Formal Methods in software development

a.y.2017/2018 Prof. Anna Labella

OBDD [H-R chap.6]

Representing boolean functions

A formula can be represented by a boolean function, where its variables are boolean variables, as in circuits.

Definition 6.1 A boolean variable x is a variable ranging over the values 0 and 1. We write x_1, x_2, \ldots and x, y, z, \ldots to denote boolean variables. We define the following functions on the set $\{0, 1\}$:

- $\overline{0} \stackrel{\text{\tiny def}}{=} 1$ and $\overline{1} \stackrel{\text{\tiny def}}{=} 0$;
- $x \cdot y \stackrel{\text{def}}{=} 1$ if x and y have value 1; otherwise $x \cdot y \stackrel{\text{def}}{=} 0$;
- $x + y \stackrel{\text{\tiny def}}{=} 0$ if x and y have value 0; otherwise $x + y \stackrel{\text{\tiny def}}{=} 1$;
- $x \oplus y \stackrel{\text{\tiny def}}{=} 1$ if exactly one of x and y equals 1.

Representation of	test for		boolean operations			
boolean functions	compact?	satisf'ty	validity		+	-
Prop. formulas	often	hard	hard	easy	easy	easy
Formulas in DNF	sometimes	easy	hard	hard	easy	hard
Formulas in CNF	sometimes	hard	easy	easy	hard	hard
Ordered truth tables	never	hard	hard	hard	hard	hard
Reduced OBDDs	often	easy	easy	medium	medium	easy

Exercises

Write down the truth tables for the boolean formulas

(1)
$$f(x,y) \stackrel{\text{def}}{=} x \cdot (y + \overline{x})$$

(2) $g(x,y) \stackrel{\text{def}}{=} x \cdot y + (1 \oplus \overline{x})$
(3) $h(x,y,z) \stackrel{\text{def}}{=} x + y \cdot (x \oplus \overline{y})$
(4) $k() \stackrel{\text{def}}{=} 1 \oplus (0 \cdot \overline{1}).$

22/03/18

Binary decision trees

$$f(x, y) \stackrel{\text{def}}{=} \overline{x + y}.$$

5

Exercises

Consider the following truth table:

р	q	\boldsymbol{r}	φ
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	Т
F	F	F	F

Write down a binary decision tree which represents the boolean function specified in this truth table.

Exercises

Consider the following boolean function given by its truth table:

\boldsymbol{x}	y	z	f(x,y,z)
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	1

- (a) Construct a binary decision tree for f(x, y, z) such that the root is an x-node followed by y- and then z-nodes.
- (b) Construct another binary decision tree for f(x, y, z), but now let its root be a z-node followed by y- and then x-nodes.

Removal of duplicated terminals

Removal of redundant tests

(they are nomore trees)

22/03/18

Removal of duplicated non terminals

Eliminate duplicated terminals

Eliminate redundant tests

Eliminate duplicated non terminals

BDD: how do we introduce operations? Composing BDD

|1|

constants

variables

BDD: sums and products

We can substitute terminals by non terminals and compose functions

e.g.

- In the conjunction we substitute 1 by the BDD of the other function
- In the disjunction we substitute 0 by the BDD of the other function
- In the negation we swap 1 and 0

Exercises

Let f be represented by

describe

(a) $f \cdot x$ (b) x + f(c) $\overline{f \cdot 0}$ (d) $f \cdot 1$.

- Satisfiability: to reach 1 via a coherent path
- Validity: it is not possible to reach 0 via a coherent path

OBDD: ordered binary decision diagrams Equivalence?

Normal form: order and then reduce

Theorem. We have a unique result

Hence there is a canonical form

An example: the parity function on 4 variables

22/03/18

Repeated variables

Figure 6.12. The OBDD for $(x_1 + x_2) \cdot (x_3 + x_4) \cdot (x_5 + x_6)$ with variable ordering $[x_1, x_2, x_3, x_4, x_5, x_6]$.

22/03/18

order without repetitions

Figure 6.13. Changing the ordering may have dramatic effects on the size of an OBDD: the OBDD for $(x_1 + x_2) \cdot (x_3 + x_4) \cdot (x_5 + x_6)$ with 22/03/18 variable ordering $[x_1, x_3, x_5, x_2, x_4, x_6]$.

