (34)

Furthermore, asOX(S) = S, we have that

p ∈ OX(S) = S ⊆ OFX
(S) ∪ {p1, . . . , pn}.

By assumptionp 6∈ {p1, . . . , pn} which in turn implies that

p ∈ OFX
(S). (35)

Therefore, by the induction hypothesis (33) and by (34) and (35) we have
that

p1 : X, . . . , pn : X, p : X ` p : FX .

By usingMAX2 we can conclude that

p1 : X, . . . , pn : X ` p : X ,

which was to be shown.

This completes the proof. 2
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7.6 Characteristic properties

The characterization theorem for bisimulation equivalence in terms of Hennessy-
Milner logic tells us that if our transition system is image finite, the equivalence
classes of bisimulation equivalence are completely characterized by the logic—
see [7] for the original reference. More precisely for image finite processes, the
equivalence class that containsp consists exactly of the set of processes that satisfy
the same formulas in HML asp—that is, letting[p]∼ = {q | q ∼ p},

[p]∼ = {q | ∀F ∈M.p |= F =⇒ q |= F}.

Exercise 7.9Note that in the above rephrasing of the characterization theorem for
HML, we only require that each formula satisfied byp is also satisfied byq, but not
that the converse also holds. Show, however, that ifq satisfies all the formulas in
HML satisfied byp, thenp andq satisfy thesame formulas in HML.

In this section we will show that if our transition system is finite, by extending
the logic with recursion, we can characterize the equivalence classes for strong
bisimulation with asingle formula. The formula that characterizes the bisimulation
equivalence class forp is called thecharacteristic formula for p. (That such a
formula is unique from a semantic point of view is obvious as the semantics for
such a formula is exactly the equivalence class[p]∼.)

Our aim in this section is therefore, given a processp in a finite transition
system, to find a formulaφp ∈ MX for a suitable set of variablesX , such that for
all processesq

q |= φp iff q ∼ p.

Let us start by giving an example that shows that in general bisimulation equiva-
lence cannot be characterized by a finite or recursion free formula.

Example 7.4 Assume thatAct = {a} and that the processp is given by the equa-
tion

X
def= a.X.

We will show thatp cannot be characterized up to bisimulation equivalence by a
single recursion free formula. To see this we assume that such a formula exists and
show that this leads to a contradiction. Towards a contradiction, we assume that
for someφ ∈M,

[[φ]] = [p]∼. (36)

In particular we have that

p |= φ and ∀q. q |= φ =⇒ q ∼ p. (37)
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Figure 4: The processesp andpi for i ≤ n

We will obtain contradiction by proving that (37) cannot hold for anyφ. Before we
prove our statement we have to introduce some notation.

By themodal depth of the formulaφ, notationmd(φ), we mean the maximum
number of nested occurrences of the model operators inφ. Formally this is defined
by the following recursive definition:

1. md(tt) = md(ff) = 0,

2. md([a]φ) = md(〈a〉φ) = 1 + md(φ),

3. md(φ1 ∨ φ2) = md(φ1 ∧ φ2) = max{md(φ1),md(φ2)}.

Next we define a sequencep0, p1, p2, . . . of processes inductively as follows:

1. p0 = 0,

2. pi+1 = a.pi.

(The processesp andpi, for i ≥ 1, are depicted in Fig.7.4.) Now we can prove the
following;

∀φ. p |= φ impliespmd(φ) |= φ. (38)
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The statement in (38) can be proven by structural induction onφ and is left as
an exercise. As obviouslyp and pn are not bisimulation equivalent for anyn,
the statement in (38) contradicts (37). As (37) is a consequence of (36), we can
therefore conclude that no finite formulaφ can characterize the processp up to
bisimulation equivalence.

Example7.4 shows us that in order to obtain a characteristic formula even for
finite labelled transition systems we need to make use of the recursive extension of
Hennessy-Milner logic.

The construction of the characteristic formula involves both suggesting a (syn-
tactic) equational system that describes the formula and to decide whether to adopt
the minimal or the maximal solution to this system. We start by giving the equa-
tional system and choose the suitable interpretation for the fixed point afterwards.

We start by assuming that we have a finite transition system

({p1, . . . , pn}, Act, → )

and a set of variablesX = {Xp1 , . . . , Xpn , . . .} that contains (at least) as many
variables as there are states in the transition system. IntuitivelyXp is the syntactic
symbol for the characteristic formula forp and its meaning will be given in terms
of an equational system.

