
Modeling systems and specifying temporal properties
a gentle introduction

Formal Methods in Software Development
Master Degree, 2018/2019

Prof. Anna Labella

Dr. Vadim Alimguzhin
alimguzhin@di.uniroma1.it

Dr. Federico Mari
federicomari.name – federico.mari@uniroma4.it

Model Checking Laboratory Group
http://mclab.di.uniroma1.it/

Computer Science Department
Sapienza University of Rome

April 8, 2019

mailto:alimguzhin@di.uniroma1.it
http://federicomari.name
mailto:federico.mari@uniroma4.it
http://mclab.di.uniroma1.it/


Agenda

I Introduction on modelling and specification

I Mutual exclusion

I The ferryman

I The alternating bit protocol

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 2 / 40



Introduction
Mutual exclusion

The ferryman

The alternating bit protocol



Introduction

Modelling systems

Modelling Problem

Input

I requirements of real system in natural language

Output

I computational model of a system (as a finite set of automata
interacting between them)

Usual problems when modelling

I Identify all single processes in the input real system

I Formalise dynamics of a single process

I Formalise communication among processes

I Choose the right level of abstraction

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 3 / 40



Introduction

Specification of properties

Specification Problem

Input

I computational model of a system

I properties to be verified on the given system

Output

I formal properties in temporal logic (LTL, CTL, CTL*, ...) modelling
input properties

Usual problems in specification

I Link properties to elements of the input computational model

I Understand if a property is safety (it must hold for all states of the
system), liveness (depending on evolution of time, e.g. eventually in
the future), fairness (guaranteeing that bad behaviour does not repeat
forever), . . .

I Verification or planning?
V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 4 / 40



Introduction

Modelling and Specification

Description of
real system

...

Modelling

Formal model 
with some behaviours

of real system

Description of properties
over real system

...

Specification

A

Temporal logic properties
specifying input properties

on abstract model A

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 5 / 40



Introduction
Mutual exclusion

The ferryman

The alternating bit protocol



Mutual exclusion

Shared resources

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 6 / 40



Mutual exclusion

Description of real system

I N > 1 processes

I 1 shared resource

I Each process wants to access the shared resource: critical section

I Each critical section must be as small as possible

I Only one process can be in its critical section at a time

Problem
Find a protocol for determining which process is allowed to enter its
critical section at which time

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 7 / 40



Mutual exclusion

Description of properties

Safety

Only one process is in its critical section at any time

Liveness
Whenever any process requests to enter its critical section, it will
eventually be permitted to do so

Non-blocking

A process can always request to enter its critical section

No strict sequencing

Processes need not enter their critical section in strict sequence

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 8 / 40



Mutual exclusion

Description of properties

Safety

Only one process is in its critical section at any time

Liveness
Whenever any process requests to enter its critical section, it will
eventually be permitted to do so

Non-blocking

A process can always request to enter its critical section

No strict sequencing

Processes need not enter their critical section in strict sequence

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 8 / 40



Mutual exclusion

Description of properties

Safety

Only one process is in its critical section at any time

Liveness
Whenever any process requests to enter its critical section, it will
eventually be permitted to do so

Non-blocking

A process can always request to enter its critical section

No strict sequencing

Processes need not enter their critical section in strict sequence

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 8 / 40



Mutual exclusion

Description of properties

Safety

Only one process is in its critical section at any time

Liveness
Whenever any process requests to enter its critical section, it will
eventually be permitted to do so

Non-blocking

A process can always request to enter its critical section

No strict sequencing

Processes need not enter their critical section in strict sequence

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 8 / 40



Mutual exclusion

Modelling of real system
A first attempt

I 2 processes
I Each process has three states:

I non-critical state (n)
I trying to enter its critical state (t)
I critical state (c)

I Each process undergoes transitions in the cycle n → t → c → n → . . .

nstart t c : single process

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 9 / 40



Mutual exclusion

Modelling of real system
A first attempt

s0
n1n2

start

s1

t1n2

s2
c1n2

s3

t1t2

s4

c1t2

s5

n1t2

s6
n1c2

s7

t1c2

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 10 / 40



Mutual exclusion

Specification of properties

Safety

Only one process is in its critical
section at any time

Specification (LTL)