• Composition is nomore directly allowed

But we have:

- Absence of redundant variables
- Test for semantic equivalence with a compatible ordering
- Test for validity (reducibility to B₁)
- Test for satisfiability (non reducibility to B_0)
- Test for implication (reducibility of $f \underline{g}$ to B_0)

Exercises

Given the truth table

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	f(x,y,z)
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	1

compute the reduced OBDD with respect to the following ordering of variables:

(a) [x, y, z](b) [z, y, x](c) [y, z, x](d) [x, z, y].

OBDD: the algorithm reduce

It identifies equal nodes going bottom up

- If the label id(lo(n)) is the same as id(hi(n)), then we set id(n) to be that label. That is because the boolean function represented at n is the same function as the one represented at lo(n) and hi(n). In other words, node n performs a redundant test and can be eliminated by reduction C2.
- If there is another node m such that n and m have the same variable x_i , and id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), then we set id(n) to be id(m). This is because the nodes n and m compute the same boolean function (compare with reduction C3).
- Otherwise, we set id(n) to the next unused integer label.

OBDD: the algorithm reduce

Figure 6.14. An example execution of the algorithm reduce. 22/03/18

It exploits operations acting on (op, B_f, B_g)

The intuition behind the **apply** algorithm is fairly simple. The algorithm operates recursively on the structure of the two OBDDs:

- 1. let v be the variable highest in the ordering (=leftmost in the list) which occurs in B_f or B_g .
- 2. split the problem into two subproblems for v being 0 and v being 1 and solve recursively;
- 3. at the leaves, apply the boolean operation op directly.

Shannon expansion theorem

 $f \equiv \underline{\mathbf{x}} f[0/\mathbf{x}] + \mathbf{x} f[1/\mathbf{x}]$

In general form

 $f \ op \ g = \underline{\mathbf{x}}_i \ (f[0/\mathbf{x}_i] \ op \ g[0/\mathbf{x}_i]) + \mathbf{x}_i \ (f[1/\mathbf{x}_i] \ op \ g[1/\mathbf{x}_i])$

This provides a recursive call structure

- 1. If both r_f and r_g are terminal nodes with labels l_f and l_g , respectively (recall that terminal labels are either 0 or 1), then we compute the value l_f op l_g and let the resulting OBDD be B_0 if that value is 0 and B_1 otherwise.
- 2. In the remaining cases, at least one of the root nodes is a non-terminal. Suppose that both root nodes are x_i-nodes. Then we create an x_i-node n with a dashed line to apply (op, lo(r_f), lo(r_g)) and a solid line to apply (op, hi(r_f), hi(r_g)), i.e. we call apply recursively on the basis of (6.2).
- 3. If r_f is an x_i -node, but r_g is a terminal node or an x_j -node with j > i, then we know that there is no x_i -node in B_g because the two OBDDs have a compatible ordering of boolean variables. Thus, g is independent of x_i $(g \equiv g[0/x_i] \equiv g[1/x_i])$. Therefore, we create an x_i -node n with a dashed line to apply $(op, lo(r_f), r_g)$ and a solid line to apply $(op, hi(r_f), r_g)$.
- The case in which r_g is a non-terminal, but r_f is a terminal or an x_j-node with j > i, is handled symmetrically to case 3.

Figure 6.15. An example of two arguments for a call apply $(+, B_f, B_g)$

Figure 6.16. The recursive call structure of apply for the example 22/03/18

Figure 6.17. The result of apply $(+, B_f, B_g)$, where B_f and B_g are given in Figure 6.15.

OBDD: the algorithm restrict

Given f, restrict $(0, x, B_f)$ computes the reduced OBDD corresponding to f[0/x]

Analogously, restrict $(0, x, B_f)$ computes the reduced OBDD corresponding to to f[1/x]

 $restrict(0, x, B_f)$ works as follows: For each node *n* labeled

with x, incoming edges are redirected to lo(n) and n is removed. Then we call reduce on the resulting OBDD. The call restrict $(1, x, B_f)$ proceeds similarly, only we now redirect incoming edges to hi(n).

OBDD: restrict exercise

Let f be the reduced OBDD represented in Figure 6.5(b) (page 364). Compute the reduced OBDD for the restrictions:

(a) f[0/x]

(b) f[1/x]

(c) f[1/y]

(d) f[0/z].

