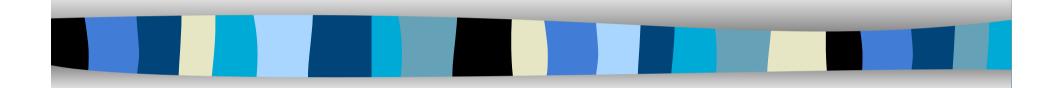
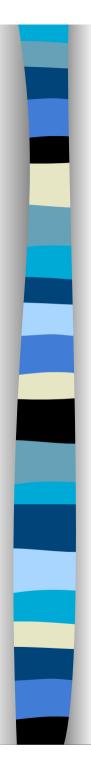
Formal Methods in software development



a.y.2017/2018 Prof. Anna Labella



LTL: what is expressible

Safety properties $G \neg \phi$

Liveness properties $GF\psi$ or $G(\phi \rightarrow F\psi)$

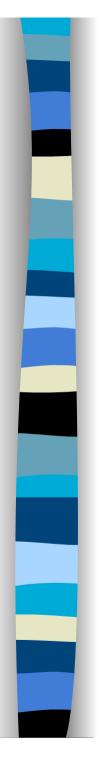
Semantics: transition systems

Abstract models: states and transitions

LTS: Automata without terminal states

Kripke structures

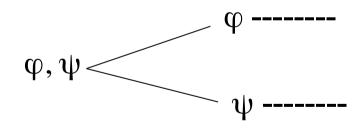
 $\rightarrow \subseteq S \times S$



LTL

Characterising linear time

 $G\left((\varphi \vee G\psi \;) \land (G\varphi \vee \psi)\right) \cong (G\varphi \vee G\psi)$



Lefthand holds, righthand does not

LTL: what is expressible

- It is impossible to get to a state where started holds, but ready does not hold: $G\neg(\text{started} \land \neg \text{ready})$
- For any state, if a **request** (of some resource) occurs, then it will eventually be acknowledged:

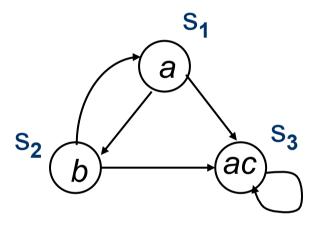
 $G \ (\text{requested} \rightarrow F \ \text{acknowledged}).$

- A certain process is enabled infinitely often on every computation path: $G\,F\,enabled.$
- Whatever happens, a certain process will eventually be permanently deadlocked: F G deadlock.
- If the process is enabled infinitely often, then it runs infinitely often. G F enabled \to G F running.
- An upwards travelling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor: G (floor2 ∧ directionup ∧ ButtonPressed5 → (directionup U floor5)) Here, our atomic descriptions are boolean expressions built from system variables, e.g., floor2.

LTL: what is not expressible

- From any state it is possible to get to a restart state (i.e., there is a path from all states to a state satisfying restart).
- The lift can remain idle on the third floor with its doors closed (i.e., from the state in which it is on the third floor, there is a path along which it stays there).

Computation Trees: labelled TS



State transition structure (*Kripke Model*)

Infinite computation tree for initial state s₁

ac

 S_1

ac

ac

ac

а

b

а

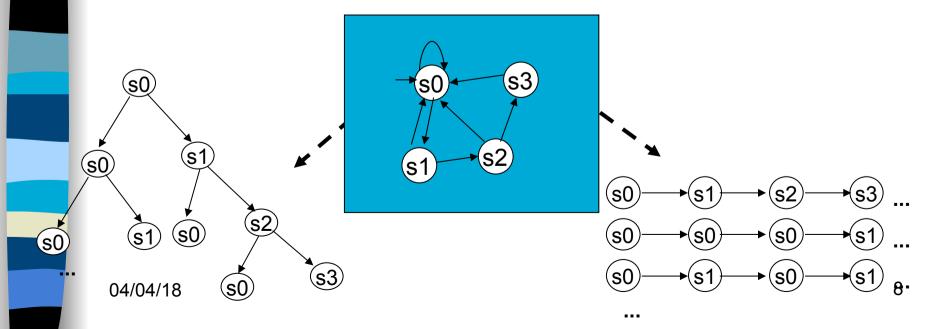
04/04/18

7

Linear time and Branching time

Linear: only one possible future in a moment

- Look at individual computations
- Branching: may split to different courses depending on possible futures
 - Look at the tree of computations



