Formal Methods 1n software development

a.a.2017/2018
Prof.Anna Labella

24/05/18 1

B El

CCS: calculus of communicating processes

Main issues:

m How to specify concurrent processes in an abstract way?

Which are the basic relations between concurrency and non-
determinism?

Which basic methods of construction (= operators) are needed?
When do two processes behave differently?
When do they behave the same?
Rules of calculation:
— Replacing equals for equals
— Substitutivity

— R. Milner, A Calculus of Communicating Systems . LNCS 92 (1980).

24/05/18 2

CCS

Language for describing communicating transition systems
Behaviours as algebraic terms

Calculus: Centered on observational equivalence

Elegant mathematical treatment

Emphasis on process structure and modularity

Recent extensions to security and mobile systems

m CSP - Hoare: Communicating Sequential Processes (85)

m ACP - Bergstra and Klop: Algebra of Communicating Processes
(85)

CCS - Milner: Communication and Concurrency (89)
Pi-calculus — Milner (99), Sangiorgi and Walker (01)
SPI-calculus — Abadi and Gordon (99)

Many recent successor for security and mobility

CCS - Combinators

The idea: 7 elementary ways of producing or putting together
labelled transition systems

Pure CCS:

m Turing complete — can express any Turing computable function
Value-passing CCS:

= Additional operators for value passing

m Definable

m Convenient for applications

Here only a taster

Cfr. intro2ccs

Actions

Names a,b,c.d,...

Co-names: a,b,c,d,...

d ==a
In CCS, names and co-names synchronize
Labels I: Names U co-names

o € Actions = X = Labels U {1}

Define o by:
| =1, and

T=T

5

CCS Combinators, 11

Nil
Prefix

Definition

0 No transitions
a.P in.out.0 —in out.0 —out O

O n =O out =O

A == Buffer == in.out.Buffer
Buffer —in out.Buffer —°Ut Buffer

out

CCS Combinators, Choice

Choice P+Q BadBuf == in.(t.0 + out.BadBuf)
BadBuf —i" 1.0 + out.BadBuf
—=T0 or

—out BadBuf

out

in - T ‘O
VU Ll

Obs: No priorities between t’s, a’'s or a’s
CCS doesn’t ’know” which labels represent input, and which output

May use Z notation: 2,5y »04.P; = 04.P + 0,.P,

7

MR ENE nm

Example: Boolean Buitfer

2-place Boolean Buffer

Buf2: Empty 2-place buffer
Buf?,: 2-place buffer holding a 0
Buf?,: Do. holding a 1

Buf?y,: Do. holding 00

.. etc. ...

Buf? == in,.Buf?, + in,.Buf?,
Buf?, == out,.Buf? +
iny.Buf?y, + in,.Buf?,,

Buf<, == ...

Buf?,, == out,.Buf?,

Buf?,, == out,.Buf?,

Buf?,, == ...

Buf,, == ...

Example: Scheduler

Let X C {1,...,n}
Sched, y:
m |to be scheduled
a;: start task m X pending completion
b;: stop task;
Requirements: Scheduler == Sched, ,
1. ay,...,a, to occur cyclically
2. ayb, to occur alternately Sched,
beginning with a == Zjexb;.Sched; y g, iFI1 € X
3. Any ay/b, to be schedulable at == Zexb;-Sched, g,

an%/ time, provided 1 and 2 + a.Sched, x g, if i & X
not violated

Example: Counter

Basic example of infinite-state system

Count == Count,
Count, == zero.Count;, + inc.Count,
Count,,, == inc.Count,, + dec.Count,

Can do stacks and queues equally easy — try it!

CCS Combinators, Composition

- Composition P |Q Buf, == in.comm.Buf,
Buf, == comm.out.Buf,
Buf, | Buf,
—I" comm.Buf, | Buf,
—® Buf, | out.Buf,
—out Buf, | Buf,

But also, for instance:
Buf, | Buf,

—comm Buf, | out.Buf,
l 11 —out Buf, | Buf,

comm.Buf,|Buf,

iy N

Buf,|Buf, () () comm.Buflout.Buf,

P Pl

Buf,lout.Buf,

Composition, Example
== in.comm.Buf,
Buf = comm.out.Buf,
Buf, | Buf,:
-
i

:
!
-

CCS Combinators, Restriction

Restriction

P\L

Buf, == in.comm.Buf,

Buf, == comm.out.Buf,

(Buf, | Buf,A\{comm}
—" comm.Buf, | Buf,
—7 Buf, | out.Buf,
—out Buf, | Buf,

But not:

(Buf, | Buf,\{comm}
—comm Buf, | out.Buf,
—out Buf, | Buf,

CCS Combinators, Relabelling

Relabelling PIf] Buf == in.out.Buf,
Buf, == Buf[comm/out]
= in.comm.Buf,
Buf, == Buffcomm/in]
= comm.out.Buf,

Relabelling function f must preserve complements:
f(a) = f(a)

And T
fltr)=<

Relabelling function often given by name substitution as above
Structyral congruence

MM EENE pE

1-p|ace_2-way buffer:

- Flow graph:
) _

+ b

I LTS:

N '
l]‘fab

B
) a_Buf,,
15

b_Buf,,

Buf,, == a,.b_.Buf,, + b,.a_.Buf,,

Example: 2-way Buffers

Buf,. ==
Buf_[c,/b,,c/b_b/a,b,/a]
(Obs: Simultaneous substitution!)
Sys = (Buf,, | Buf,.)\{b,,b_}

Intention:

a, — b b —c,
5-4— b+ E+<— C.