OBDD: the algorithm exists

 $\mathbf{\mathcal{A}}f = f[0/x] + f[1/x]$

apply $(+, restrict(0, x, B_f), restrict(1, x, B_f))$

 $\forall f = f[0|x] \cdot f[1|x]$

apply (•, restrict $(0, x, B_f)$, restrict $(1, x, B_f)$)

OBDD: the algorithm exists exercise

Figure 6.19. A BDD B_f to illustrate the exists algorithm.

OBDD: the algorithm exists

Figure 6.20. restrict $(0, x_3, B_f)$ and restrict $(1, x_3, B_f)$ and the result of applying + to them.

$\begin{array}{cccc} 0 & B_0 \ ({\rm Fig.} \ 6.6) \\ 1 & B_1 \ ({\rm Fig.} \ 6.6) \\ x & B_x \ ({\rm Fig.} \ 6.6) \\ \hline f & {\rm swap \ the \ 0- \ and \ 1-nodes \ in \ B_f} \\ f + g & {\rm apply} \ (+, B_f, B_g) \\ f + g & {\rm apply} \ (\cdot, B_f, B_g) \\ f \oplus g & {\rm apply} \ (\oplus, B_f, B_g) \\ f[1/x] & {\rm restrict} \ (1, x, B_f) \\ f[0/x] & {\rm restrict} \ (0, x, B_f) \\ \hline \exists x.f & {\rm apply} \ (+, B_{f[0/x]}, B_{f[1/x]}) \\ \forall x.f & {\rm apply} \ (\cdot, B_{f[0/x]}, B_{f[1/x]}) \\ \end{array}$	Boolean formula \boldsymbol{f}	Representing OBDD B_f
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0	B_0 (Fig. 6.6)
$\begin{array}{lll} x & B_x \text{ (Fig. 6.6)} \\ \hline f & \text{swap the 0- and 1-nodes in } B_f \\ f+g & \text{apply } (+, B_f, B_g) \\ f \cdot g & \text{apply } (\cdot, B_f, B_g) \\ f \oplus g & \text{apply } (\oplus, B_f, B_g) \\ f[1/x] & \text{restrict } (1, x, B_f) \\ f[0/x] & \text{restrict } (0, x, B_f) \\ \exists x.f & \text{apply } (+, B_{f[0/x]}, B_{f[1/x]}) \\ \forall x.f & \text{apply } (\cdot, B_{f[0/x]}, B_{f[1/x]}) \end{array}$	1	B_1 (Fig. 6.6)
\overline{f} swap the 0- and 1-nodes in B_f $f + g$ apply $(+, B_f, B_g)$ $f \circ g$ apply (\cdot, B_f, B_g) $f \oplus g$ apply (\oplus, B_f, B_g) $f[1/x]$ restrict $(1, x, B_f)$ $f[0/x]$ restrict $(0, x, B_f)$ $\exists x.f$ apply $(+, B_{f[0/x]}, B_{f[1/x]})$ $\forall x.f$ apply $(\cdot, B_{f[0/x]}, B_{f[1/x]})$	x	B_x (Fig. 6.6)
$\begin{array}{lll} f+g & \operatorname{apply}(+,B_f,B_g) \\ f \cdot g & \operatorname{apply}(\cdot,B_f,B_g) \\ f \oplus g & \operatorname{apply}(\oplus,B_f,B_g) \\ f[1/x] & \operatorname{restrict}(1,x,B_f) \\ f[0/x] & \operatorname{restrict}(0,x,B_f) \\ \exists x.f & \operatorname{apply}(+,B_{f[0/x]},B_{f[1/x]}) \\ \forall x.f & \operatorname{apply}(\cdot,B_{f[0/x]},B_{f[1/x]}) \end{array}$	\overline{f}	swap the 0- and 1-nodes in ${\cal B}_f$
$\begin{array}{ll} f \cdot g & \text{apply} (\cdot, B_f, B_g) \\ f \oplus g & \text{apply} (\oplus, B_f, B_g) \\ f[1/x] & \text{restrict} (1, x, B_f) \\ f[0/x] & \text{restrict} (0, x, B_f) \\ \exists x.f & \text{apply} (+, B_{f[0/x]}, B_{f[1/x]}) \\ \forall x.f & \text{apply} (\cdot, B_{f[0/x]}, B_{f[1/x]}) \end{array}$	f + g	$\texttt{apply}\;(+,B_f,B_g)$
$ \begin{array}{ll} f \oplus g & \text{apply} (\oplus, B_f, B_g) \\ f[1/x] & \text{restrict} (1, x, B_f) \\ f[0/x] & \text{restrict} (0, x, B_f) \\ \exists x.f & \text{apply} (+, B_{f[0/x]}, B_{f[1/x]}) \\ \forall x.f & \text{apply} (\cdot, B_{f[0/x]}, B_{f[1/x]}) \end{array} $	$f\cdot g$	$\texttt{apply}\;(\cdot,B_f,B_g)$
$ \begin{array}{ll} f[1/x] & \operatorname{restrict} (1, x, B_f) \\ f[0/x] & \operatorname{restrict} (0, x, B_f) \\ \exists x.f & \operatorname{apply} (+, B_{f[0/x]}, B_{f[1/x]}) \\ \forall x.f & \operatorname{apply} (\cdot, B_{f[0/x]}, B_{f[1/x]}) \end{array} $	$f\oplus g$	$\texttt{apply}\;(\oplus,B_f,B_g)$
$ \begin{array}{ll} f[0/x] & \texttt{restrict} (0, x, B_f) \\ \exists x.f & \texttt{apply} (+, B_{f[0/x]}, B_{f[1/x]}) \\ \forall x.f & \texttt{apply} (\cdot, B_{f[0/x]}, B_{f[1/x]}) \end{array} $	f[1/x]	$\texttt{restrict}\;(1,x,B_f)$
$ \begin{array}{ll} \exists x.f & \texttt{apply} (+, B_{f[0/x]}, B_{f[1/x]}) \\ \forall x.f & \texttt{apply} (\cdot, B_{f[0/x]}, B_{f[1/x]}) \end{array} \end{array} $	f[0/x]	$\texttt{restrict}\;(0,x,B_f)$
$\forall x.f$ apply $(\cdot, B_{f[0/x]}, B_{f[1/x]})$	$\exists x.f$	apply $(+, B_{f[0/x]}, B_{f[1/x]})$
	orall x.f	$\texttt{apply}\;(\cdot,B_{f[0/x]},B_{f[1/x]})$