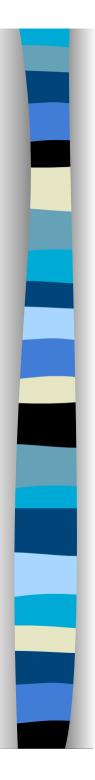
Operators and Quantifiers

State operators

- $G \phi$: ϕ holds globally
- $F \phi$: ϕ holds eventually
- $X \phi$: ϕ holds at the next state
- $\phi \cup \psi$: ϕ holds until ψ holds
- $\phi \otimes \psi$: ϕ holds until ψ possibly holds

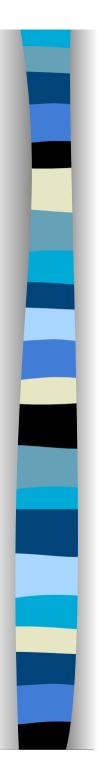
Path quantifiers

- E: along at least one path (there *exists* ...)
- A: along all paths (for *all* ...)



CTL characterisation

 Temporal operators must be immediately preceded by a path quantifier



Typical CTL Formulas

■ EF(start ∧ ¬ ready)

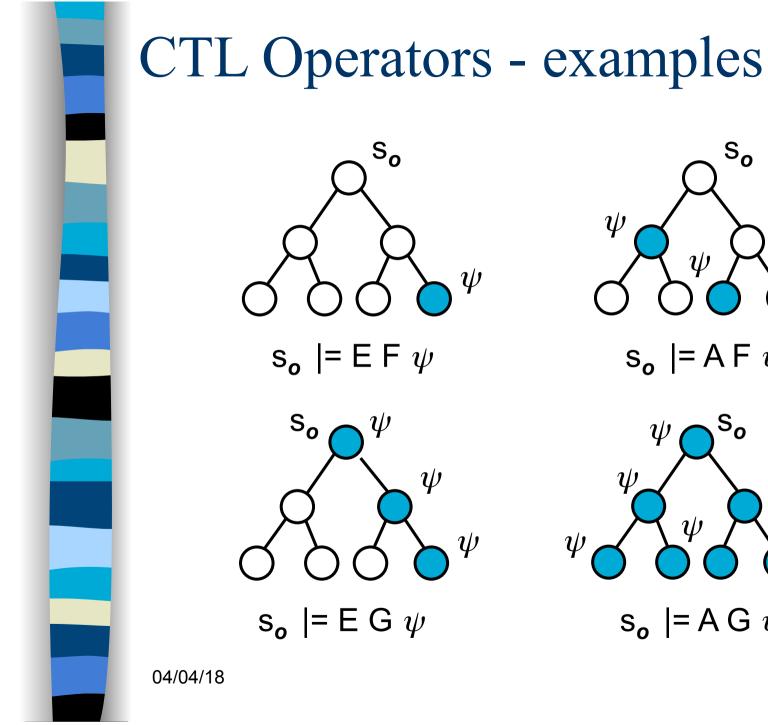
- eventually a state is reached where start holds and ready does not hold
- A G ($req \rightarrow A F ack$)
 - any time *request* occurs, it will be eventually *ack*nowledged
- AG(EF restart)
 - from any state it is possible to get to the restart state