A characteristic formula for a process has to describe both which actions the
processcan perform, which action itcannot perform and what happens to itafter it
has performed each action. The following example illustrates this.

Example 7.5 If a coffee machine is given by Figure5, we can construct a charac-
teristic formula for it as follows.

����

����

- �

?

k m t

gkm

q

Figure 5: The nice coffee machinegkm.

Let gkm be the initial state of the coffee machine. Then we see thatgkm can
perform anm-action and that this is the only action it can perform in this state. The
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picture also shows us thatgkm, by performing them action necessarily will end
up in stateq. This can be expressed as follows.

1. gkm can performm and becomeq.

2. No matter howgkm performsm it becomesq.

3. gkm cannot perform any other actions thanm.

If we let Xgkm andXq denote the characteristic formula forq andgkm respec-
tively, Xgkm can be expressed as

Xgkm ≡ 〈m〉Xq ∧ [m]Xq ∧ [t, k]ff

where〈m〉Xq expresses 1,[m]Xq expresses 2 and[t, k]ff expresses 3. To ob-
tain the characteristic formula forgkm we have to expressXq following the same
strategy. We observe thatq can perform two actionst andk and in both cases it
becomesgkm. Xq can therefore be expressed as

Xq ≡ 〈t〉Xgkm ∧ 〈k〉Xgkm ∧ [t, k]Xgkm ∧ [m]ff

Now we can generalize the strategy employed in the above example as follows: Let

Der(a, p) = {p′ | p a→ p′}.

If p′ ∈ Der(a, p) andp′ has a characteristic propertyXp′ , thenp has the property
〈a〉Xp′ . For anya we have that

p |=
∧

a,p′.p
a→ p′

〈a〉Xp′

Furthermore, ifp
a→ p′ thenp′ ∈ Der(a, p). Thereforep has the property

[a]
∨

p′.p
a→ p′

Xp′ ,

and asa is arbitrary we have that

p |=
∧
a

[a]
∨

p′.p
a→ p′

Xp′

If we summarize the above requirements, we have that

p |=
∧

a,p′.p
a→ p′

〈a〉Xp′ ∧
∧
a

[a]
∨

p′.p
a→ p′

Xp′
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As this property is apparently a complete descriptionp, this is our candidate for the
characteristic property forp. Xp is therefore defined as a solution to the equational
system obtained by giving the following equation for eachq ∈ Proc:

Xq ≡
∧

a,q′.q
a→ q′

〈a〉Xq′ ∧
∧
a

[a]
∨

q′.q
a→ q′

Xq′ (39)

The solution can either be the minimal or the maximal one (or something in be-
tween).

The following example shows that the minimal solution to (39) in general does
not yield the characteristic property for a process.

Example 7.6 Let p be the process given in Figure6.

����
��
?

p

a

Figure 6: Simple infinite processp.

In this case the equational system obtained by (39) will have the form

Xp
min= 〈a〉Xp ∧ [a]Xp

ObviouslyXp = ff is the minimal solution to this equation. Howeverp does not
have the propertyff which therefore cannot be the characteristic property forp.

In what follows we will show that the maximal solution to (39) yields the char-
acteristic property for allp ∈ Proc. This is the content of the following theorem.

Theorem 7.5 Let (Proc, Act, → ) be a finite transition system and for allp ∈
Proc, let Xp be defined by

Xp
max=

∧
a,p′.p

a→ p′

〈a〉Xp′ ∧
∧
a

[a]
∨

p′.p
a→ p′

Xp′ . (40)

ThenXp is the characteristic property forp.
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The assumption aboutProc andAct being finite ensures that there is only a finite
number of variables involved in the definition of the characteristic formula and that
each case that we only get a finite formula (finite conjunctions and disjunctions) on
the right hand side of each equation.

In the proof of the theorem we will letDK be the declaration defined by

DK(Xp) =
∧

a,p.p
a→ p′

〈a〉Xp′ ∧
∧
a

[a]
∨

p′.p
a→ p′

Xp′ .

From the previous discussion, we get thatXp is the characteristic property for
p if and only if for the maximal solution[[Xp]], wherep ∈ Proc, we have that
[[Xp]] = [p]∼. In what follows, we writeq|=maxXp if q belongs to[[Xp]] in the
maximal solution forDK .

