Formal Methods in software development

1

a.y.2017/2018 Prof. Anna Labella

The predicate calculus [H-R ch.2]

The need for a richer languageTerms and formulas

quantifiers

Syntax

Inductive term definitionBNF

```
• t::= x | c | f(t_1, t_2, ..., t_n)
```


Syntax

Inductive definition of wff

BNF

$$\begin{split} \phi &::= p(t_1, t_2, \dots, t_n) \mid t_1 = t_2 \mid (\neg \phi) \mid (\phi \land \phi) \mid \\ (\phi \lor \phi) \mid (\phi \rightarrow \phi) \mid \forall x \phi \mid \exists x \phi \end{split}$$

Semantics

syntactical data

- F functional symbols- constants
- P predicate symbols

An interpretation \mathcal{M}

- a non empty set (domain) A
- $\mathcal{F} \rightarrow$ a set of functions $f^{\mathcal{M}}$ on A (Aⁿ)
 - $\mathcal{P} \rightarrow a \text{ set of relations } P^{\mathcal{M}} \text{ on } A(A^n)$

Semantics

A subset is the interpretation of a 1-ary predicate

A n-ary relation is the interpretation of a n-ary predicate

An example: arithmetics

```
syntactical data
𝑎: f<sub>1</sub>(-,-), f<sub>2</sub>(-,-), f<sub>0</sub>(-), c
𝑎: - = -, 𝒫<sub>1</sub>(-,-)
```

An interpretation \mathcal{M}

- Natural numbers (domain)
- Functions : + -, · -, s(-), 0
- Predicates: = -, ≤ -

Semantics

environments

Assigning values $l: var \rightarrow elements of A$

Semantics

Summing up, we are given with

- 1. A non-empty set A, the universe of concrete values;
- 2. for each nullary function symbol $f \in \mathcal{F}$, a concrete element $f^{\mathcal{M}}$ of A
- 3. for each $f \in \mathcal{F}$ with arity n > 0, a concrete function $f^{\mathcal{M}} \colon A^n \to A$ from A^n , the set of *n*-tuples over A, to A; and
- 4. for each $P \in \mathcal{P}$ with arity n > 0, a subset $P^{\mathcal{M}} \subseteq A^n$ of *n*-tuples over A.

An example: arithmetics 2

- $f_1(C,X)=X$ always true in the interpretation
- f₂(C,X)=X sometimes true sometimes false in the interpretation depending on the assignment
- $\forall x(f_1(c,x)=x)$ true in the interpretation
- **\exists x(f_2(c,x)=x)** true in the interpretation
- $\forall x(f_2(c,x)=x)$ false in the interpretation
- $\forall x(f_1(c,x)=f_1(c,x))$ valid

Semantics

An interpretation \mathcal{M}

is a model of ϕ \mathcal{M} $I=_{l} \phi$:

Semantics: satisfiability

- P: If ϕ is of the form $P(t_1, t_2, \ldots, t_n)$, then we interpret the terms t_1, t_2, \ldots, t_n in our set A by replacing all variables with their values according to l. In this way we compute concrete values a_1, a_2, \ldots, a_n of A for each of these terms, where we interpret any function symbol $f \in \mathcal{F}$ by $f^{\mathcal{M}}$. Now $\mathcal{M} \vDash_l P(t_1, t_2, \ldots, t_n)$ holds iff (a_1, a_2, \ldots, a_n) is in the set $P^{\mathcal{M}}$.
- $\forall x: \text{ The relation } \mathcal{M} \vDash_l \forall x \psi \text{ holds iff } \mathcal{M} \vDash_{l[x \mapsto a]} \psi \text{ holds for all } a \in A.$
- $\exists x: \text{ Dually, } \mathcal{M} \vDash_{l} \exists x \psi \text{ holds iff } \mathcal{M} \vDash_{l[x \mapsto a]} \psi \text{ holds for some } a \in A.$
 - \neg : The relation $\mathcal{M} \vDash_l \neg \psi$ holds iff it is not the case that $\mathcal{M} \vDash_l \psi$ holds.
- \lor : The relation $\mathcal{M} \vDash_{l} \psi_{1} \lor \psi_{2}$ holds iff $\mathcal{M} \vDash_{l} \psi_{1}$ or $\mathcal{M} \vDash_{l} \psi_{2}$ holds.
- $\wedge: \text{ The relation } \mathcal{M} \vDash_{l} \psi_{1} \land \psi_{2} \text{ holds iff } \mathcal{M} \vDash_{l} \psi_{1} \text{ and } \mathcal{M} \vDash_{l} \psi_{2} \text{ hold.}$
- \rightarrow : The relation $\mathcal{M} \vDash_{l} \psi_{1} \rightarrow \psi_{2}$ holds iff $\mathcal{M} \vDash_{l} \psi_{2}$ holds whenever $\mathcal{M} \vDash_{l} \psi_{1}$ holds.