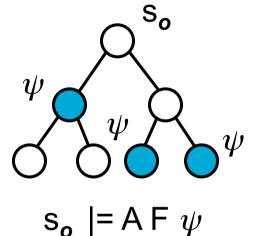
CTL semantics

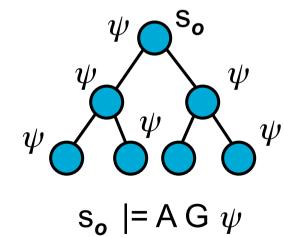
- Ε X (φ)
 - true in state *s* if ϕ is true in some successor of *s* (there *exists* a next state of s for which ϕ holds)
- A X (φ)
 - true in state *s* if ϕ is true for all successors of *s* (for all next states of *s* ϕ is true)
- E G (φ)
 - true in s if ϕ holds in every state along some path emanating from s (there exists a path)
- A G (φ)
 - true in s if ϕ holds in every state along *all* paths emanating from s (for all pathsglobally)

■ E F (ψ)

- there exists a path which eventually contains a state in which ψ is true
- A F (ψ)
 - for all paths, eventually there is state in which ψ holds
- E F (φ U ψ)
 - there exists a path where ($\phi \cup \psi$) is true
- A F (φ U ψ)
 - for all paths ($\phi \cup \psi$) is true
- E F, A F are special cases of E [ϕ U ψ], A [ϕ U ψ] - E F (ψ) = E [true U ψ], A F (ψ) = A [true U ψ]







Minimal set of CTL Formulas

Full set of operators

- Boolean: \neg , \land , \lor , \oplus , \rightarrow
- temporal: E, A, X, F, G, U, W

Minimal set sufficient to express any CTL formula

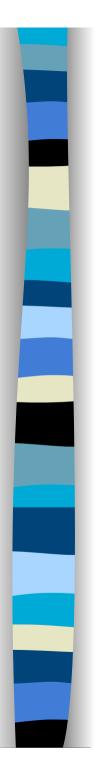
– temporal: E, X, U

Examples:

 $\phi \land \psi = \neg (\neg \phi \lor \neg \psi), \quad F \phi = true \cup \phi, \quad A (\phi) = \neg E(\neg \phi)$

CTL* – Computation Tree Logic

- Path quantifiers describe branching structure of the tree
 - A (for *all* computation paths)
 - E (for *some* computation path = there *exists* a path)
- Temporal operators describe properties of a path through the tree
 - X (next time, next state)
 - F (eventually, finally)
 - G (always, globally)
 - U (until)
 - W (weak until)



CTL* Formulas

Temporal logic formulas are evaluated w.r.to a state in the model

State formulas

- apply to a specific state

Path formulas

- apply to all states along a specific path

CTL* Syntax

- An atomic proposition *p* is a state formula
- A state formula is also a path formula
- If ϕ , ψ are state formulae, so are $\neg \phi$, $\phi \land \psi$, $\phi \lor \psi$,
- If α is a path formula, E α is a state formula
- If α , β are path formulae, so are $\neg \alpha$, $\alpha \land \beta$, $\alpha \lor \beta$
- If α , β are path formulae, so are X α , $\alpha U\beta$

Summing up (CTL*)

• *state formulas*, which are evaluated in states:

 $\phi ::= \top \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid \mathbf{A}[\alpha] \mid \mathbf{E}[\alpha]$

where p is any atomic formula and α any path formula; and *path formulas*, which are evaluated along paths:

 $\alpha ::= \phi \mid (\neg \alpha) \mid (\alpha \land \alpha) \mid (\alpha \lor \alpha) \mid (\mathbf{G} \alpha) \mid (\mathbf{F} \alpha) \mid (\mathbf{X} \alpha)$

where ϕ is any state formula.

04/04/18

٠

CTL* Semantics

- If formula ϕ holds at state s (path π), we write: s |= ϕ (π |= α)
- s |= p, p is an atomic formula, iff $p \in L(s)$ [label of s]
- $s \models \neg \phi$, iff $s \not\models \phi$
- $s \models \phi \land \psi$, iff $s \models \phi$ and $s \models \psi$
- s |= E ϕ , iff **3** π from state s, s.t. π |= ϕ
- $\pi \models \neg \alpha$, iff $\pi \not\models \alpha$
- $\pi \models \alpha \land \beta$, iff $\pi \models \alpha$ and $\pi \models \beta$
- $\pi \models X \alpha$, iff $\pi^1 \models \alpha$ (α reachable in next state)
- $\pi \models \alpha \cup \beta$, iff $\pi \models \alpha$ until $\pi \models \beta$

CTL – Computational Tree Logic

- CTL* a powerful branching-time temporal logic
- CTL a branching-time fragment of CTL*
- In CTL every temporal operator (G,F,X,U,W) must be immediately preceded by a path quantifier (A,E)
- We need both state formulae and path formulae to recursively define the logic



More expressivity in CTL than in LTL?

