Formal Methods 1n software development

a.y.2017/2018
Prof. Anna Labella

04/04/18 1

Liveness properties GFyp or G(p—Fy)

04/04/18

LTL: what 1s expressible
Safety properties G — @
i

Kripke structures

— C S xS

04/04/18

Semantics: transition systems
Abstract models: states and transitions
LTS: Automata without terminal states
I

Lefthand holds, righthand does not

04/04/18

LTL
Characterising linear time
G (pvGy) A (Gopvy)) = (GevGy)
i

LTL: what 1s expressible

It is impossible to get to a state where started holds, but ready does not hold:
G—(started A —ready)

For any state, if a request (of some resource) occurs, then it will eventually be
acknowledged:

G (requested — F acknowledged).

A certain process is enabled infinitely often on every computation path:

G F enabled.

Whatever happens, a certain process will eventually be permanently deadlocked:
F G deadlock.

If the process is enabled infinitely often, then it runs infinitely often.

G F enabled — G F running.

An upwards travelling lift at the second floor does not change its direction when
it has passengers wishing to go to the fifth floor:

G (floor2 A directionup A ButtonPressed5 — (directionup U floorb))

Here, our atomic descriptions are boolean expressions built from system wvari-
ables, e.g., floor2.

04/04/18 3}

LTL: what 1s not expressible

* From any state it i3 possible to get to a restart state (i.e., there 1s a path from
all states to a state satisfying restart).

e The lift can remain idle on the third floor with its doors closed (i.e., from the
state in which it is on the third floor, there is a path along which it stays there).

04/04/18 6

&8 /@\ &

State transition structure @
(Kripke Model)

Infinite computation tree
for initial state s,

04/04/18 7

Computation Trees: labelled TS
1 / @
- /"
-

Linear time and Branching time

m Linear: only one possible future in a moment
— Look at individual computations

m Branching: may split to different courses depending on possible
futures

— Look at the tree of computations

i 7} DD .

6000 ..
60—6D—60—D .

M EENE E

Operators and Quantifiers

m State operators

- Gog:
- Fo¢:
- X0
- ¢Uy:
- oWy

¢ holds globally

¢ holds eventually

¢ holds at the next state

¢ holds until y holds

¢ holds until y possibly holds

m Path quantifiers

— E:
— A:

04/04/18

along at least one path (there exists ...)
along all paths (for all ...)

E
|

CTL characterisation

m Temporal operators must be immediately preceded by a path
quantifier

04/04/18

10

:
!
|

Typical CTL Formulas

m EF(start A 7 ready)

— eventually a state is reached where start holds and ready
does not hold

m AG(req — AF ack)

— any time request occurs, it will be eventually acknowledged

m AG(EF restart)

— from any state it is possible to get to the restart state

04/04/18

11

CTL semantics
m E X (¢)

— true in state sif ¢ is true in some successor of s (there
exists a next state of s for which ¢ holds)

A X (9)

— true in state sif ¢ is true for all successors of s (for all next
states of s ¢ is true)

EG(¢)

— truein sif ¢ holds in every state along some path
emanating from s (there exists a path)

A G (9)

— true in sif ¢ holds in every state along all paths emanating
from s (for all pathsglobally)

04/04/18 12

m EF(y)

— there exists a path which eventually contains a state
In which y is true

m AF (y)
— for all paths, eventually there is state in which holds

mEF(¢oUvy)

— there exists a path where (¢ U y) is true

B AF(pU vy)
— for all paths (¢ U) is true

m EF, AF are special cases of E [¢ Uy, A [¢ Uy]
~—EF(p)=E[trueU], AF (yv)=A[true U y]

04/04/18 13

TN N RN b

E
|

CTL Operators - examples

04/04/18

14

Full set of operators

- OANY= _'(_'¢V _Iw),

l 04/04/18

— Boolean: AV, —
— temporal: E.A X, F, G U W

— Boolean: mEAY
— temporal: E, X, U
Examples:

Fo=true U ¢,

Minimal set of CTL Formulas

q Minimal set sufficient to express any CTL formula

A(¢)="E(T9)

15

CTL* — Computation Tree Logic

m Path quantifiers - describe branching structure of the
tree

— A (for all computation paths)

— E (for some computation path = there exists a path)

- m Temporal operators - describe properties of a path
through the tree

— X (next time, next state)
— F (eventually, finally)

— G (always, globally)

— U (until)

] — W (weak until)

l 04/04/18 16

CTL*™ Formulas

m Temporal logic formulas are evaluated w.r.to
a state in the model

State formulas
— apply to a specific state

Path formulas
— apply to all states along a specific path

04/04/18

17

CTL* Syntax

= An atomic proposition p is a state formula

A state formula is also a path formula

If ¢, v are state formulae, so are ¢, ¢pary, PV,

If ois a path formula, E o is a state formula

If a, p are path formulae, so are 7a, arf, avp

m If o, B are path formulae, so are X o, aUp
04/04/18

18

Summing up (CTL*)

* state formulas, which are evaluated in states:

¢u=T|[p|(=9)|(¢A9)]|Ald]]|E[a]

where p is any atomic formula and a any path formula; and
* path formulas, which are evaluated along paths:

a:=¢|(-a)|(@ra)|(@Ua)|(Ca)|(Fa)| (Xa)

where ¢ is any state formula.