As the first step in the proof of Theorem7.5, we prove the following lemma:

Lemma 7.2 Let Xp be defined as in (40). Then we have that

q |=maxXp ⇒ p ∼ q

Proof: Let R = {(p, q) | q |=maxXp}. We will prove thatR is a bisimulation,
and thus thatp ∼ q. Therefore we have to prove the following:

a) (p, q) ∈ R andp
b→ p1 ⇒ ∃ q1. q

b→ q1 and(p1, q1) ∈ R.

b) (p, q) ∈ R andq
b→ q1 ⇒ ∃ p1. p

b→ p1 and(p1, q1) ∈ R.

a) Let (p, q) ∈ R andp
b→ p1, which in turn means that

q |=maxXp and p
b→ p1

From the definitions ofXp andDK it follows that

q |=maxXp
max= q |=max(

∧
a,p′.p

a→ p′

〈a〉Xp′) ∧ (
∧
a

[a]
∨

p′.p
a→ p′

Xp′)

As p
b→ p1 we get thatq |=max〈b〉Xp1 , which means that

∃q1. q
b→ q1 andq1|=maxXp1

or
∃q1.q

b→ q1 and(p1, q1) ∈ R.

as we wanted to prove.
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b) Let (p, q) ∈ R andq
b→ q1, i.e.

q |=maxXp and q
b→ q1

As before we have

q |=maxXp =⇒ q |=max(
∧

a,p.p
a→ p′

〈a〉Xp′) ∧ (
∧
a

[a]
∨

p′.p
a→ p′

Xp′) .

In particular we get
q |=max[b]

∨
p′.p

b→ p′

Xp′

which means that

q
b→ q′ ⇒ q′ |=max

∨
p′.p

b→ p′

Xp′ .

As we know thatq
b→ q1, we obtain that

q1|=max

∨
p′.p

b→ p′

Xp′ .

Therefore there must exist ap1 such thatq1|=maxXp1 andp
b→ p1.

We have therefore proven that

∃p1. p
b→ p1 and(p1, q1) ∈ R .

We have now shown thatR is a bisimulation, and therefore that

q |=maxXp =⇒ p ∼ q

This proves the lemma. 2

The following lemma completes the proof of our main theorem of this section.

Lemma 7.3 ([p1]∼, . . . , [pn]∼) v [[DK ]]([p1]∼, . . . , [pn]∼).
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Proof: Let q ∈ [p]∼, wherep is one ofp1, . . . , pn. We have to show that

q ∈ (
⋂

a,p′.p
a→ p′

〈·a·〉[p′]∼) ∩ (
⋂
a

[·a·]
⋃

p′.p
a→ p′

[p′]∼).

The proof can be divided into two parts:

1) q ∈
⋂

a,p′.p
a→ p′

〈·a·〉[p′]∼

2) q ∈
⋂
a
[·a·]

⋃
p′.p

a→ p′

[p′]∼

1) We recall thatq ∼ p. Assume thatp
a→ p′. Then there is aq′, whereq

a→ q′ and
q′ ∼ p′. We have therefore shown that

∀a, p′, p
a→ p′. (∃q′. q

a→ q′ and q′ ∈ [p′]∼)

or that
q ∈

⋂
a,p′.p

a→ p′

〈·a·〉[p′]∼

2) Let a ∈ Act andq
a→ q′, we have to show thatq′ ∈

⋃
p′.p

a→ p′

[p′]∼. But asp ∼ q,

there exists ap′, such thatp
a→ p′ andq′ ∼ p′. The last statement means that

q′ ∈ [p′]∼. We have therefore proven that

∀a, q′. q
a→ q′ ⇒ ∃p′. p

a→ p′ and q ∈ [p′]∼,

which is equivalent to

q ∈
⋂
a

[·a·]
⋃

p′.p
a→ p′

[p′]∼.

1) and 2) give that :

([p1]∼, . . . , [pn]∼) v [[DK ]]([p1]∼, . . . , [pn]∼)

as we wanted to prove. 2

The proof of Theorem7.5can now be expressed as the following lemma.

Lemma 7.4 For allp ∈ Proc we have that[[Xp]] = [p]∼.