Complexity

Algorithm	Input OBDD(s)	Output OBDD	Time-complexity
reduce	В	reduced B	$O(B \cdot \log B)$
apply	$B_f, B_g \text{ (reduced)}$	$B_{f \text{ op } g}$ (reduced)	$O(B_f \cdot B_g)$
restrict	B_f (reduced)	$B_{f[0/x]}$ or $B_{f[1/x]}$ (reduced)	$O(B_f \cdot \log B_f)$
Э	B_f (reduced)	$B_{\exists x_1. \exists x_2 \exists x_n. f}$ (reduced)	NP-complete

Exercises

- 9. Compute CNF (NNF (IMPL_FREE $\neg(p \rightarrow (\neg(q \land (\neg p \rightarrow q))))))$.
- 10. Use structural induction on the grammar of formulas in CNF to show that the 'otherwise' case in calls to DISTR applies iff both η_1 and η_2 are of type D in (1.6) on page 55.
- 11. Use mathematical induction on the height of ϕ to show that the call CNF (NNF (IMPL_FREE ϕ)) returns, up to associativity, ϕ if the latter is already in CNF.
- 12. Why do the functions CNF and DISTR preserve NNF and why is this important?
- 13. For the call CNF (NNF (IMPL_FREE (ϕ))) on a formula ϕ of propositional logic, explain why
 - (a) its output is always a formula in CNF
 - (b) its output is semantically equivalent to ϕ
 - (c) that call always terminates.

* (b)

7. Construct a formula in CNF based on each of the following truth tables: * (a)

1)	q	9	ϕ_1
1	· 1	Т		F
I	7	Т		F
1	1	F		F
I	7	F 1		Т
		I		
p	q	1	•	ϕ_2
Т	Т]		Т
Т	Т	F	7	F
Т	F	1		F
F	Т	1		Т
Т	F	F	7	F
F	Т	F	7	F
F	F	1		Т
F	F	F	7	F