
24/05/18 1

a.a.2017/2018
Prof.Anna Labella

Formal Methods in software development

24/05/18 2

CCS: Calculus of communicating processes

Main issues:

n  How to specify concurrent processes in an abstract way?
n  Which are the basic relations between concurrency and non-

determinism?
n  Which basic methods of construction (= operators) are needed?
n  When do two processes behave differently?
n  When do they behave the same?
n  Rules of calculation:

–  Replacing equals for equals
–  Substitutivity

–  R. Milner, A Calculus of Communicating Systems . LNCS 92 (1980).

3

CCS
Language for describing communicating transition systems
Behaviours as algebraic terms
Calculus: Centered on observational equivalence
Elegant mathematical treatment
Emphasis on process structure and modularity
Recent extensions to security and mobile systems
n  CSP - Hoare: Communicating Sequential Processes (85)
n  ACP - Bergstra and Klop: Algebra of Communicating Processes

(85)
n  CCS - Milner: Communication and Concurrency (89)
n  Pi-calculus – Milner (99), Sangiorgi and Walker (01)
n  SPI-calculus – Abadi and Gordon (99)
n  Many recent successor for security and mobility

4

CCS - Combinators

The idea: 7 elementary ways of producing or putting together
labelled transition systems

Pure CCS:
n  Turing complete – can express any Turing computable function
Value-passing CCS:
n  Additional operators for value passing
n  Definable
n  Convenient for applications
 Here only a taster

Cfr. intro2ccs

5

Actions
Names a,b,c,d,...

Co-names: a,b,c,d,...

a = a

In CCS, names and co-names synchronize

Labels l: Names ∪ co-names

 α ∈ Actions = Σ = Labels ∪ {τ}

Define α by:

 l = l, and
 τ = τ

6

CCS Combinators, II

Nil 0 No transitions
Prefix α.P in.out.0 →in out.0 →out 0

Definition A == P Buffer == in.out.Buffer

 Buffer →in out.Buffer →out Buffer

in out

in

out

7

CCS Combinators, Choice
Choice P + Q BadBuf == in.(τ.0 + out.BadBuf)

 BadBuf →in τ.0 + out.BadBuf
 →τ 0 or
 →out BadBuf

Obs: No priorities between τ’s, a’s or a’s

CCS doesn’t ”know” which labels represent input, and which output

May use Σ notation: Σi2{1,2}αi.Pi = α1.P1 + α2.P2

in

out

τ

8

Example: Boolean Buffer

2-place Boolean Buffer

Buf2: Empty 2-place buffer
Buf20: 2-place buffer holding a 0
Buf21: Do. holding a 1
Buf200: Do. holding 00
... etc. ...

Buf2 == in0.Buf20 + in1.Buf21

Buf20 == out0.Buf2 +
 in0.Buf200 + in1.Buf201

Buf21 == ...
Buf200 == out0.Buf20

Buf201 == out0.Buf21

Buf210 == ...
Buf211 == ...

9

Example: Scheduler

ai: start taski

bi: stop taski

Requirements:
1.  a1,...,an to occur cyclically
2.  ai/bi to occur alternately

beginning with ai

3.  Any ai/bi to be schedulable at
any time, provided 1 and 2
not violated

Let X ⊆ {1,...,n}
Schedi,X:
n  i to be scheduled
n  X pending completion

Scheduler == Sched1,∅

Schedi,X

 == Σj∈Xbj.Schedi,X-{j}, if i ∈ X
 == Σj∈Xbj.Schedi,X-{j}

 + ai.Schedi+1,X∪{i}, if i ∉ X

P1

P2
P3

a1

a2
a3

b1

b2
b3

a1

b1
a2

b2 b3
a3

Sched

. . .

.
:

10

Example: Counter

Basic example of infinite-state system

 Count == Count0

 Count0 == zero.Count0 + inc.Count1

 Counti+1 == inc.Counti+2 + dec.Counti

Can do stacks and queues equally easy – try it!

