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Completeness of natural deduction

(pl’ cp29 (P3, ..... |— w

()

cpl’ (P29 (P3, ..... | == w
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Completeness of natural
deduction: proof

First step:

cpl’ CP29 (P3, ..... | == ll)

1t

|== ((P1% ((pze ( Q3> ... W)))
tautology

N
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Completeness of natural
deduction: proof
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Completeness of natural
deduction: proof

Second step:

|== (¢, (@,~ (@3> ... = V)))
tautology

2

|- (0= (9= (93— ... = )
proof

N
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Completeness of natural
deduction: proof 3
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Let us code the lines of truth table for a formula ¢,

using its atoms
(p; 1s p; or —p;according to its value)

Proposition
D;, Dy, ---p, |-¢ for every line producing true
D;, Dy, ---p, |- =@ for every line producing false

Proof by structural induction on @



Completeness of natural
deduction: proof 4

1. 1is an atom p then we have pl-p and —-pl--p
2. @ 1S~

3. @ 1s @@,

4. 9 is oA ¢,

5.9 ¢,V g,

Let us observe that p,,p,, ...p._l- ¢, and
Divis Divn s ---D, - @, 1mplies

P Do Qn-l_ (pl/\ )
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Completeness of natural
deduction: proof

To prove the proposition for
2. @ 1s @,— @, 1sequivalent to say

¢, N -9, |-=(p,— @,) the only false case
A PAN S S O g O
VAN R S O g 0
o N @ - = @,

These are all the possible cases
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Completeness of natural
deduction: proof

And so on for the other connectives

3. ¢ is ¢ A @,
only one true case

o AN -g, |- =(@, A @)
- A @ - =(g A @)
@y A =@ - (A @)

4. @ is ¢,V @,
-, A -9, I-=(p,;V @,) the only false case
. oA -, -9V o,

-0, A @ -V
l 22/03/1‘91/\ @, |- (P1V P,
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Completeness of natural
deduction: proof 7
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If we apply the above proposition to

|== (= (@, (93— ... = V)

We have 2" proofs
Di>Dy s - D@ (@ (3= ..... = )))

Let us eliminate all the premises, because they are
pairwise complementary, by using tertium non
datur LEM as 1n the scheme
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Example: let us take the tautology p/A q — p, we have
p.q pAgq—p
p.-q l-pAgq—p
-p,q -pAq—p
-p,~ql-pAq—p

pvV-p LEA
P ass -p £S5
gV g LEM|| gV g LEA
q ass|[ g ass |||[9 ass|[—q BSS
phAqg—p phqg—p pAg—p pAg—p
phAg—p ve ||pAg—p ve
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Completeness of natural

deduction: proof 3
Third step:
— (= (= (93— ... = D))
v

P> Prs P3y eennn — Y

But we know that this is true

22/03/18
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Truth tables exercises

pV (-(gA(r—q)))
(pAg)—(pVa)

(p— —q)— —p) —4¢
(p—q)V(p— —q)
(p—q)—p)—p
(pvg)—=r)—=((p—r1)V(g—T))
(p— q)— (-p— —q).
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Validity and satisfiability: CNF

A formula 1s valid when it is true for any assignment
It 1s satisfiable when it 1s true for at least one assignment

Definition 1.42 A hieral L 1s either an atom p or the negation of an atom
—=p. A formula C 15 in conjunctive normal form (CNF) if it 1s a conjunction
of clauses, where each clause IJ 15 a disjunction of hiterals:

Lx=p | —p
Dx=L | LvD (1.6)
C=x=D | DaC.
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Validity and satisfiability: CNF

In a CNF looking for validity
means to check validity of every conjunct;

a pair of opposite literals

This 1s often an efficient way of checking validity
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CNF

Lemma 1.43 A disjunction of literals Ly Vv Lo vV --- V L, is valid iff there
are 1 <14,7 < m such that Ly is —~L4.

Proposition 1.45 Let ¢ be a formula of propositional logic. Then ¢ is sat-
isfiable iff ~¢ is not valid.
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CNF

In the case we are given with a truth table, we can compute
the CNF directly

-
w

e Be > B> I B B B B I B
£ B I B> I B B I
e I B> e > B B e B | IOS

R R e T T
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CNF

Let us take all the false cases, namely lines 1, 3,4, 6 and 7

None of them can happen if the formula has to be true
=(CASADVEA-SAQDV (-tAsADV(-tAsA-0)V(-rA-sAQq))

1.e. via De Morgan

“CASADA-GCA-SADA-(-tASADA-(-rASA-)A-(-rA-=-sAQ)