Exercises

Let ϕ be the sentence $\forall x \forall y \exists z (R(x, y) \to R(y, z))$, where R is a predicate symbol of two arguments.

- (a) Let $A \stackrel{\text{def}}{=} \{a, b, c, d\}$ and $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(b, c), (b, b), (b, a)\}$. Do we have $\mathcal{M} \vDash \phi$? Justify your answer, whatever it is.
- (b) Let $A' \stackrel{\text{def}}{=} \{a, b, c\}$ and $R^{\mathcal{M}'} \stackrel{\text{def}}{=} \{(b, c), (a, b), (c, b)\}$. Do we have $\mathcal{M}' \vDash \phi$? Justify your answer, whatever it is.

26/03/18

Semantics: validity

 ϕ is valid if for every intepretation and for every environment

 $\mathcal{M} \models \varphi$

14

Properties

Soundness $\Gamma \vdash \phi \rightarrow \mathcal{M} \vdash \phi$

Completeness $\mathcal{M} \models \phi \rightarrow \Gamma \vdash \phi$

Indecidability

Compactness

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ .

Expressivity

Second order logic

Existential second order logic $\exists P \phi$

Universal second order logic

Peano's arithmetics

Specification, verification and logics [H-R ch.3] Logic provides:

- A framework for modelling systems
- A specification language for describing properties to be verified
- A verification method to ascertain whether the description of the system satisfies the properties

Possibilities of approaching model verification

Proof-based

Γ |-- φ

 Γ is the description while ϕ is the property to be satisfied

- Degree of automation: Fully automatic
- Full behaviour
- Sequential
- Reactive

Model based
 M |= φ
 M is a finite model (only one)

Manual

- One property
- Concurrent
- Terminating

A posteriori

We are possibly dealing with

- **\Gamma** |-- ϕ proof theory
- **\Gamma \mid = \phi** semantic entailment
- $\mathcal{M} \models \phi$ satifiability

■ Γ |= φ

M |= φ

We are possibly dealing with

- [|-- ()
- [|= φ
- *M* |= φ

Model Checking

- Automatic
- Based on a builded model
- Concurrent systems
- Reactive systems
- Verifying satisfiabilityof properties
 - Temporal aspects

- A posteriori
- Provides a counterexample

A formula can change its truth value

- $\blacksquare We build a model \mathcal{M}$
- We model our system using the description language of the model checker
- We code the property to be verified in the same language and the model checker should say whether $\mathcal{M} \models \varphi$ or not
- Time could change the truth value of a formula
- $\mathcal{M}, s \models \varphi$ or not for a given state s
- In this last case it is often possible using the model checker to have a counterexample

Models and states

- A model *M* is an abstraction: it can describe very different things and omits lot of particulars
- A model \mathcal{M} is a transition system
- We have states and and transitions between them. An assignment statement can make the model move from one state to another one
- We can think of a transition system as a set S of states together with a binary relation

 $\rightarrow \subseteq S \times S$

and a labeling function L: $S \rightarrow \mathcal{P}(atoms)$

A transition system 1

Linear and branching time

Exercises

Theorem 2.13 Let ϕ and ψ be formulas of predicate logic. Then we have the following equivalences:

1. (a) $\neg \forall x \phi \dashv \exists x \neg \phi$ (b) $\neg \exists x \phi \dashv \forall x \neg \phi$.

Provide proofs for the following sequents:

(a) $\forall x P(x) \vdash \forall y P(y)$; using $\forall x P(x)$ as a premise, your proof needs to end with an application of $\forall i$ which requires the formula $P(y_0)$.

(b)
$$\forall x (P(x) \to Q(x)) \vdash (\forall x \neg Q(x)) \to (\forall x \neg P(x)))$$

(c) $\forall x (P(x) \to \neg Q(x)) \vdash \neg (\exists x (P(x) \land Q(x))).$