11

CCS Combinators, Composition

Composition P | Q Buf1 == in.comm.Buf1
 Buf2 == comm.out.Buf2
 Buf1 | Buf2
 →in comm.Buf1 | Buf2
 →τ Buf1 | out.Buf2
 →out Buf1 | Buf2

 But also, for instance:
 Buf1 | Buf2
 →comm Buf1 | out.Buf2
 →out Buf1 | Buf2

12

Composition, Example
Buf1 == in.comm.Buf1

Buf2 == comm.out.Buf2

Buf1 | Buf2:

Buf1|Buf2

comm.Buf1|Buf2

comm.Buf1|out.Buf2

Buf1|out.Buf2

in

comm

comm

out

comm

out

in

comm

τ

13

CCS Combinators, Restriction

Restriction P L Buf1 == in.comm.Buf1
 Buf2 == comm.out.Buf2
 (Buf1 | Buf2) {comm}
 →in comm.Buf1 | Buf2
 →τ Buf1 | out.Buf2
 →out Buf1 | Buf2

 But not:
 (Buf1 | Buf2) {comm}
 →comm Buf1 | out.Buf2
 →out Buf1 | Buf2

14

CCS Combinators, Relabelling
Relabelling P[f] Buf == in.out.Buf1

 Buf1 == Buf[comm/out]
 = in.comm.Buf1

 Buf2 == Buf[comm/in]
 = comm.out.Buf2

Relabelling function f must preserve complements:
 f(a) = f(a)

And τ:
 f(τ) = τ

Relabelling function often given by name substitution as above
Structural congruence

15

Example: 2-way Buffers
1-place 2-way buffer:
Bufab == a+.b-.Bufab + b+.a-.Bufab

Flow graph:

LTS:

Bufbc ==
 Bufab[c+/b+,c-/b-,b-/a+,b+/a-]

(Obs: Simultaneous substitution!)
Sys = (Bufab | Bufbc)\{b+,b-}
Intention:

What went wrong?

a+

a-

b-

b+

Bufab

b-.Bufab

a-.Bufab

a+
b+

b-

a-

a+

a-

b-

b+

b-

b+

c+

c-

16

Transition Semantics
To apply observational equivalence need a formalised semantics

Each CCS expression -> state in LTS derived from that expression

Compositionality: Construction of LTS follows expression syntax

Inference rules:

P1 →α P2

P1 | Q →α P2 | Q

Meaning: For all P1, P2, Q, α, if there is an α transition from P1 to P2

then there is an α transition from P1 | Q to P2 | Q

17

P →α P’
P/L →α P’/L

CCS Transition Rules

(no rule for 0!) -
α.P →α PPrefix Def P →α Q

A →α Q (A == P)

ChoiceL
P →α P’

P+Q →α P’ ChoiceL
Q →α Q’

P+Q →α Q’

ComL
P →α P’

P|Q →α P’|Q ComR
Q →α Q’

P|Q →α P|Q’ Com P →l P’ Q →l Q’
P|Q →τ P’|Q’

Restr (α,α ∉ L) Rel P →α P’
P[f] →f(α) P’[f]

18

CCS Transition Rules, II

Closure assumption: !α is least relation closed under the
set of rules

Example derivation:
 Buf1 == in.comm.Buf1

 Buf2 == comm.out.Buf2

 (Buf1 | Buf2)/ {comm}
 →in comm.Buf1 | Buf2

 →τ Buf1 | out.Buf2

 →out Buf1 | Buf2

19

Example: Semaphores

Semaphore:

Unary semaphore:

 S1 == p.S1
1

 S1
1 == v.S1

Binary semaphore:

 S2 == p.S2
1

 S2
1 == p.S2

2 + v.S2

 S2
2 == v.S2

1

Result:
S1 | S1 ∼ S2

Proof: Show that
{(S1 | S1, S2),
 (S1

1 | S1, S2
1),

 (S1 | S1
1, S2

1),
 (S1

1 | S1
1, S2

2)}
is a strong bisimulation relation

p v

20

Example: Simple Protocol

Spec == in.out.Spec

Sender == in.Transmit
Transmit == transmit.WaitAck
WaitAck == ack+.Sender + ack-.Transmit

Receiver == transmit.Analyze
Analyze == τ.out.ack+.Receiver + τ.ack-.Receiver

Protocol == (Sender | Receiver)/{transmit,ack+,ack-}

Exercise: Prove Spec ≈ Protocol

27

Example: Jobshop

iE: input of easy job
iN: input of neutral job
iD: input of difficult job
O: output of finished product

A == iE.A’ + iN.A’ + iD.A’
A’ == o.A

Spec = A | A

Hammer: H == gh.ph.H
Mallet: M == gm.pm.M
Jobber:
J == Σx∈{E,N,D}ix.Jx
JE == o.J
JN == gh.ph.JE + gm.pm.JE
JD == gh.ph.JE
Jobshop ==

 (J | J | H | M)/{gh,ph,gm,pm}

Theorem:

Spec ≈ Jobshop

Exercise: Prove this.

