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CCS: Calculus of communicating processes 
 

 
Main issues: 
 
n  How to specify concurrent processes in an abstract way? 
n  Which are the basic relations between concurrency and non-

determinism? 
n  Which basic methods of construction (= operators) are needed? 
n  When do two processes behave differently? 
n  When do they behave the same? 
n  Rules of calculation: 

–  Replacing equals for equals 
–  Substitutivity 

  
–  R. Milner, A Calculus of Communicating Systems . LNCS 92  (1980). 
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CCS 
Language for describing communicating transition systems 
Behaviours as algebraic terms 
Calculus: Centered on observational equivalence 
Elegant mathematical treatment 
Emphasis on process structure and modularity 
Recent extensions to security and mobile systems 
n  CSP - Hoare: Communicating Sequential Processes (85) 
n  ACP - Bergstra and Klop: Algebra of Communicating Processes 

(85) 
n  CCS - Milner: Communication and Concurrency (89) 
n  Pi-calculus – Milner (99), Sangiorgi and Walker (01) 
n  SPI-calculus – Abadi and Gordon (99) 
n  Many recent successor for security and mobility 
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CCS - Combinators 

The idea: 7 elementary ways of producing or putting together 
labelled transition systems 

Pure CCS: 
n  Turing complete – can express any Turing computable function 
Value-passing CCS: 
n  Additional operators  for value passing 
n  Definable 
n  Convenient for applications 
 Here only a taster 
 
Cfr. intro2ccs 
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Actions 
Names a,b,c,d,... 
 
Co-names: a,b,c,d,... 

a = a 
 
In CCS, names and co-names synchronize 
 
Labels l: Names ∪ co-names 
 
 α ∈ Actions = Σ = Labels ∪ {τ} 
 
Define α by: 

 l = l, and 
 τ = τ
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CCS Combinators, II 

Nil   0   No transitions 
Prefix   α.P   in.out.0 →in out.0 →out 0 
 
 
 
Definition  A == P   Buffer == in.out.Buffer 

     Buffer →in out.Buffer →out Buffer 
 
 
 

in out

in

out
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CCS Combinators, Choice 
Choice       P + Q  BadBuf == in.(τ.0 + out.BadBuf) 

    BadBuf →in τ.0 + out.BadBuf 
       →τ 0  or 
       →out BadBuf 

 
 
 
 
Obs: No priorities between τ’s, a’s or a’s 
 
CCS doesn’t ”know” which labels represent input, and which output 
 
May use Σ notation: Σi2{1,2}αi.Pi = α1.P1 + α2.P2 

in

out

τ 
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Example: Boolean Buffer 

2-place Boolean Buffer 
 
Buf2: Empty 2-place buffer 
Buf20: 2-place buffer holding a 0 
Buf21: Do. holding a 1 
Buf200: Do. holding 00 
... etc. ... 

Buf2 == in0.Buf20 + in1.Buf21 

Buf20 == out0.Buf2 + 
  in0.Buf200 + in1.Buf201 

Buf21 == ... 
Buf200 == out0.Buf20 

Buf201 == out0.Buf21 

Buf210 == ... 
Buf211 == ... 
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Example: Scheduler 

ai: start taski 

bi: stop taski 

Requirements: 
1.  a1,...,an to occur cyclically 
2.  ai/bi to occur alternately 

beginning with ai 

3.  Any ai/bi to be schedulable at 
any time, provided 1 and 2 
not violated 

Let X ⊆ {1,...,n} 
Schedi,X:  
n  i to be scheduled 
n  X pending completion 
 
Scheduler == Sched1,∅ 
 

Schedi,X 

  == Σj∈Xbj.Schedi,X-{j}, if i ∈ X 
  == Σj∈Xbj.Schedi,X-{j} 

   + ai.Schedi+1,X∪{i}, if i ∉ X 

P1

P2
P3

a1

a2
a3

b1

b2
b3

a1

b1
a2

b2 b3
a3

Sched

. . .

.
:
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Example: Counter 

Basic example of infinite-state system 
  
 Count == Count0 

 Count0 == zero.Count0 + inc.Count1 

 Counti+1 == inc.Counti+2 + dec.Counti 
 
Can do stacks and queues equally easy – try it! 
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CCS Combinators, Composition 

Composition      P | Q   Buf1 == in.comm.Buf1 
     Buf2 == comm.out.Buf2 
     Buf1 | Buf2 
       →in comm.Buf1 | Buf2 
       →τ Buf1 | out.Buf2 
       →out Buf1 | Buf2 

 
     But also, for instance: 
     Buf1 | Buf2 
       →comm Buf1 | out.Buf2 
       →out Buf1 | Buf2 
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Composition, Example 
Buf1 == in.comm.Buf1 

Buf2 == comm.out.Buf2 

Buf1 | Buf2: 
  