04/04/18 19

CTL*™ Semantics

m If formula ¢ holds at state s (path), we write:

s|=¢ (n|=a)
m s |=p, pisanatomicformula, iff p € L(s)
[label of s]
s |= 7 ¢, Iff S |# ¢
S |= ¢ Ay, iff S|=¢gands|=y
s |= E ¢, iff 3 & from state s, s.t. w |= ¢
"=, iff m |# o
B |=anp, ifft|=aandx |=p
B n|=Xa, iff 1! |= a (o reachable in next state)
mn|=alUdp, iff x|=cauntilx|=p

04/04/18 20

CTL — Computational Tree Logic

m CTL* - a powerful branching-time temporal

. logic

m CTL — a branching-time fragment of CTL*

" = InCTL every temporal operator (G,F,X,U,W)
. must be immediately preceded by a path
quantifier (AE)
m We need both state formulae and path
formulae to recursively define the logic

l 04/04/18 21

E
|

More expressivity in CTL than in
LTL?

Quantifying on paths

In LTL formulas are always quantified through A

04/04/18 22

LTL: blocks of operators must be
thought as preceded by A always

m Linear time operators.
m The following are a complete set
9, vy, X¢, 9Uy
Others can be derived
“oAy = 7(Tov YY)
PP =TPpvy
— F ¢ =(true U ¢)
— G ¢ =(¢p U false)

04/04/18 23

CTL: what 1s expressible? 1

It is possible to get to a state where started holds, but ready doesn’t:

EF (started A —ready). To express impossibility, we simply negate the formula.
For any state, if a request (of some resource) occurs, then it will eventually be
acknowledged:

AG (requested — AF acknowledged).

The property that if the process is enabled infinitely often, then it runs in-
finitely often, is not expressible in CTL. In particular, it is not expressed by
AG AF enabled — AG AF running, or indeed any other insertion of A or E into
the corresponding LTL formula. The CTL formula just given expresses that if
every path has infinitely often enabled, then every path is infinitely often taken;
this is much weaker than asserting that every path which has infinitely often
enabled is infinitely often taken.

A certain process is enabled infinitely often on every computation path:

AG (AF enabled).

Whatever happens, a certain process will eventually be permanently deadlocked:
AF (AG deadlock).

04/04/18 24

CTL: what 1s expressible? 2

From any state it is possible to get to a restart state:

AG (EF restart).

An upwards travelling lift at the second floor does not change its direction when
it has passengers wishing to go to the fifth floor:

AG (floor2 A directionup A ButtonPressed5 — Al[directionup U floor5])

Here, our atomic descriptions are boolean expressions built from system vari-
ables, e.g., floor2.

The lift can remain idle on the third floor with its doors closed:

AG (floor3 A idle A doorclosed — EG (floor3 A idle A doorclosed)).

A process can always request to enter its critical section. Recall that this was
not expressible in LTL. Using the propositions of Figure 3.8, this may be written
AG (ny — EXt;) in CTL.

Processes need not enter their critical section in strict sequence. This was also
not expressible in LTL, though we expressed its negation. CTL allows us to
express it directly: EF (¢1 A E[e1 U (—e1 A E[-e2 U e1])]).

04/04/18 25

Expressivity of LTL and CTL

m Safety G - (¢c4n C))
m Liveness G (t —Fc))

= Safety AG —(cqA G,)
= Liveness AG (t —AFc)

04/04/18

26

LLTL and CTL

m LTL (Linear Temporal Logic) - Reasoning about
infinite sequence of states

m CTL (Computation Tree Logic) — Reasoning on a
- computation tree.
are immediately preceded by a path
quantifier (e.g. A p)

I m CTL vs. LTL - different expressive power

— EFp is not expressible in LTL

— FGp is not expressible in CTL
i

04/04/18 27

E
|

Comparing logics

PLTL

state-formulas

path-formulas

®:=Ap
pu=p| p|eVe|Xe|pUp

CTL state-formulas ® :=p | P | Vv o | Ep | Agp
path-formulas ¢ :=X® | #U®
CTL* state-formulas ® ::=p | P | Vv o | Ep | Agp
path-formulas go:::<I>| ﬂgolcp V cplX(,0|<pU(,o
04/04/18

28

i

Comparing logics

CTL*
m A(F(pAXp))
- V
AG (EF q)
AFRAZED A pug) AG (EF g)

Figure 6.4: Relationship between PLTL, CTL and CTL*

04/04/18

29

S9 o

Determine whether M, so F ¢ and M, sy F ¢ hold and justify your answer,
where ¢ 1s the LTL or CTL formula:

*) por

Exercises

-— -_—t - - - e —— - - - .-

Exercises

Which of the following pairs of CTL formulas are equivalent? For those which

are not, exhibit a model of one of the pair which 1s not a model of the

other:

(a) EF ¢ and EG ¢

(b) EF ¢ V EF ¢ and EF (¢ V ¥)

(c) AF ¢ vV AF ¢ and AF (¢ V ¢)

(d) AF -¢ and -EG ¢

(e) EF -¢ and —AF ¢

(f) Al¢1 U Algo U ¢3]] and A[A[¢dy U ¢2] U @3], hint: it might make it simpler
if you think first about models that have just one path

(g) T and AGod — EG o

(h) T and EG ¢ — AG ¢.

04/04/18 31

E
|

LTL: what does hold (exercises)

G (@—=y) = (Gep—=Gy)
G o—gp

¢—=Fo

G op— Xo

X ¢— Fo

G 9o— Fo

X(payp) = Xpa X

04/04/18

32