Proof: By Lemma7.3we get that

([p1]∼, . . . , [pn]∼) ≤ ([[XP1 ]], . . . , [[XPn ]])

which means that[p]∼ ⊆ [[Xp]] for eachp ∈ Proc. Furthermore Lemma7.2gives
that[[Xp]] ⊆ [p]∼ for everyp ∈ Proc, which proves the statement of the lemma.2
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7.7 Mixing maximal and minimal fixed points

The equational systems we have considered so far have only allowed us to ex-
press solutions as a pure maximal or a minimal solution. Our next question is
whether we can extend our framework in such a way that it can treatmixed solu-
tions, i.e., whether it is possible to decide the solution of, for instance,

X
max= 〈a〉Y

Y
min= 〈b〉X.

If we allow fixed points to be mixed completely freely we obtainmodal µ-calculus
[10], which was mentioned in Sect.7.1. In this note we shall however not allow
a full freedom in mixing fixed points in declarations but restrict the mixing to
what we callnested mutual recursion. In this framework we are allowed to use
solutions to purely maximal or purely minimal equational set in the definition of a
new mutually recursive equational set.

Definition 7.2 A n-nested mutually recursive equational systemE is ann-tuple

〈 (D1,X1,m1), (D2,X2,m2), . . . , (Dn,Xn,mn) 〉,

where, for eachi ≤ n,

• Xi is a finite set of variables,

• Di : Xi −→
⋃

j≤iXi,

• mi = max or mi = min and

• mi 6= mi+1.

We refer to(Di,Xi,mi) as theith block ofE and say that it is a maximal block if
mi = max but a minimal block otherwise.

Note that by the theory described above, such a system has a unique solution,
obtained by first solving the first block and then recursively proceeding with the
others using the solution already obtained.

Finally if F is a Hennessy-Milner formula defined over a set of variablesY =
{Y1, . . . , Yk} that are declared by ann-nested mutually recursive equational system
E, then[[F ]] is well-defined and can be expressed by

[[F ]] = OFX
([[Y1]], . . . , [[Yk]]). (41)

Exercise 7.10Prove the statement in (41).

To be continued/updated/corrected tomorrow—if tomorrow ever comes, that
is.
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A Theory of Fixed Points and Tarski’s Fixed Point Theo-
rem

The aim of this appendix is to collect under one roof all the mathematical notions
from the theory of partially ordered sets and lattices that is needed to introduce
Tarski’s classic fixed point theorem. We shall then use this theorem to give an
alternative definition of strong bisimulation equivalence (also known as “strong
equality”). This reformulation of the notion of strong bisimulation equivalence
yields an algorithm for computing the largest strong bisimulation over finite la-
belled transition systems—i.e., labelled transition systems with only finitely many
states and transitions.

The appendix is organized as follows. SectionA.1 introduces partially ordered
sets and complete lattices. We then proceed to state and prove Tarski’s fixed point
theorem (SectionA.2). Finally, we show in SectionA.3 how to define strong bisim-
ulation equivalence using Tarski’s fixed point theorem, and hint at the algorithm for
computing strong bisimulation equivalence over finite labelled transition systems
that results from this reformulation.

A.1 Complete Lattices

Definition A.1 [Partially Ordered Sets] Apartially ordered set (poset) is a pair
(D,v), whereD is a set, andv is a binary relation overD (i.e, a subset ofD×D)
such that:

• v is reflexive, i.e,d v d for all d ∈ D;

• v is antisymmetric, i.e,d v e ande v d imply d = e for all d, e ∈ D;

• v is transitive, i.e,d v e v d′ impliesd v d′ for all d, d′, e ∈ D.

We say that(D,v) is atotally ordered set if, for all d, e ∈ D, eitherd v e or e v d
holds.

Example A.1 The following are examples of posets:

• (IN,≤), where IN denotes the set of natural numbers, and≤ stands for the
standard ordering over IN.

• (A∗,≤), whereA∗ is the set of strings over alphabetA, and≤ denotes the
prefix ordering between strings, i.e., for alls, t ∈ A∗, s ≤ t iff there exists
w ∈ A∗ such thatsw = t. (Check that this is indeed a poset!)
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• Let (A,≤) be a finite totally ordered set. Then the set of strings inA∗ ordered
lexicographically is a poset. Recall that, for alls, t ∈ A∗, the relations ≺ t
holds with respect to the lexicographic order if:

1. the length ofs is smaller than that oft, or

2. s andt have equal length, and there are stringsu, v, z ∈ A∗ and letters
a, b ∈ A such thats = uav, t = ubz anda ≤ b.