G ¬(c1 ∧ c2)

Note
Specification is True

s0
n1n2

start

s1

t1n2

s2
c1n2

s3

t1t2

s4

c1t2

s5

n1t2

s6
n1c2

s7

t1c2

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 11 / 40



Mutual exclusion

Specification of properties

Safety

Only one process is in its critical
section at any time

Specification (LTL)

G ¬(c1 ∧ c2)

Note
Specification is True

s0
n1n2

start

s1

t1n2

s2
c1n2

s3

t1t2

s4

c1t2

s5

n1t2

s6
n1c2

s7

t1c2

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 11 / 40



Mutual exclusion

Specification of properties

Liveness
Whenever any process requests to
enter its critical section, it will
eventually be permitted to do so

Specification (LTL)

G (t1 → F c1)

Note
Specification is False

s0
n1n2

start

s1

t1n2

s2
c1n2

s3

t1t2

s4

c1t2

s5

n1t2

s6
n1c2

s7

t1c2

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 12 / 40



Mutual exclusion

Specification of properties

Liveness
Whenever any process requests to
enter its critical section, it will
eventually be permitted to do so

Specification (LTL)

G (t1 → F c1)

Note
Specification is False

s0
n1n2

start

s1

t1n2

s2
c1n2

s3

t1t2

s4

c1t2

s5

n1t2

s6
n1c2

s7

t1c2

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 12 / 40



Mutual exclusion

Specification of properties

Non-blocking

A process can always request to enter its critical section

⇒ for each process i and for each state ni there is a successor ti

Specification

The existence quantifier on paths (“there is a successor satisfying. . . ”)
cannot be expressed in LTL (it can be expressed in the logic CTL)

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 13 / 40



Mutual exclusion

Specification of properties

No strict sequencing

Processes need not enter their critical section in strict sequence

⇒ There is a path with two distinct states satisfying c1 such that no state
in between them has that property
⇒ We cannot say in LTL “there exists a path”

But we can complement the property and check for complementation

No strict sequencing negation

All paths having a c1 period which ends cannot have a further c1 state
until a c2 state occurs

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 14 / 40



Mutual exclusion

Specification of properties

No strict sequencing (negation)

All paths having a c1 period which
ends cannot have a further c1 state
until a c2 state occurs

Specification (LTL)

G (c1 → c1W (¬c1 ∧ ¬c1W c2))

Note
Specification (negation) is False
⇒ No strict sequencing is True

s0
n1n2

start

s1

t1n2

s2
c1n2

s3

t1t2

s4

c1t2

s5

n1t2

s6
n1c2

s7

t1c2

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 15 / 40



Mutual exclusion

Specification of properties

No strict sequencing (negation)

All paths having a c1 period which
ends cannot have a further c1 state
until a c2 state occurs

Specification (LTL)

G (c1 → c1W (¬c1 ∧ ¬c1W c2))

Note
Specification (negation) is False
⇒ No strict sequencing is True

s0
n1n2

start

s1

t1n2

s2
c1n2

s3

t1t2

s4

c1t2

s5

n1t2

s6
n1c2

s7

t1c2

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 15 / 40



Mutual exclusion

Model refinement

I Verification of liveness property failed on the first modelling attempt

I ⇒ The model needs to be refined

MODEL REFINEMENT THROUGH PROPERTY VERIFICATION

Refinement of mutual exclusion first attempt model

Split s3 into two states, distinguishing which process asked for its critical
section first and giving precedence to it (exercise)

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 16 / 40



Mutual exclusion

Model refinement through property verification

Description of
real system

...

Modelling

Formal model 
with some behaviours

of real system

Description of properties
over real system

...

