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OBDD  [H-R chap.6] 

Representing boolean functions 

A formula can be represented by a boolean function, 
where its variables are boolean variables, as in circuits.
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OBDD  [H-R cap.6] 
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Exercises 
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Binary decision trees 
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Exercises 
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Exercises 
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BDD 

Removal of duplicated terminals

Removal of redundant tests

(they are nomore trees)
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BDD 

Removal of duplicated non terminals
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BDD 

n Eliminate duplicated terminals 
 
n Eliminate redundant tests 

n Eliminate duplicated non terminals 
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BDD: how do we introduce 
operations? Composing BDD 

n constants 
 
n variables 
 

☐1
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BDD: sums and products 
n We can substitute terminals by non 

terminals and compose functions 
e.g.  
n  In the conjunction we substitute 1 by the 

BDD of the other function 
n  In the disjunction we substitute 0 by the 

BDD of the other function 
n  In the negation we swap 1 and 0 
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Exercises 

Let f  be represented by

describe
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BDD 

n Satisfiability: to reach 1 via a coherent 
path 

 
n Validity: it is not possible to reach 0 via 

a coherent path 
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OBDD: ordered binary decision 
diagrams 

Equivalence?
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OBDD 

Normal form:  order and then reduce

Theorem. We have a unique result 

Hence there is a canonical form
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OBDD 
An example: the parity function on 4 variables

Repeated variables
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OBDD 

order without repetitions
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OBDD 
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OBDD 
•  Composition is nomore directly allowed
 
But we have:
•  Absence of redundant variables
•  Test for semantic equivalence with a compatible ordering
•  Test for validity (reducibility to B1)
•  Test for satisfiability (non reducibility to B0)
•  Test for implication (reducibility of f. g to B0)
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Exercises 
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OBDD: the algorithm reduce 
It identifies equal nodes going bottom up
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OBDD: the algorithm reduce 
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OBDD: the algorithm apply 
It exploits operations acting on (op, Bf, Bg)
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OBDD: the algorithm apply 

ƒ = x ƒ[0/x] + x ƒ[1/x] 

In general form

ƒ op g = xi ( ƒ[0/xi] op g[0/xi]) + xi ( ƒ[1/xi] op g[1/xi])

Shannon expansion theorem

This provides a recursive call structure



OBDD: the algorithm apply 
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OBDD: the algorithm apply 
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OBDD: the control structure for 
the algorithm apply 
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OBDD: the algorithm apply 
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OBDD: the algorithm restrict 

Given  f, restrict(0, x, Bf) computes the reduced 
OBDD corresponding to  f[0/x] 

Analogously, restrict(0, x, Bf) computes the 
reduced OBDD corresponding to  to  f[1/x]

restrict(0, x, Bf) works as follows:            For each node n labeled
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OBDD: restrict exercise 
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OBDD: the algorithm exists 

 ∃ f   =    f[0/x] +   f[1/x]

∀  f   =    f[0/x] .   f[1/x]
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OBDD: the algorithm exists 
exercise 
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OBDD: the algorithm exists 
exercise 
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Complexity 
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Exercises 
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