What went wrong?

Transition Semantics

To apply observational equivalence need a formalised semantics
Each CCS expression -> state in LTS derived from that expression
Compositionality: Construction of LTS follows expression syntax
Inference rules:

P =P,
PilQ—=P|Q

Meaning: For all P,, P,, Q, a, if there is an a transition from P, to P,
then there is an o transition from P, | Q to P, | Q

16

M EENE E

CCS Transition Rules

Def ;Q (A==P)

‘ B}
(no rule for O!) Prefix P —< P o (Q

Choice, P+Q —¢ P° Choice; PrQ = Q’

P%OLP’ Q%OLQ, P%IP, Q%I_Q,

Com

Comg 513 Sa piy PIQ —* P’IQ’

Comy, b6 Saprig

P —%Pp’ _
L
Restr Pl o PrIL (o, & L) Rel

P —¢ P’
P[f] — P’[f]

0 P —* P’ Q- Q’
N

MM EENE pE

CCS Transition Rules, 11

Closure assumption: !> is least relation closed under the
set of rules

Example derivation:

Buf, == in.comm.Buf,

Buf, == comm.out.Buf,

(Buf, | Buf,)/ {comm}
—I" comm.Buf, | Buf,
—* Buf, | out.Buf,
—out Buf, | Buf,

18

Semaphore: p@ y

- Unary semaphore:
S'==p.S',
St ==v.S’

Binary semaphore:
S2==p.S?%,
S?2, ==p.5?%, + v.§?

Bl S%==vs

l "

Example: Semaphores

Result:
St | S1 - Q2

Proof. Show that
{(§"] S, &),
(8% | 81, 8%),
(S S, 8%),
(S' | S, S%)
IS a strong bisimulation relation

MR ENE nm

Example: Simple Protocol

Spec == in.out.Spec

Sender == in. Transmit
Transmit == transmit.WaitAck
WaitAck == ack,.Sender + ack_.Transmit

Receiver == transmit.Analyze
Analyze == t.out.ack,.Receiver + t.ack_.Receiver

Protocol == (Sender | Receiver)/{transmit,ack,,ack}

Exercise: Prove Spec = Protocol

20

Example: The JobShop

Example: The JobShop

e A simple production line:
— Two people (the jobbers).
— Two tools (hammer and mallet).

— Jobs arrive sequentially on a belt to be processed.

e Ports may be linked to multiple ports.

— Jobbers compete for use of hammer.
— Jobbers compete for use of job.

— Source of non-determinism.

e Ports of belt are omitted from system.

— in and out are external.
e Internal ports are not labelled:

— Ports by which jobbers acquire and release tools.

The tools of the JobShop

e Behaviors:

— Hammer = geth. Busyhammer
Busyhammer = puth Hammer

— Mallet = getm Busymallet
Busymallet := putm Mallet

e Sort = set of labels

— P : L ...agent P has sort L

— Hammer: {geth, puth}
Mallet: {getm, putm}
Jobshop: {in, out}

geth

puth

getm

putm

e Behavior: geth
— Jobber := in(job).Start(job)
— Start(job) := if easy(job) then Finish(job)
else if hard(job) then Uhammer(job)
else Usetool(job)

— Usetool(job) := Uhammer(job)+ Umallet(job)
— Uhammer(job) := geth.puth.Finish(job)

— Umallet(job) := getm.putm.Finish(job)

— Finish(job) := out(done(job)).Jobber

The jobbers of the JobShop
e Different kinds of jobs:
— Easy jobs done with hands.
— Hard jobs done with hammer. in out
— Other jobs done with hammer or mallet.
N

Composition of the agents

e Jobber-Hammer subsystem

— Jobber | Hammer

— Composition operator |

— Agents may procced independently or interact through
complementary ports.

— Join complementary ports.

e Two jobbers sharing hammer:

— Jobber | Hammer | Jobber
- — Composition is commutative and associative.

Further composition

e Internalisation of ports:

— No further agents may be connected to ports:

— Restriction operator \

—\ L internalizes all ports L.

— (Jobber | Jobber | Hammer)\{geth,puth}
e Complete system:

— Jobshop := (Jobber | Jobber | Hammer | Mallet)\ L
- — L := {geth,puth,getm,putm}

M EENE E

Example: Jobshop

ic: input of easy job

iy: input of neutral job

ip: input of difficult job

O: output of finished product

A== i,A+i A +ipA
A’ == 0.A

Spec=A|A

27

Hammer: H == gh.ph.H
Mallet: M == gm.pm.M

Jobber:

J == Zce N Dylx-Jx
Je==o0.J

Jy == gh.ph.Jg + gm.pm.J¢
Jp == gh.ph.J¢

Jobshop ==

(J | J[H[M){gh,ph,gm,pm}

Theorem:
Spec = Jobshop

Exercise: Prove this.

