Formal Methods in software development

a.y.2017/2018 Prof. Anna Labella

The need for a richer languageTerms and formulas

quantifiers

Examples

 Every student preparing his homework must be left alone

$$\forall x ((\phi(x) \land \psi(x)) \rightarrow \chi(x))$$

For every natural number there is number greater than it

$$\forall x (N(x) \rightarrow \exists y (N(y) \land G(y,x)))$$

 $\forall x \exists y G(y,x)$

There are people who do not like their dog $\exists x \neg \phi(x, d(x))_{22/03/18}$

Inductive term definitionBNF

•
$$t ::= x | c | f(t_1, t_2, ..., t_n)$$

Inductive definition of wff

BNF

$$\begin{split} \phi &:= p(t_1, t_2, \dots, t_n) \mid t_1 = t_2 \mid (\neg \phi) \mid (\phi \land \phi) \mid \\ (\phi \lor \phi) \mid (\phi \rightarrow \phi) \mid \forall x \phi \mid \exists x \phi \end{split}$$

One can always do without function symbols, using predicates and equality

•
$$f(x)=y$$
 is the same as
 $F(x,y) \land \forall z (F(x,z) \rightarrow y=z)$

Peano's arithmetics

Predicates: $- = -, - \leq -$ Functions : - + -, - · -, s(-),... Constants: 0

Exercises

Find appropriate predicates and their specification to translate the following into predicate logic:

- (a) All red things are in the box.
- (b) Only red things are in the box.
- (c) No animal is both a cat and a dog.
- (d) Every prize was won by a boy.
- (e) A boy won every prize.

Free and bounded variables

Open and closed formulas

Free and bounded variables

22/03/18

Natural deduction 1

A special predicate: equality

Natural deduction 2

Proof rules for equality

 $\overline{t=t}^{=i}$

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} = \mathbf{e}$$

Natural deduction 3

We can prove symmetry

 $t_1 = t_2 \vdash t_2 = t_1$

1 $t_1 = t_2$ premise 2 $t_1 = t_1$ =i 3 $t_2 = t_1$ =e 1, 2

Natural deduction 3

And also transitivity

$$t_1 = t_2, t_2 = t_3 \vdash t_1 = t_3$$

 $1 t_2 = t_3 ext{ premise}$
 $2 t_1 = t_2 ext{ premise}$
 $3 t_1 = t_3 ext{ = } 1, 2$

Exercises

Prove the validity of the following sequents using, among others, the rules =i and =e. Make sure that you indicate for each application of =e what the rule instances ϕ , t_1 and t_2 are. (a) $(y = 0) \land (y = x) \vdash 0 = x$

(b) $t_1 = t_2 \vdash (t + t_2) = (t + t_1)$ (c) $(x = 0) \lor ((x + x) > 0) \vdash (y = (x + x)) \rightarrow ((y > 0) \lor (y = (0 + x))).$

Proof rules for universal quantification

 $\frac{\forall x \, \phi}{\phi[t/x]} \, \forall x \, \mathbf{e}.$

where *t* is free for $x \text{ in } \phi$

22/03/18

where x_0 is a fresh variable

Proof rules for existential quantification

where *t* is free for $x \text{ in } \phi$

Examples of proofs

proof of the sequent $\forall x (P(x) \to Q(x)), \forall x P(x) \vdash \forall x Q(x)$:

1	$\forall x \left(P(x) \to Q(x) \right)$	$\mathbf{premise}$
2	$\forall x P(x)$	$\mathbf{premise}$
3	$x_0 P(x_0) \to Q(x_0)$	$\forall x \ge 1$
4	$P(x_0)$	$\forall x \ge 2$
5	$Q(x_0)$	$\rightarrow e \ 3,4$
6	$\forall x Q(x)$	$\forall x \mathrm{i} 3-5$

where x_0 is a fresh variable

 $egin{aligned} P(t), \ orall x \left(P(x)
ightarrow
egg Q(x)
ight) &dash \
egg premise \ &dash \ &dash x \left(P(x)
ightarrow
egg Q(x)
ight) &dash x e 2 \ &dash \ &dash Q(t) &dash \ &dash x e 3, 1 \end{aligned}$

Exercises

(a) Find a (propositional) proof for φ → (q₁ ∧ q₂) ⊢ (φ → q₁) ∧ (φ → q₂).
(b) Find a (predicate) proof for φ → ∀x Q(x) ⊢ ∀x (φ → Q(x)), provided that x is not free in φ.

(Hint: whenever you used \land rules in the (propositional) proof of the previous item, use \forall rules in the (predicate) proof.)

- (c) Find a proof for $\forall x (P(x) \to Q(x)) \models \forall x P(x) \to \forall x Q(x).$
 - (Hint: try $(p_1 \rightarrow q_1) \land (p_2 \rightarrow q_2) \vdash p_1 \land p_2 \rightarrow q_1 \land q_2$ first.)

Exercises

Consider the following boolean formulas. Compute their unique reduced OBDDs with respect to the ordering [x, y, z]. It is advisable to first compute a binary decision tree and then to perform the removal of redundancies.

(a)
$$f(x, y) \stackrel{\text{def}}{=} x \cdot y$$

(b) $f(x, y) \stackrel{\text{def}}{=} x + y$
(c) $f(x, y) \stackrel{\text{def}}{=} x \oplus y$
(d) $f(x, y, z) \stackrel{\text{def}}{=} (x \oplus y) \cdot (\overline{x} + z)$

Given the boolean formula $f(x_1, x_2, x_3) \stackrel{\text{def}}{=} x_1 \cdot (x_2 + \overline{x_3})$, compute its reduced OBDD for the following orderings:

- (a) $[x_1, x_2, x_3]$
- (b) $[x_3, x_1, x_2]$
- (c) $[x_3, x_2, x_1].$