Quantifying on paths

In LTL formulas are always quantified through A

LTL: blocks of operators must be thought as preceded by A always

Linear time operators.

The following are a complete set

 $\neg\phi$, $\phi \lor \psi$, $\mathsf{X}\phi$, $\phi \,\mathsf{U} \,\psi$

Others can be derived

$$\neg \phi \land \psi \equiv \neg (\neg \phi \lor \neg \psi)$$

$$-\phi \rightarrow \psi \equiv \neg \phi \lor \psi$$

$$- F \phi \equiv (true U \phi)$$

- G φ ≡(φ U false)

CTL: what is expressible? 1

- It is possible to get to a state where started holds, but ready doesn't: EF (started ∧ ¬ready). To express impossibility, we simply negate the formula.
- For any state, if a request (of some resource) occurs, then it will eventually be acknowledged:

AG (requested $\rightarrow AF$ acknowledged).

- The property that if the process is enabled infinitely often, then it runs infinitely often, is not expressible in CTL. In particular, it is not expressed by AG AF enabled → AG AF running, or indeed any other insertion of A or E into the corresponding LTL formula. The CTL formula just given expresses that if every path has infinitely often enabled, then every path is infinitely often taken; this is much weaker than asserting that every path which has infinitely often enabled is infinitely often taken.
- A certain process is enabled infinitely often on every computation path: AG (AF enabled).
- Whatever happens, a certain process will eventually be permanently deadlocked: AF (AG deadlock).

CTL: what is expressible? 2

- From any state it is possible to get to a restart state: AG (EF restart).
- An upwards travelling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor:

 $AG (floor2 \land directionup \land ButtonPressed5 \rightarrow A[directionup U floor5])$

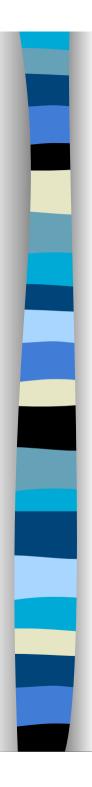
- Here, our atomic descriptions are boolean expressions built from system variables, e.g., floor2.
- The lift can remain idle on the third floor with its doors closed: AG (floor $3 \land idle \land doorclosed \rightarrow EG$ (floor $3 \land idle \land doorclosed$)).
- A process can always request to enter its critical section. Recall that this was not expressible in LTL. Using the propositions of Figure 3.8, this may be written AG (n₁ → EX t₁) in CTL.
- Processes need not enter their critical section in strict sequence. This was also not expressible in LTL, though we expressed its negation. CTL allows us to express it directly: EF (c₁ ∧ E[c₁ U (¬c₁ ∧ E[¬c₂ U c₁])]).

Expressivity of LTL and CTL

Safety AG ¬(c₁∧ c₂)
 Liveness AG (t_i→AFc_i)

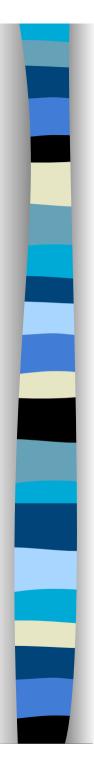
LTL and CTL

- LTL (Linear Temporal Logic) Reasoning about infinite sequence of states π: s₀, s₁, s₂, ...
- CTL (Computation Tree Logic) Reasoning on a computation tree.
 - Temporal operators are immediately preceded by a path quantifier (e.g. A F p)
- CTL vs. LTL different expressive power
 - EFp is not expressible in LTL
 - FGp is not expressible in CTL