• For each setS, the structure(P(S),⊆) is a poset, whereP(S) stands for the
set of all subsets ofS.

Exercise A.1 Which of the above posets is a totally ordered set?

Definition A.2 [Least Upper Bounds and Greatest Lower Bounds] Let(D,v) be
a poset, and takeX ⊆ D.

• We say thatd ∈ D is anupper bound for X iff x v d for all x ∈ X. We say
thatd is the least upper bound (lub) of X, notation

⊔
X, iff d is an upper

bound forX and, moreover,d v d′ for everyd′ ∈ D which is an upper
bound forX.

• We say thatd ∈ D is a lower bound for X iff d v x for all x ∈ X. We say
thatd is thegreatest lower bound (glb) of X, notation

d
X, iff d is a lower

bound forX and, moreover,d′ v d for everyd′ ∈ D which is a lower bound
for X.

Exercise A.2 Let (D,v) be a poset, and takeX ⊆ D. Prove that the lub and the
glb ofX are unique, if they exist.

Example A.2

• In the poset(IN,≤), all finite subsets of IN have least upper bounds. On the
other hand, no infinite subset of IN has an upper bound. All subsets of IN
have a least element, which is their greatest lower bound.

• In (P(S),⊆), every subsetX of P(S) has a lub and a glb given by
⋃

X and⋂
X, respectively.

Exercise A.3
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1. Prove that the lub and the glb of a subsetX of P(S) are indeed
⋃

X and⋂
X, respectively.

2. Give examples of subsets ofA∗ that have upper bounds in the poset(A∗,≤).

Definition A.3 [Complete Lattices] A poset(D,v) is acomplete lattice iff
⊔

X
and

d
X exist for every subsetX of D.

Note that a complete lattice(D,v) has a least element⊥ =
d

D, and a top element
T =

⊔
D.

Exercise A.4 Let (D,v) be a complete lattice. What are
⊔
∅ and

d
∅?

Example A.3

• The poset(IN,≤) is not a complete lattice because, as remarked previously,
it does not have lub’s for its infinite subset.

• The poset(IN∪{∞},v), obtained by adding a largest element∞ to (IN,≤),
is a complete lattice. This complete lattice can be pictured as follows:

∞
...
↑
2
↑
1
↑
0

• (P(S),⊆) is a complete lattice.

A.2 Tarski’s Fixed Point Theorem

Definition A.4 [Monotonic Functions and Fixed Points] Let(D,v) be a poset.
A function f : D → D is monotonic iff for all d, d′ ∈ D, d v d′ implies that
f(d) v f(d′).

An elementd ∈ D is called afixed point of f iff d = f(d).

The following important theorem is due to TARSKI [18], and was also indepen-
dently proven by KNÄSTER.
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Theorem A.1 [Tarski’s Fixed Point Theorem] Let(D,v) be a complete lattice,
and letf : D → D be monotonic. Thenf has a largest fixed pointzmax and a least
fixed pointzmin given by:

zmax =
⊔
{x ∈ D | x v f(x)}

zmin =
l
{x ∈ D | f(x) v x}

Proof: First we shall prove thatzmax is the largest fixed point off . This involves
proving the following two statements:

1. zmax is a fixed point off , i.e.,zmax = f(zmax), and

2. for everyd ∈ D that is a fixed point off , it holds thatd v zmax.

In what follows we prove each of these statements separately. In the rest of the
proof we let

A = {x ∈ D | x v f(x)}.

1. To prove thatzmax is a fixed-point off , it is sufficient to show that

zmax v f(zmax) and (42)

f(zmax) v zmax. (43)

First of all, we shall show that (42) holds. By definition, we have that

zmax =
⊔

A.

Thus, for everyx ∈ A, it holds thatx v zmax. As f is monotonic,x v zmax

implies thatf(x) v f(zmax). It follows that, for everyx ∈ A, x v f(x) v
f(zmax). Thusf(zmax) is an upper bound for the setA. By definition,zmax

is the least upper bound of A. Thuszmax v f(zmax), and we have shown
(42).

To prove that (43) holds, note that, from (42) and the monotonicity off , we
have thatf(zmax) v f(f(zmax)). This implies thatf(zmax) ∈ A. Therefore
f(zmax) v zmax, aszmax is an upper bound forA.

