
22/03/18 1

a.y.2017/2018
Prof. Anna Labella

Formal Methods in software development

22/03/18 2

OBDD [H-R chap.6]

Representing boolean functions

A formula can be represented by a boolean function,
where its variables are boolean variables, as in circuits.

22/03/18 3

OBDD [H-R cap.6]

22/03/18 4

Exercises

22/03/18 5

Binary decision trees

22/03/18 6

Exercises

22/03/18 7

Exercises

22/03/18 8

BDD

Removal of duplicated terminals

Removal of redundant tests

(they are nomore trees)

22/03/18 9

BDD

Removal of duplicated non terminals

22/03/18 10

BDD

n Eliminate duplicated terminals

n Eliminate redundant tests

n Eliminate duplicated non terminals

22/03/18 11

BDD: how do we introduce
operations? Composing BDD

n constants

n variables

☐1

22/03/18 12

BDD: sums and products
n We can substitute terminals by non

terminals and compose functions
e.g.
n  In the conjunction we substitute 1 by the

BDD of the other function
n  In the disjunction we substitute 0 by the

BDD of the other function
n  In the negation we swap 1 and 0

22/03/18 13

Exercises

Let f be represented by

describe

22/03/18 14

BDD

n Satisfiability: to reach 1 via a coherent
path

n Validity: it is not possible to reach 0 via

a coherent path

22/03/18 15

OBDD: ordered binary decision
diagrams

Equivalence?

22/03/18 16

OBDD

Normal form: order and then reduce

Theorem. We have a unique result

Hence there is a canonical form

22/03/18 17

OBDD
An example: the parity function on 4 variables

Repeated variables

22/03/18 18

OBDD

order without repetitions

22/03/18 19

OBDD

22/03/18 20

OBDD
•  Composition is nomore directly allowed

But we have:
•  Absence of redundant variables
•  Test for semantic equivalence with a compatible ordering
•  Test for validity (reducibility to B1)
•  Test for satisfiability (non reducibility to B0)
•  Test for implication (reducibility of f. g to B0)

22/03/18 21

Exercises

22/03/18 22

OBDD: the algorithm reduce
It identifies equal nodes going bottom up

22/03/18 23

OBDD: the algorithm reduce

22/03/18 24

OBDD: the algorithm apply
It exploits operations acting on (op, Bf, Bg)

22/03/18 25

OBDD: the algorithm apply

ƒ = x ƒ[0/x] + x ƒ[1/x]

In general form

ƒ op g = xi (ƒ[0/xi] op g[0/xi]) + xi (ƒ[1/xi] op g[1/xi])

Shannon expansion theorem

This provides a recursive call structure

OBDD: the algorithm apply

22/03/18 26

22/03/18 27

OBDD: the algorithm apply

22/03/18 28

OBDD: the control structure for
the algorithm apply

22/03/18 29

OBDD: the algorithm apply

22/03/18 30

OBDD: the algorithm restrict

Given f, restrict(0, x, Bf) computes the reduced
OBDD corresponding to f[0/x]

Analogously, restrict(0, x, Bf) computes the
reduced OBDD corresponding to to f[1/x]

restrict(0, x, Bf) works as follows: For each node n labeled

22/03/18 31

OBDD: restrict exercise

22/03/18 32

OBDD: the algorithm exists

 ∃ f = f[0/x] + f[1/x]

∀ f = f[0/x] . f[1/x]

22/03/18 33

OBDD: the algorithm exists
exercise

22/03/18 34

OBDD: the algorithm exists
exercise

22/03/18 35

Complexity

22/03/18 36

22/03/18 37

Exercises

22/03/18 38