Comparing logics

- PLTL state-formulas $\Phi ::= \mathsf{A} \varphi$ path-formulas $\varphi ::= p | \neg \varphi | \varphi \lor \varphi | \mathsf{X} \varphi | \varphi \mathsf{U} \varphi$



Comparing logics

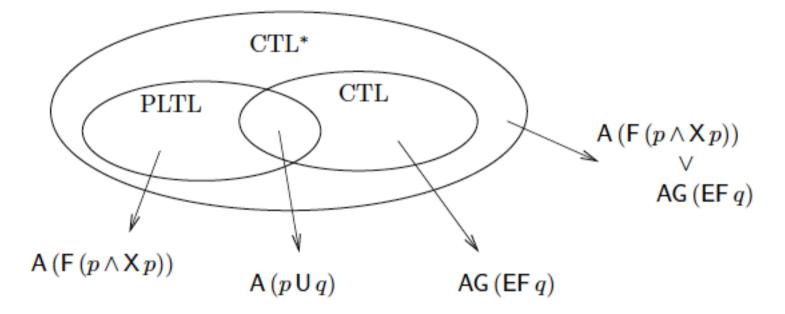
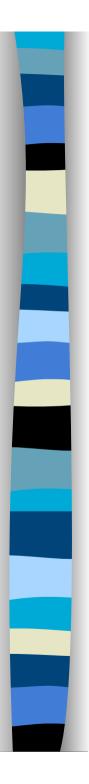
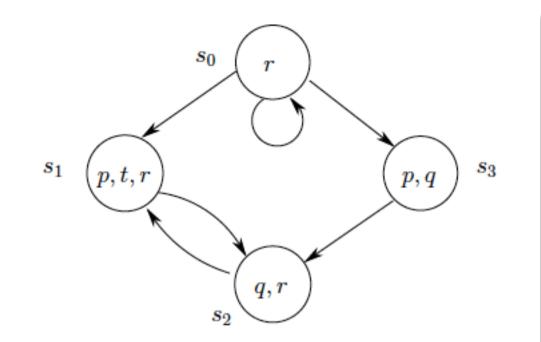


Figure 6.4: Relationship between PLTL, CTL and CTL*





Determine whether $\mathcal{M}, s_0 \vDash \phi$ and $\mathcal{M}, s_2 \vDash \phi$ hold and justify your answer, where ϕ is the LTL or CTL formula:

* (i)
$$\neg p \rightarrow r$$

(ii) F t
*(iii) $\neg EG r$
(iv) E (t U q)
(v) F q
(vi) EF q
(vii) EG r
(viii) G (r $\lor q$).

Exercises

Exercises

Which of the following pairs of CTL formulas are equivalent? For those which are not, exhibit a model of one of the pair which is not a model of the other:

- (a) $EF \phi$ and $EG \phi$
- (b) $\operatorname{EF} \phi \lor \operatorname{EF} \psi$ and $\operatorname{EF} (\phi \lor \psi)$
- (c) $\operatorname{AF} \phi \lor \operatorname{AF} \psi$ and $\operatorname{AF} (\phi \lor \psi)$
- (d) AF $\neg \phi$ and $\neg EG \phi$
- (e) EF $\neg \phi$ and \neg AF ϕ
- (f) $A[\phi_1 \cup A[\phi_2 \cup \phi_3]]$ and $A[A[\phi_1 \cup \phi_2] \cup \phi_3]$, hint: it might make it simpler if you think first about models that have just one path
- (g) \top and AG $\phi \rightarrow \operatorname{EG} \phi$
- (h) \top and EG $\phi \rightarrow AG \phi$.

LTL: what does hold (exercises)

$$G (\varphi \rightarrow \psi) \rightarrow (G \varphi \rightarrow G \psi)$$

$$G \varphi \rightarrow \varphi$$

$$\varphi \rightarrow F \varphi$$

$$G \varphi \rightarrow X \varphi$$

$$X \varphi \rightarrow F \varphi$$

$$G \varphi \rightarrow F \varphi$$

$$G \varphi \rightarrow F \varphi$$

$$X(\varphi \land \psi) \cong X \varphi \land X \psi$$