From (42) and (43), we have thatzmax v f(zmax) v zmax. By antisymme-
try, it follows thatzmax = f(zmax), i.e.,zmax is a fixed point off .

2. We now show thatzmax is the largest fixed point off . Let d be any fixed
point of f . Then, in particular, we have thatd v f(d). This implies that
d ∈ A and therefore thatd v

⊔
A = zmax.

We have thus shown thatzmax is the largest fixed point off .
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To show thatzmin is the least fixed point off , we proceed in a similar fashion by
proving the following two statements:

1. zmin is a fixed point off , i.e.,zmin = f(zmin), and

2. for everyd ∈ D that is a fixed point off , zmin v d.

To prove thatzmin is a fixed point off , it is sufficient to show that:

f(zmin) v zmin and (44)

zmin v f(zmin). (45)

Claim (44) can be shown following the proof for (42), and claim (45) can be shown
following the proof for (43). The details are left as an exercise for the reader.
Having shown thatzmin is a fixed point off , it is a simple matter to prove that it is
indeed the least fixed point off . (Do this as an exercise). 2

Exercise A.5 Reconsider equations (23)–(26) in the main body of the text.

1. Why doesn’t Tarski’s fixed point theorem apply to yield a solution to the first
two of these equations?

2. Does equation (23) have a solution in the structure introduced in the second
bullet of ExampleA.3?

3. Can you use Tarski’s fixed point theorem to find the largest and least solu-
tions of (26).

Exercise A.6

1. Prove that if(D,v) is a cpo andf : D → D is continuous (see [13, Page
103]), then the poset

({x ∈ D | f(x) = x},v)

which consists of the set of fixed points off is a cpo.

2. Give an example of a complete lattice(D,v) and of a monotonic function
f : D → D such that there arex, y ∈ D that are fixed points off , but⊔
{x, y} is not a fixed point. [Hint : Consider the complete latticeD pictured

below
•
↑
•

↗ ↖
• •
↖ ↗
•
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and construct such anf : D → D.]

3. Let (D,v) be a complete lattice, and letf : D → D be monotonic. Con-
sider a subsetX of {x ∈ D | x v f(x)}.

(a) Prove that
⊔

X ∈ {x ∈ D | x v f(x)}.
(b) Give an example showing that, in general,

d
X 6∈ {x ∈ D | x v

f(x)}. [Hint : Consider the lattice pictured above, but turned upside
down.]

4. Let (D,v) be a complete lattice, and letf : D → D be monotonic. Con-
sider a subsetX of {x ∈ D | f(x) v x}.

(a) Prove that
d

X ∈ {x ∈ D | f(x) v x}.
(b) Give an example showing that, in general,

⊔
X 6∈ {x ∈ D | f(x) v

x}. [Hint : Use your solution to exercise 2 above.]

5. Let (D,v) be a complete lattice.

(a) Let D →mon D be the set of monotonic functions fromD to D and�
be the relation defined onD →mon D by

f � g iff ∀d ∈ D. f(d) v g(d).

Show that� is a partial order onD →mon D.

(b) Let
∨

and
∧

be defined onD →mon D by:

If F ⊆ D →mon D then∀d ∈ D.(
∨
F)(d) =

⊔
{f(d)|f ∈ F}

and

If F ⊆ D →mon D then∀d ∈ D.(
∧
F)(d) =

l
{f(d)|f ∈ F}.

Show that(D →mon D,�) is a complete lattice with
∨

and
∧

as lub
and glb.

The following theorem gives a characterization of the greatest and least fixed points
for monotonic functions overfinite complete lattices.

Theorem A.2 Let (D,v) be afinite complete lattice and letf : D → D be
monotonic. Then the least fixed point forf is obtained as

zmin = fm(⊥)
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for somem, wheref0(⊥) = ⊥, andfn+1(⊥) = f(fn(⊥)). Furthermore the
greatest fixed point forf is obtained as

zmax = fM (>)

for someM , wheref0(>) = >, andfn+1(>) = f(fn(>)).

