Formal Methods 1n software development

a.y.2017/2018
Prof. Anna Labella

22/03/18 1



OBDD |[H-R chap.6]

Representing boolean functions

A formula can be represented by a boolean function,
where its variables are boolean variables, as in circuits.

0 and 1. We write x1,xz9,... and x,v, z, ... to denote boolean variables. We
define the following functions on the set {0,1}:

e 0=Z1and 1= 0:

e 2.y =1if z and y have value 1; otherwise z - y = 0;

e 4y =0 if 2 and y have value 0; otherwise = +y = 1;
e 2@y =1 if exactly one of z and y equals 1.

22/03/18 2

' Definition 6.1 A boolean variable x is a variable ranging over the values



OBDD |H-R cap.6]

Representation of test for boolean operations

boolean functions compact? satisf'ty  validity - +

Prop. formulas often hard hard easy easy easy
Formulas in DNF sometimes  easy hard hard easy hard
Formulas in CNF sometimes  hard easy easy hard hard

Ordered truth tables never hard hard hard hard hard
Reduced OBDDs often easy easy medium  medium = easy

22/03/18 3




Exercises

Write down the truth tables for the boolean formulas

(1) f@.y) =z (y+7)

(2) g(x,y)"=°‘;r‘-y+(1@f)
(3) h(z,y,2) =z +y-(z&7)
4) K)=1a(0-1).

N
l 22/03/18



Binary decision trees

N
l 22/03/18



Exercises

2. Consider the following truth table:

e Bes e e IIL LS B B | =
e B L IS B B LS B | O
o2 B B B B L BRc B | B
e B e I Be s B Be s B | = 5

Write down a binary decision tree which represents the boolean function specified
- in this truth table.

22/03/18 6




Exercises

Consider the following boolean function given by its truth table:

r y z|flzyz2)
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
01 0 0
0 0 1 0
00 0 1

(a) Construct a binary decision tree for f(z,y, z) such that the root is an r-node
followed by y- and then z-nodes.

(b) Construct another binary decision tree for f(x,y,z), but now let its root be
a z-node followed by y- and then r-nodes.

22/03/18 7




MR ENE pE

BDD

22/03/18

Removal of duplicated terminals
Removal of redundant tests

(they are nomore trees)




Removal of duplicated non terminals

l 22/03/18 9



-
-

m Eliminate duplicated terminals

®m Eliminate redundant tests

m Eliminate duplicated non terminals

22/03/18

10



WA mm

BDD: how do we introduce
operations? Composing BDD

m constants

m variables

22/03/18

1]

11



BDD: sums and products

m We can substitute terminals by non
terminals and compose functions

e.g.

i

m In the conjunction we substitute 1 by the
I BDD of the other function
N

m In the disjunction we substitute O by the
BDD of the other function

m In the negation we swap 1 and O

22/03/18 12



Exercises

Let f be represented by Q
A
describe ((;3 ; f
(c) £-0

(d) f-1

l 22/03/18 13



-
-

m Satisfiability: to reach 1 via a coherent
path

m Validity: it is not possible to reach O via
a coherent path

22/03/18

14



M REE pE

OBDD: ordered binary decision
diagrams

Equivalence?

22/03/18

15



-
=

OBDD

Normal form: order and then reduce

Theorem. We have a unique result

Hence there 1s a canonical form

22/03/18

16



M REE pE

OBDD

An example: the parity function on 4 variables

22/03/18 :
Repeated variables

17



OBDD

0 1

Figure 6.12. The OBDD for (zy + x2) - (23 + z4) - (5 + Tg) with van-
able ordering [z, T2, T3, T4, T, Tg).

22/03/18 : .. 18
order without repetitions




OBDD

Figure 6.13. Changing the ordering may have dramatic effects on the
size of an OBDD: the OBDD for (ry + x3) - (z3 + T4) - (x5 + Tg) with
22/03/18 variable ordering |z, x3, Ts, T2, T4, T6).

19



OBDD

e Composition is nomore directly allowed

I But we have:
- * Absence of redundant variables
* Test for semantic equivalence with a compatible ordering
* Test for validity (reducibility to B,)
 Test for satisfiability (non reducibility to B)
* Test for implication (reducibility of f g to B)
N

22/03/18 20



Exercises

Given the truth table

(a) z,Y,2
g O v
() .2,z

(d) |z, 2,y].

22/03/18

z y 2| flz,y,2)
1 11 0
1 10 1
1 0 1 1
1 0 0 0
0 1 1 0
01 0 1
0 0 1 0
00 0 1

compute the reduced OBDD with respect to the following ordering of variables:

21



OBDD: the algorithm reduce

It identifies equal nodes going bottom up

If the label id(lo(n)) is the same as id(hi(n)), then we set id(n) to be that label.
That is because the boolean function represented at n is the same function as the
one represented at lo(n) and hi(n). In other words, node n performs a redundant
test and can be eliminated by reduction C2.

If there is another node m such that n and m have the same variable z;, and
id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), then we set id(n) to be id(m).
This is because the nodes n and m compute the same boolean function (compare
with reduction C3).

Otherwise, we set id(n) to the next unused integer label.

22/03/18 22




OBDD: the algorithm reduce

golo | #1|1]| %o o #1 |1 40 o] #1 |1

Figure 6.14. An example execution of the algorithim reduce.
22/03/18 23

]
=



OBDD: the algorithm apply

It exploits operations acting on (op, B¢, B)

The intuition behind the apply algorithm is fairly simple. The algorithm
operates recursively on the structure of the two OBDDs:

1. let v be the variable highest in the ordering (=leftmost in the list) which occurs
in By or B,.

