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The predicate calculus [H-R ch.2]

m The need for a richer language
g " Termsand formulas

I m quantifiers
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Syntax

® Inductive term definition
= BNF

mti=x|c|f(t,t,....1.)
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Syntax
m [nductive definition of wff

= BNF

= p(t1,t2, St 4=t | (mo) | (pag) |
(pve) | (p—¢) | VX | Ixe
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Semantics

Syntactical data
m F functional symbols- constants
B = P predicate symbols

An interpretation ‘M

® a non empty set (domain) A

@ = F > asetof functions *on A (A")
l m P = asetof relations PMon A (A")




Semantics

A subset is the interpretation of a 1-ary
predicate

m A n-ary relation is the interpretation of a
n-ary predicate
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An example: arithmetics

syntactical data
] T: f1(-5-)1 f2(-1-)5 fO(-)i C
- mpP:-=- P1(':')

I An interpretation ‘M
m Natural numbers (domain)

@ = Functions:-+- - - s(-),0

m Predicates: -=-, -<-
26/03/18




mvar = elementsof A
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Semantics
environments
Assigning values
]



Semantics

Summing up, we are given with

A non-empty set A, the universe of concrete values;

for each nullary function symbol f € F, a concrete element fM of A

for each f € F with arity n > 0, a concrete function fM: A™ — A from A", the
set of n-tuples over A, to A; and

for each P € P with arity n > 0, a subset PM C A™ of n-tuples over A.
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An example: arithmetics 2

m f,(C,X)=X always true in the interpretation

m f,(C,X)=X sometimes true sometimes false in the
interpretation depending on the assignment

O VX(f 1 ( C,X ) =X ) true in the interpretation
m 3dx(f,(c,x)=X) true in the interpretation
m Vx(f,(c,x)=X) false in the interpretation
m Vx(f,(c,x)=f,(c,x)) valid
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Semantics

An Iinterpretation ‘M

IS a model of ¢
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Semantics: satisfiability

P: If ¢ is of the form P(t,,t,...,t,), then we interpret the terms t4,¢5,...,%, in
our set A by replacing all variables with their values according to [. In this way
we compute concrete values aq,as,...,a, of A for each of these terms, where
we interpret any function symbol f € F by fM. Now M kE; P(ty,ts,...,t,)
holds iff (aq,as,...,a,) is in the set PM.

Vz: The relation M F; V9 holds iff M k.4 ¥ holds for all a € A.

Jz: Dually, M & 329 holds ifft M &y, ., ¥ holds for some a € A.

The relation M E; =) holds iff it is not the case that M F; 1 holds.

The relation M E; ¥, V 15 holds iff M E; ¥, or M E; 1, holds.

The relation M E; 1 A 2 holds iff M E; ¥1 and M E; 12 hold.

The relation M F; ¥y — 15 holds iff M E; ¢, holds whenever M E; ¢; holds.

3
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Exercises

Let ¢ be the sentence Vz Vy 32 (R(z,y) — R(y, 2)), where R is a predicate sym-

bol of two arguments.

(a) Let A = {a,b,c,d} and RM = {(b, ¢), (b,b), (b,a)}. Do we have M E ¢? Jus-
tify your answer, whatever it is.

(b) Let A’ = {a,b,c} and RM = {(b,¢), (a,b), (¢,b)}. Do we have M’ E ¢? Jus-

tify your answer, whatever it is.
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Semantics: validity

@ 1s valid if for every intepretation and
for every environment

M |= @
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Properties
mSoundness I'-o =2 M /=@
m Completeness MI=¢g =T /- ¢

m Indecidability

m Compactness
Theorem 2.24 (Compactness Theorem) Let I' be a set of sentences of

predicate logic. If all finite subsets of I' are satisfiable, then so is I

m Expressivity
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Second order logic

m Existential second order logic
O 3P ¢

m Universal second order logic
m Peano’s arithmetics
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Specification, verification and

logics
[H-R ch.3]
Logic provides:

m A framework for modelling systems

m A specification language for describing properties
to be verified

m A verification method to ascertain whether the
description of the system satisfies the properties
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Possibilities of approaching
model verification

m Proof-based

-

[" is the description while
¢ Is the property to be
satisfied

m Degree of automation:
Fully automatic

m Full behaviour
m  Sequential
m Reactive

m A priori
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m Model based
M=

M is a finite model
(only one)

Manual

m One property
m Concurrent
m Terminating

m A posteriori
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We are possibly dealing with

m[|-0 proof theory
m[[=0 semantic entailment

m M= satifiability
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We are possibly dealing with
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We are possibly dealing with

m H—o

m H=0

m M=
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Model Checking

m Automatic

m Based on a builded
model

m Verifying satisfiability
of properties

m A posteriori

m Provides a

counterexample
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m Concurrent systems
m Reactive systems

m Temporal aspects
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A formula can change its truth
value
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We build a model A7

We model our system using the description language of the
model checker

We code the property to be verified in the same language
and the model checker should say whether A7 |= ¢ or not

Time could change the truth value of a formula

M,s |= ¢ or not for a given state s

In this last case it is often possible using the model checker
to have a counterexample
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Models and states

m A model A is an abstraction: it can describe very
different things and omits lot of particulars

m A model 2 is a transition system

m \Ve have states and and transitions between
them. An assignment statement can make the
model move from one state to another one

m \We can think of a transition system as a set S of
states together with a binary relation

=2 C SXS
] and a labeling function L: S — P(atoms)

l 26/03/18 24




A transition system |1

N
' S9
q,T
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A transition system 2
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Linear and branching time
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Exercises

Theorem 2.13 Let ¢ and v be formulas of predicate logic. Then we have
the following equivalences:

1. (a) °Vz¢ - 3x-¢
(b) =3z ¢ 4+ Yz —¢.

Provide proofs for the following sequents:
(a) Vz P(z) + Yy P(y); using Yz P(x) as a premise, your proof needs to end with

an application of Vi which requires the formula P(yg).
(b) Vo (P(z) — Q(z)) F (V2 -Q(z)) — (Vz ~P(z))
B (©) vz (P(z) = —Q(2)) - ~(3z (P(z) A Q(2)))-
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