Specification

A

Temporal logic properties
specifying input properties

on abstract model A

Verification of properties
on abstract model A

PASSFAIL

Refine abstract
model A

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 17 / 40



Introduction
Mutual exclusion

The ferryman

The alternating bit protocol



The ferryman

The ferryman

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 18 / 40



The ferryman

Description of real system
I Actors: ferryman, and the goods (goat, cabbage, and wolf)
I Actors must cross a river
I The ferryman can carry one good at a time on his boat
I Unsafe situations:

I the goat and the cabbage cannot stay without ferryman on the same
river bank

I the wolf and the goat cannot stay without ferryman on the same river
bank

Problem
Can the ferryman transport all the goods to the other side, without any
conflicts occurring?

⇒ This is a planning problem

Plan
A plan is a sequence of (state, action) pairs such that from any initial
state the system is driven to the goal state

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 19 / 40



The ferryman

Description of real system
I Actors: ferryman, and the goods (goat, cabbage, and wolf)
I Actors must cross a river
I The ferryman can carry one good at a time on his boat
I Unsafe situations:

I the goat and the cabbage cannot stay without ferryman on the same
river bank

I the wolf and the goat cannot stay without ferryman on the same river
bank

Problem
Can the ferryman transport all the goods to the other side, without any
conflicts occurring?

⇒ This is a planning problem

Plan
A plan is a sequence of (state, action) pairs such that from any initial
state the system is driven to the goal state

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 19 / 40



The ferryman

Description of properties

I Is there a path from the initial state such that it has a state along it
at which all the goods are on the other side, and during the
transitions to that state the goods are never left in an unsafe,
conflicting situation?

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 20 / 40



The ferryman

Modelling of real system

I Each actor (agent) is modelled with an automaton with actions on
edges

I Agents
I f: ferryman
I g: goat
I c: cabbage
I w: wolf

I Agents can be in the initial bank (value 0) or in the destination bank
(value 1)

I We introduce variable carry taking a value indicating whether the
goat, cabbage, wolf or nothing is carried by the ferryman

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 21 / 40



The ferryman

Modelling of real system

The ferryman f (blue edges are without any action)

0start 1

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 22 / 40



The ferryman

Modelling of real system
Variable carry (blue edges are without any action)

0start G

CW

f = g

f = g

f = g
f = g

f = c

f = c

f = c

f = c

f = w

f = w

f = w
f = w

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 23 / 40



The ferryman

Modelling of real system

The goat g (blue edges are without any action)

0start 1

f = 0 ∧ carry’ = “G” ∧ f’ = 1

f = 1 ∧ carry’ = “G” ∧ f’ = 0

Next state variables
Next state variables are primed: carry’, f’, . . .
They represent the value of corresponding variable at next time step
Non primed variables represent the value at this time step

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 24 / 40



The ferryman

Modelling of real system

The cabbage c (blue edges are without any action)

0start 1

f = 0 ∧ carry’ = “C” ∧ f’ = 1

f = 1 ∧ carry’ = “C” ∧ f’ = 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 25 / 40



The ferryman

Modelling of real system

The wolf w (blue edges are without any action)

0start 1

f = 0 ∧ carry’ = “W” ∧ f’ = 1

f = 1 ∧ carry’ = “W” ∧ f’ = 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 26 / 40



The ferryman

Modelling of real system
Automata composition

Variable f

0start 1

Variable carry

0start G

CW

f = g

f = g

f = g
f = g

f = c

f = c

f = c

f = c

f = w

f = w

f = w
f = w

Variable g

0start 1

f = 0 ∧ carry’ = “G” ∧ f’ = 1

f = 1 ∧ carry’ = “G” ∧ f’ = 0

Variable c

0start 1

f = 0 ∧ carry’ = “C” ∧ f’ = 1

f = 1 ∧ carry’ = “C” ∧ f’ = 0

Variable w

0start 1

f = 0 ∧ carry’ = “W” ∧ f’ = 1

f = 1 ∧ carry’ = “W” ∧ f’ = 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 27 / 40



The ferryman

Specification of properties

Strategy to avoid unsafe situation

If the goat and the cabbage, or the wolf and the goat, are on the same
river bank then the goat is with the ferryman

Planning problem goal

The goat, the cabbage, and the wolf are on the other river bank (value 1)

Specification (LTL)

((g = c ∨ w = g) → g = f) U (f ∧ g ∧ c ∧ w)