2. split the problem into two subproblems for v being 0 and v being 1 and solve
recursively;

3. at the leaves, apply the boolean operation op directly.

22/03/18 24




-
=

OBDD: the algorithm apply

Shannon expansion theorem

f=x fIOX] +x f1/x]

In general form

fopg=x% (fl0/x] op glO/x;]) + x; ( f[1/x;] op g[1/X;])

This provides a recursive call structure

22/03/18 25



OBDD: the algorithm apply

If both r; and r, are terminal nodes with labels [; and [, respectively (recall
that terminal labels are either 0 or 1), then we compute the value lfopl, and
let the resulting OBDD be B, if that value is 0 and B, otherwise.

In the remaining cases, at least one of the root nodes is a non-terminal. Suppose
that both root nodes are z;-nodes. Then we create an z;-node n with a dashed
line to apply (op, lo(r¢),lo(r,)) and a solid line to apply (op, hi(ry), hi(ry)), i.e.
we call apply recursively on the basis of (6.2).

If rf is an 2;-node, but ry is a terminal node or an zj-node with j > 1,
then we know that there is no z;-node in B, because the two OBDDs have
a compatible ordering of boolean variables. Thus, g is independent of z;
(g = g[0/2z;] = g[1/z;]). Therefore, we create an z;-node n with a dashed line
to apply (op,lo(rf),ry) and a solid line to apply (op, hi(ry),rg).

. The case in which r, is a non-terminal, but r; is a terminal or an z;-node with
j > i, is handled symmetrically to case 3.

22/03/18 26



Figure 6.15. An examnple of two arguments for a call apply (+, By, B,)

22/03/18 27



(Ra, Sa) (Rs, Sa)
(R4, S3) (Rs, S3) (R4 Ss) (Rs, Ss)
(Rs, Sa4) (Re, Ss) (1?4,53) (Re,Ss) (Rs,Ss) (Re,Ss)

|
l l
’
’ '
’ . |
4
’

’

4
s
4

s

(R51 Sd)
Fiaure 6.16.
22/03/18

(RG,Ss) (RGaS4) (RGaSS)

The recursive call structure of apply for the example

28



OBDD: the algorithm apply

Figure 6.17. The result of apply (+, By, By ), where By and B, are given
22/03/18 in Fiqure 6.15. 29



OBDD: the algorithm restrict

Given f, restrict(0,x, By computes the reduced
OBDD corresponding to f[0/x]

Analogously, restrict(0, x, B;) computes the
reduced OBDD corresponding to to f[1/x]

restrict(0, x, B) works as follows: For each node n labeled

with z, incoming edges are redirected to lo(n) and n is removed. Then we
call reduce on the resulting OBDD. The call restrict (1, z, By) proceeds
- similarly, only we now redirect incoming edges to hi(n).

l 22/03/18 30



OBDD: restrict exercise

Let f be the reduced OBDD represented in Figure 6.5(b) (page 364). Compu
the reduced OBDD for the restrictions:

(a) f[0/a]

(b) f[1/a]

(c) f[1/y]
(d) £l0/=].

y i
l 22/03/18 31



M REE pE

OBDD: the algorithm exists

df = flO/x] + f[1/x]

apply (+,restrict (0, r, By), restrict (1, z, By))

V f = flO/x]. f[1/x]
apply ( » ,restrict (0, r, By),restrict (1, z, By))

22/03/18

32



M PENE nE

OBDD: the algorithm exists
€XErcise

Figure 6.19. A BDD B; to illustrate the exists algorithm.

22/03/18

33



OBDD: the algorithm exists

Figure 6.20. restrict(0,z3, By) and restrict(1, z3, By) and the result
2 of applying + to them.

l 22/03/18 34



=

Boolean formula f

Representing OBDD By

22/03/18

By (Fig. 6.6)

B, (Fig. 6.6)

B, (Fig. 6.6)

swap the 0- and 1-nodes in By
apply (+, By, By)

apply (-, By, By)

apply (6, By, By)
restrict (1,z, By)
restrict (0, z, By)
apply (+, Byio/a), Bi1/))
apply (-, Bfjo/z], B[1/z])

35



Input OBDD(s)

Output OBDD

Time-complexity

restrict

3

N
l 22/03/18

Complexity
Algorithm
reduce
apply

B

By, By (reduced)
By (reduced)

By (reduced)

reduced B
Bf op g (reduced)

Byio/q] or By1/5) (reduced)

B3z, 325...32,,.f (reduced)

O(|B| - log|B|)
O(|By| - | Byl)
O(|By| - log|By|)
NP-complete

36



Exercises

9. Compute CNF (NNF (IMPL_FREE —~(p — (—(g A (—p—q))))))-

10. Use structural induction on the grammar of formulas in CNF to show that the

‘otherwise’ case in calls to DISTR applies iff both 771 and 72 are of type D in (1.6)

on page 55.

11. Use mathematical induction on the height of ¢ to show that the call

CNF (NNF (IMPL_FREE ¢)) returns, up to associativity, ¢ if the latter is already

in CNF.

12. Why do the functions CNF and DISTR preserve NNF and why is this important?

13. For the call CNF (NNF (IMPL_FREE (¢))) on a formula ¢ of propositional logic,
explain why

(a) its output is always a formula in CNF

(b) its output is semantically equivalent to ¢

- (c) that call always terminates.

22/03/18 37




7. Construct a formula in CNF based on each of the following truth tables:

* (a)
¢1

e I B> B
e e L I I BN

- oo

*(b)

©-
N

e Bie s BLe > I B> B B B
£ e B e B e B B B S
o I B e B B B B B
e I B e B e > B B

22/03/18 38