Proof: We only prove the first statement as the proof for the second one is similar.
As f is monotonic we have the following non-decreasing sequence

⊥ v f(⊥) v f2(⊥) v . . . v f i(⊥) v f i+1(⊥) v . . .

of elements ofD. As D is finite, the sequence must be eventually constant, i.e.,
there is anm such thatfk(⊥) = fm(⊥) for all k ≥ m. In particularf(fm(⊥)) =
fm+1(⊥) = fm(⊥) which is the same as saying thatfm(⊥) is a fixed point forf .

To prove thatfm(⊥) is the least fixed point forf , assume thatd is another
fixed point forf . Then we have that⊥ v d and therefore, asf is monotonic, that
⊥ v f(⊥) v f(d) = d. By repeating this reasoningm−1 more times we get that
fm(⊥) v d. We can therefore conclude thatfm(⊥) is the least fixed point forf .

The proof of the statement that characterizes largest fixed points is similar, and
left as an exercise for the reader. 2

A.3 Bisimulation as a Fixed Point

Let (Proc, Act, { a→ | a ∈ Act}) be a labelled transition system. We recall that a
relationS ⊆ Proc× Proc is astrong bisimulation [12] if the following holds:

If (p, q) ∈ S then, for everyα ∈ Act:

1. p
α→ p′ impliesq

α→ q′ for someq′ such that(p′, q′) ∈ S.

2. q
α→ q′ impliesp

α→ p′ for somep′ such that(p′, q′) ∈ S.

Thenstrong bisimulation equivalence (or strong equality) is defined as

∼ =
⋃
{S ∈ P(Proc× Proc) | S is a strong bisimulation}.

In what follows we shall describe the relation∼ as a fixed point to a suitable mono-
tonic function. First we note that(P(Proc × Proc),⊆) (i.e., the set of binary re-
lations overProc ordered by set inclusion) is a complete lattice with

⋃
and

⋂
as

the lub and glb. (Check this!) Next we define a functionF : P(Proc×Proc) −→
P(Proc× Proc) as follows.

(p, q) ∈ F(S) if and only if:
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1. p
α→ p′ impliesq

α→ q′ for someq′ such that(p′, q′) ∈ S.

2. q
α→ q′ impliesp

α→ p′ for somep′ such that(p′, q′) ∈ S.

ThenS is a bisimulation if and only ifS ⊆ F(S) and consequently

∼ =
⋃
{S ∈ P(Proc× Proc) | S ⊆ F(S)}.

We note that ifS, R ∈ P(Proc × Proc) andS ⊆ R thenF(S) ⊆ F(R) (check
this!), i.e.,F is monotonic over(P(Proc × Proc),⊆). Therefore, as all the con-
ditions for Tarski’s Theorem are satisfied, we can conclude that∼ is the greatest
fixed point ofF . In particular, by TheoremA.2, if Proc is finite then∼ is equal
to FM (Proc × Proc) for someM ≥ 0. Note how this gives us an algorithm
to calculate∼ for a given finite labelled transition system: To compute∼, simply
evaluate the non-increasing sequenceF i(Proc×Proc) for i ≥ 0 until the sequence
stabilizes.

Example A.4 Consider the labelled transition system described by the following
equations:

Q1 = b.Q2 + a.Q3

Q2 = c.Q4

Q3 = c.Q4

Q4 = b.Q2 + a.Q3 + a.Q1 .

In this labelled transition system, we have that

Proc = {Qi | 1 ≤ i ≤ 4} .

Below, we useI to denote the identity relation overProc—that is,

I = {(Qi, Qi) | 1 ≤ i ≤ 4} .

We calculate the sequenceF i(Proc× Proc) for i ≥ 1 thus:

F1(Proc× Proc) = {(Q1, Q4), (Q4, Q1), (Q2, Q3), (Q3, Q2)} ∪ I

F2(Proc× Proc) = {(Q2, Q3), (Q3, Q2)} ∪ I and finally

F3(Proc× Proc) = F2(Proc× Proc) .

Therefore, the only distinct processes that are related by the largest strong bisimu-
lation over this labelled transition system areQ2 andQ3.

Exercise A.7
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1. Using the iterative algorithm described above, compute the largest strong
bisimulation over the following transition system:

P1 = a.P2

P2 = a.P1

P3 = a.P2 + a.P4

P4 = a.P3 + a.P5

P5 = 0 .

2. What is the worst case complexity of the algorithm outlined above when run
on a labelled transition system consisting ofn states andm transitions?

3. Give a similar characterization for observational equivalence as a fixed
point for a monotonic function.
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