1.e. via De Morgan

(=rV=8V-DA(=rVsV-)A@V-sV-)AcV-sV)A(rVsV-0)

22/03/18

r s q| @3
T T T| F
T T F| T
T F T| F
F T T| F
T F F| T
F T F| F
F F T| F
F F F| T
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CNF

If we are given with the synctactical expression,
we define an algorithm CNF such that

(1) CNF terminates for all formulas of propositional logic as input;
(2) for each such mput, CNF outputs an equivalent formula; and
(3) all output computed by CNF is in CNF.

o Neither efficiency nor unicity 1s secured

e.g. pand p A(pVa)
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CNF: the algorithm

m IMPL_FREE eliminate implications
m NNF pull inside negations
m DISTR Uses distributivity

22/03/18
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CNF: the algorithm

m IMPL_FREE to eliminate implications

m NNF to pull inside negations

= DISTR uses distributivity to extract A

22/03/18
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CNF: exercises

Cor-np—ute CNF (NNF (IMPL_FREE —(p — (=(g A (-p — ¢q))))))

22/03/18
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Validity 1s easy

Satisfiability is difficult
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Particular sentences:
Horn clauses

Definition 1.46 A Horn formula 1s a formula ¢ of propositional logie if it
can be generated as an mstance of H mn this grammar:

P:=1|T|p
A:=P | PAA .
C:=A-> P (1.7)
H:=C | ChaH.

We call each mstance of C a Hom clause.
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Particular sentences:
Horn clauses

Examples of Horn formulas are

(pAgAS—p)A(gAT—DP)A(PAS — 5)
(PAgAsS— L)A(gAT —p)A(T — s)

(mApsAps —pi3) A (T —ps)A(pPs AP — L)

Examples of formulas which are nof Horn formulas are

(pPAgAS—-p)A(gAT —=DP)A(PAS— s)
(pAgAs— L)A(~gATr —p)A(T — 3)

(P ApPsAPs— praAp) A(T —ps)A(psApL— 1)
(o ApsAps — paApy) AT —ps)A(psAp1r v L)

N
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Horn clauses: satisfiability
The algorithm

It marks T if it occurs 1in that hst.

I[fthereisaconjunct Py APy A---A Py, — P of ¢suchthat all Pywith]l < ;7 <
k¢ are marked, mark P’ as well and go to 2. Otherwise (= there is no conjunct
Py APy A --- N Py — P’ such that all P; are marked) go to 3.

If 1 s marked, print out *The Horn formula ¢ is unsatisfiable.” and stop. Oth-
erwise, go to 4.

Print out “The Horn formula ¢ 1s satisfiable.” and stop.
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Horn clauses: satisfiability

Exercises

(b) (pAgAw— L)A(t = L)A(r—=p)A(T=1r)A(T —=g)A(rAu—
w)A(u— s)A(T — u)

() (pPAgAs—=p)A(gAT—=p)A(pAs— s)

(d) (pAgAz— L)A(gAT = p)A(T — 3)

() (ps—=pPu)A(mAPaAPs = Pa) AN(T—=ps) A (s Ap11 — 1)

() (T—=g)A (T =s)A(w— L)A(pAgAha— L)A(v—= s)A(T —
r)A(r— p)

N
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Exercises

1. Given the following formulas, draw their corresponding parse tree:
(a) p
*(b) pAg
(¢c) pA—g— —p
*(d) pA(—g— —p)
(e) p— (mgV(g— p))
*(f) ~((~gA(p—= 1)) A (r—q))
(g) pV(p—aq)
(h) (pAg)— (-rVi(g—T))
(i) (s V(=p)) = (-p))
(i) (s vV ((—p) —; (—p)))
(k) (s = (rvi))V((—g)AT)) = ((-(p— s5)) —T))
- ) (p—=gAr(-r—(qgV(-pAT))).
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Exercises

These exercises let you practice proofs using mathematical induction. Make sure
that you state your base case and inductive step clearly. You should also indicate
where you apply the induction hypothesis.

(a) Prove that

(2-1-1)4(2-2-1)+(2-3-1)+--+(2-n—-1)=n?

by mathematical induction on n > 1.

(b) Let k£ and [ be natural numbers. We say that k is divisible by [ if there
exists a natural number p such that k = p - [. For example, 15 is divisible by
3 because 15 = 5 - 3. Use mathematical induction to show that 11" — 4™ is
divisible by 7 for all natural numbers n > 1.

(c) Use mathematical induction to show that

I 12+22+32+---+n2="'("+1£'(2"+1)

for all natural numbers n > 1.

(d) Prove that 2" > n + 12 for all natural numbers n > 4. Here the base case is
n = 4. Is the statement true for any n < 47