Specification for planning problem (LTL)

¬(((g = c ∨ w = g) → g = f) U (f ∧ g ∧ c ∧ w))

⇒ Finding a counterexample yields to a plan

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 28 / 40



The ferryman

Specification of properties

Strategy to avoid unsafe situation

If the goat and the cabbage, or the wolf and the goat, are on the same
river bank then the goat is with the ferryman

Planning problem goal

The goat, the cabbage, and the wolf are on the other river bank (value 1)

Specification (LTL)

((g = c ∨ w = g) → g = f) U (f ∧ g ∧ c ∧ w)

Specification for planning problem (LTL)

¬(((g = c ∨ w = g) → g = f) U (f ∧ g ∧ c ∧ w))

⇒ Finding a counterexample yields to a plan

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 28 / 40



The ferryman

Specification of properties

Strategy to avoid unsafe situation

If the goat and the cabbage, or the wolf and the goat, are on the same
river bank then the goat is with the ferryman

Planning problem goal

The goat, the cabbage, and the wolf are on the other river bank (value 1)

Specification (LTL)

((g = c ∨ w = g) → g = f) U (f ∧ g ∧ c ∧ w)

Specification for planning problem (LTL)

¬(((g = c ∨ w = g) → g = f) U (f ∧ g ∧ c ∧ w))

⇒ Finding a counterexample yields to a plan

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 28 / 40



The ferryman

Plan
Step 1

Variable f

0start 1

Variable carry

0start G

CW

f = g

f = g

f = g
f = g

f = c

f = c

f = c

f = c

f = w

f = w

f = w
f = w

Variable g

0start 1

f = 0 ∧ carry’ = “G” ∧ f’ = 1

f = 1 ∧ carry’ = “G” ∧ f’ = 0

Variable c

0start 1

f = 0 ∧ carry’ = “C” ∧ f’ = 1

f = 1 ∧ carry’ = “C” ∧ f’ = 0

Variable w

0start 1

f = 0 ∧ carry’ = “W” ∧ f’ = 1

f = 1 ∧ carry’ = “W” ∧ f’ = 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 29 / 40



The ferryman

Plan
Step 2

Variable f

0start 1

Variable carry

0start G

CW

f = g

f = g

f = g
f = g

f = c

f = c

f = c

f = c

f = w

f = w

f = w
f = w

Variable g

0start 1

f = 0 ∧ carry’ = “G” ∧ f’ = 1

f = 1 ∧ carry’ = “G” ∧ f’ = 0

Variable c

0start 1

f = 0 ∧ carry’ = “C” ∧ f’ = 1

f = 1 ∧ carry’ = “C” ∧ f’ = 0

Variable w

0start 1

f = 0 ∧ carry’ = “W” ∧ f’ = 1

f = 1 ∧ carry’ = “W” ∧ f’ = 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 29 / 40



The ferryman

Plan
Step 3

Variable f

0start 1

Variable carry

0start G

CW

f = g

f = g

f = g
f = g

f = c

f = c

f = c

f = c

f = w

f = w

f = w
f = w

Variable g

0start 1

f = 0 ∧ carry’ = “G” ∧ f’ = 1

f = 1 ∧ carry’ = “G” ∧ f’ = 0

Variable c

0start 1

f = 0 ∧ carry’ = “C” ∧ f’ = 1

f = 1 ∧ carry’ = “C” ∧ f’ = 0

Variable w

0start 1

f = 0 ∧ carry’ = “W” ∧ f’ = 1

f = 1 ∧ carry’ = “W” ∧ f’ = 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 29 / 40



The ferryman

Plan
Step 4

Variable f

0start 1

Variable carry

0start G

CW

f = g

f = g

f = g
f = g

f = c

f = c

f = c

f = c

f = w

f = w

f = w
f = w

Variable g

0start 1

f = 0 ∧ carry’ = “G” ∧ f’ = 1

f = 1 ∧ carry’ = “G” ∧ f’ = 0

Variable c

0start 1

f = 0 ∧ carry’ = “C” ∧ f’ = 1

f = 1 ∧ carry’ = “C” ∧ f’ = 0

Variable w

0start 1

f = 0 ∧ carry’ = “W” ∧ f’ = 1

f = 1 ∧ carry’ = “W” ∧ f’ = 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 29 / 40