Buf1|Buf2

comm.Buf1|Buf2

comm.Buf1|out.Buf2

Buf1|out.Buf2

in

comm

comm

out

comm

out

in

comm

τ
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CCS Combinators, Restriction 

Restriction      P L  Buf1 == in.comm.Buf1 
    Buf2 == comm.out.Buf2 
    (Buf1 | Buf2) {comm} 
      →in comm.Buf1 | Buf2 
      →τ Buf1 | out.Buf2 
      →out Buf1 | Buf2 

 
    But not: 
    (Buf1 | Buf2) {comm} 
      →comm Buf1 | out.Buf2 
      →out Buf1 | Buf2 
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CCS Combinators, Relabelling 
Relabelling      P[f]  Buf == in.out.Buf1 

      Buf1 == Buf[comm/out] 
     = in.comm.Buf1 

    Buf2 == Buf[comm/in] 
     = comm.out.Buf2 

 

Relabelling function f must preserve complements: 
  f(a) = f(a) 

And τ: 
  f(τ) = τ

Relabelling function often given by name substitution as above 
Structural congruence 
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Example: 2-way Buffers 
1-place 2-way buffer: 
Bufab == a+.b-.Bufab + b+.a-.Bufab 

 
Flow graph: 
 
 
 
 
LTS: 

Bufbc ==  
 Bufab[c+/b+,c-/b-,b-/a+,b+/a-] 

(Obs: Simultaneous substitution!) 
Sys = (Bufab | Bufbc)\{b+,b-} 
Intention: 
 
 
 
 
 
 
What went wrong? 

a+

a-

b-

b+

Bufab

b-.Bufab

a-.Bufab

a+
b+

b-

a-

a+

a-

b-

b+

b-

b+

c+

c-
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Transition Semantics 
To apply observational equivalence need a formalised semantics 
 
Each CCS expression -> state in LTS derived from that expression 
 
Compositionality: Construction of LTS follows expression syntax 
 
Inference rules: 

P1 →α P2 

P1 | Q →α P2 | Q 
 
Meaning: For all P1, P2, Q, α, if there is an α transition from P1 to P2 

then there is an α transition from P1 | Q  to P2 | Q 
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P →α P’
P/L →α P’/L

CCS Transition Rules 

(no rule for 0!) -
α.P →α PPrefix Def P →α Q

A →α Q (A == P)

ChoiceL
P →α P’

P+Q →α P’ ChoiceL
Q →α Q’

P+Q →α Q’

ComL
P →α P’

P|Q →α P’|Q ComR
Q →α Q’

P|Q →α P|Q’ Com P →l P’    Q →l Q’
P|Q →τ P’|Q’

Restr (α,α ∉ L) Rel P →α P’
P[f] →f(α) P’[f]
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CCS Transition Rules, II 

Closure assumption: !α is least relation closed under the 
set of rules 

Example derivation: 
   Buf1 == in.comm.Buf1 

   Buf2 == comm.out.Buf2 

   (Buf1 | Buf2)/ {comm} 
     →in comm.Buf1 | Buf2 

     →τ Buf1 | out.Buf2 

     →out Buf1 | Buf2 
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Example: Semaphores 

Semaphore: 
 
Unary semaphore: 

 S1 == p.S1
1 

 S1
1 == v.S1 

 
Binary semaphore: 

 S2 == p.S2
1 

 S2
1 == p.S2

2 + v.S2 

 S2
2 == v.S2

1 

Result: 
S1 | S1 ∼ S2 

 

Proof: Show that 
{(S1 | S1, S2), 
  (S1

1 | S1, S2
1), 

  (S1 | S1
1, S2

1), 
  (S1

1 | S1
1, S2

2)} 
is a strong bisimulation relation 
 

p v 
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Example: Simple Protocol 

Spec == in.out.Spec 
 
Sender == in.Transmit 
Transmit == transmit.WaitAck 
WaitAck == ack+.Sender + ack-.Transmit 
 
Receiver == transmit.Analyze 
Analyze == τ.out.ack+.Receiver + τ.ack-.Receiver 
 
Protocol == (Sender | Receiver)/{transmit,ack+,ack-} 
 
Exercise: Prove Spec ≈ Protocol 
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Example: Jobshop 

iE: input of easy job 
iN: input of neutral job 
iD: input of difficult job 
O: output of finished product 
 
A ==  iE.A’ + iN.A’ + iD.A’ 
A’ ==  o.A 
 
Spec = A | A 
 

Hammer: H == gh.ph.H 
Mallet: M == gm.pm.M 
Jobber: 
J  == Σx∈{E,N,D}ix.Jx 
JE == o.J 
JN == gh.ph.JE + gm.pm.JE 
JD == gh.ph.JE 
Jobshop ==  

 (J | J | H | M)/{gh,ph,gm,pm} 
 
Theorem: 

Spec ≈ Jobshop 
 
Exercise: Prove this. 