The ferryman

Plan
Step 5

Variable f

0start 1

Variable carry

0start G

CW

f = g

f = g

f = g
f = g

f = c

f = c

f = c

f = c

f = w

f = w

f = w
f = w

Variable g

0start 1

f = 0 ∧ carry’ = “G” ∧ f’ = 1

f = 1 ∧ carry’ = “G” ∧ f’ = 0

Variable c

0start 1

f = 0 ∧ carry’ = “C” ∧ f’ = 1

f = 1 ∧ carry’ = “C” ∧ f’ = 0

Variable w

0start 1

f = 0 ∧ carry’ = “W” ∧ f’ = 1

f = 1 ∧ carry’ = “W” ∧ f’ = 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 29 / 40



The ferryman

Plan
Step 6

Variable f

0start 1

Variable carry

0start G

CW

f = g

f = g

f = g
f = g

f = c

f = c

f = c

f = c

f = w

f = w

f = w
f = w

Variable g

0start 1

f = 0 ∧ carry’ = “G” ∧ f’ = 1

f = 1 ∧ carry’ = “G” ∧ f’ = 0

Variable c

0start 1

f = 0 ∧ carry’ = “C” ∧ f’ = 1

f = 1 ∧ carry’ = “C” ∧ f’ = 0

Variable w

0start 1

f = 0 ∧ carry’ = “W” ∧ f’ = 1

f = 1 ∧ carry’ = “W” ∧ f’ = 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 29 / 40



The ferryman

Plan
Step 7

Variable f

0start 1

Variable carry

0start G

CW

f = g

f = g

f = g
f = g

f = c

f = c

f = c

f = c

f = w

f = w

f = w
f = w

Variable g

0start 1

f = 0 ∧ carry’ = “G” ∧ f’ = 1

f = 1 ∧ carry’ = “G” ∧ f’ = 0

Variable c

0start 1

f = 0 ∧ carry’ = “C” ∧ f’ = 1

f = 1 ∧ carry’ = “C” ∧ f’ = 0

Variable w

0start 1

f = 0 ∧ carry’ = “W” ∧ f’ = 1

f = 1 ∧ carry’ = “W” ∧ f’ = 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 29 / 40



The ferryman

Plan
Step 8

Variable f

0start 1

Variable carry

0start G

CW

f = g

f = g

f = g
f = g

f = c

f = c

f = c

f = c

f = w

f = w

f = w
f = w

Variable g

0start 1

f = 0 ∧ carry’ = “G” ∧ f’ = 1

f = 1 ∧ carry’ = “G” ∧ f’ = 0

Variable c

0start 1

f = 0 ∧ carry’ = “C” ∧ f’ = 1

f = 1 ∧ carry’ = “C” ∧ f’ = 0

Variable w

0start 1

f = 0 ∧ carry’ = “W” ∧ f’ = 1

f = 1 ∧ carry’ = “W” ∧ f’ = 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 29 / 40



Introduction
Mutual exclusion

The ferryman

The alternating bit protocol



The alternating bit protocol

The alternating bit protocol: motivations

Alice Bob

WOW!!

I love you

So do I

Charlie

Insecure
channel

What?

Yeah!!

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 30 / 40



The alternating bit protocol

Description of real system

I Alice and Bob want to communicate

I On a lossy line, i.e. a line which may lose or duplicate messages

I The line does not lose infinitely many messages (fairness)

I The line does not corrupt messages

I Protocol uses acknowledgements

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 31 / 40



The alternating bit protocol

Description of real system

Alice Bob

WOW!!

I love you, 0

So do I, 0

Insecure
channel

0
ack

So do I, 0

WOW!! 0

So do I, 0

0
Let's meet, 1

1

OK, 1

1

I Agents
I Sender
I Receiver
I Message channel
I Ack channel

I Figure shows two instances of
Alternating Bit Protocol (ABP)

1. Sender: Alice, Receiver: Bob
2. Sender: Bob, Receiver: Alice

I Sender sends again the same
message until he receives the
corresponding ack

I Receiver sends again the same ack
until he receives a message with
expected bit

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 32 / 40



The alternating bit protocol

Description of properties

Safety

If the message bit 1 has been sent and the correct acknowledgement has
been returned, then a 1 was indeed received by the receiver (the same
holds for 0)

Liveness
Messages get through eventually
⇒ For any state there is inevitably a future state in which the current
message has got through
Similarly, acknowledgements get through eventually

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 33 / 40



The alternating bit protocol

Modelling of real system
The sender

Input variable ack boolean

Sending status (st)

sendingstart sent

ack = message2

Variable message1

0 1

st = sent

st = sent

st = sent st = sent

Variable message2

0 1

st = sent

st = sent

I The sender sends the bit in variable message1
I The ABP control bit is in variable message2
I Fairness: The sender must be run infinitely often

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 34 / 40



The alternating bit protocol

Modelling of real system
The receiver

Input variables message1 (actual message), message2 (ABP control bit)
boolean

Receiving status (st)

receivingstart received

message2 = expected

Fairness: The receiver must
be run infinitely often

Variable ack

0 1

st = received ∧
message2 = 1

st = received ∧
message2 = 0

st = received ∧
message2 = 0

st = received ∧
message2 = 1

Variable expected

0 1

st = received

st = received

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 35 / 40



The alternating bit protocol

Modelling of real system
The acknowledgement channel (1 bit)

Input variable input boolean

Variable output

0 1

forget forget

!input

input

input
!input Variable forget

0 1

I Fairness: The one bit channel must be run infinitely often

I Fairness: Variable forget cannot be always 1, for both input 1 and 0

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 36 / 40



The alternating bit protocol

Modelling of real system
The message channel (2 bits)

Input variables input1, input2 boolean

Variables outputI, I in {1, 2}

0 1

forget forget

!inputI

inputI

inputI
!inputI Variable forget

0 1

I Fairness: The two bit channel must be run infinitely often

I Fairness: Variable forget cannot be always 1, for all inputs (4 cases)

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 37 / 40



The alternating bit protocol

Modelling of real system
The whole protocol

Sender

ack
+ st := sending

+ message1

+ message2 := 0

Receiver

message1

+ st := receiving

+ ack := 1

+ expected := 0

message2

AckCh

input
+ output := 1

+ forget

MsgCh

input1
+ output1

+ forget

+ output2 := 1

input2

Note
Variable forget models insecure channel (non-deterministic)

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 38 / 40



The alternating bit protocol

Specification of properties

Safety

If the message bit 1 has been sent and the correct acknowledgement has
been returned, then a 1 was indeed received by the receiver (the same
holds for 0)

Specification (LTL)

G (Sender.st = sent ∧ Sender.message1 = 1 → MsgCh.output1 = 1)

Note
Safety specification is True

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 39 / 40



The alternating bit protocol

Specification of properties

Safety

If the message bit 1 has been sent and the correct acknowledgement has
been returned, then a 1 was indeed received by the receiver (the same
holds for 0)

Specification (LTL)

G (Sender.st = sent ∧ Sender.message1 = 1 → MsgCh.output1 = 1)

Note
Safety specification is True

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 39 / 40



The alternating bit protocol

Specification of properties

Liveness
Messages get through eventually
⇒ For any state there is inevitably a future state in which the current
message has got through
Similarly, acknowledgements get through eventually

Specification (LTL)

G F (Sender.st = sent)
G F (Receiver.st = received)

Note
Liveness specification is True

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 40 / 40



The alternating bit protocol

Specification of properties

Liveness
Messages get through eventually
⇒ For any state there is inevitably a future state in which the current
message has got through
Similarly, acknowledgements get through eventually

Specification (LTL)

G F (Sender.st = sent)
G F (Receiver.st = received)

Note
Liveness specification is True

V. Alimguzhin MF.1: Modeling systems and specifying temporal properties April 8, 2019 40 / 40




	Introduction
	Mutual exclusion
	The ferryman
	The alternating bit protocol

