Formal Methods in software development

a.a.2017/2018 Prof.Anna Labella

Operational semantics

Meaning of program phrases defined in terms of the steps of computation they can take during program execution

The metaphore of abstract machine

- An automaton is given by a (finite) set of states S; an initial state s₀ and (one or more) terminal one
- Transitions labeled via a finite alphabet Σ
- A transition law δ : S x $\Sigma \rightarrow$ S (maybe a relation)

Arbib, Michael A. (1969). Theories of Abstract Automata- Prentice Hall 10/05/18

The metaphore of abstract machine

- Automata are characterized through the "accepted" language
- i.e. through the possible sequences of elements from the alphabet going from the initial state to the terminal state

Finite State Automata

10/05/18

5

Finite State Automata

Coffee machine A₁:

Coffee machine A₂:

Are the two machines "the same"?

The algebra of languages

 $<\!\!P(\Sigma^*),\subseteq,\cup,\cap,\emptyset,\Sigma^*,\cdot,\{\epsilon\}\!\!>$

 Σ^* is the free monoid generated by the alphabet

 $P(\Sigma^*)$ is a boolean algebra, but also a domain

It is a monoid w.r.t. concatenation \cdot (Frobenius product)

The free monoid generated by A

Exercises

Let us take $A = \{1\}$, what is A^* ?

Exercises

Let us take $A = \{1\}$, what is A^* ?

Which kind of coding we get?

Boolean algebra

$< P(\Sigma^*), \subseteq, \cup, \cap, \emptyset, \Sigma^* >$

Frobenius product

 $\forall L, M \in \mathcal{P}(\Sigma^*) \quad L \cdot M \stackrel{def}{=} \{ww' \mid w \in L, w' \in M\}$ $\emptyset \cdot L = \emptyset \wedge L \cdot \emptyset = \emptyset$ $\{\varepsilon\} \cdot L = L \cdot \{\varepsilon\} = L$ $(L \cdot M) \cdot N = L \cdot (M \cdot N)$ $L \subseteq L' \quad M \subset M' \Rightarrow L \cdot M \subset L' \cdot M'$

Frobenius product distributes over sum (union)

The algebra of languages

We are able to define iteration on $P(\Sigma^*)$

L⁰ = {ε}
Lⁿ⁺¹ = L · Lⁿ
L^{*} = ⋃ Lⁿ

 $n \in \mathbb{N}$

Difficult to axiomatize

Regular expressions

Formulas build from +, \cdot and *, starting from 0, 1 and elements of Σ

Example : $a^* + a \cdot b^*$

Right linear grammars

• Let us have also non terminal (not belonging to Σ) symbols

• A right linear grammar is a set of rewriting rules, where single non terminal elements are rewritten into linear polinomial expressions where elements of the alphabet are left coefficients

Example:

$$S \rightarrow aS$$
 also written $S \rightarrow aS \mid \varepsilon$ or $S = aS + 1$

 $S \longrightarrow \varepsilon_{10/05/18}$

15

Theorems

- Languages accepted by finite states automata correspond to regular expressions
- Regular expressions are generated by right linear grammars, which are continuous operators on $P(\Sigma^*)$
- The language associated with a right linear grammar is the minimal solution of a recursive equations system
- We can extend the result to context free grammars ^{10/05/18}(push down automata)

Examples

Let us take the automaton

It accepts the language a^*

defined by the grammar $X = a X | \varepsilon$

or via the recursive equation x = ax+1

as its minimal solution (Tarski's theorem)

More generally

The recursive equation x = ax + b

defines a continuous function $P(\Sigma^*) \rightarrow P(\Sigma^*)$

and has a*b as its minimal solution (Tarski's theorem)

In general, every right linear grammar on n non terminal symbols defines a continuous function $P(\Sigma^*)^n \rightarrow P(\Sigma^*)^n$

Exercises

Construct regular expressions representing languages, over the alphabet $\{a, b, c\}$, in which for every string w it holds that:

- (i) The number of a's in w is even.
- (ii) There are 4i + 1 b's in w. $(i \ge 0)$
- (iii) $|w| = 3i. (i \ge 0)$

(i)
$$(b \cup c)^* ((a(b \cup c)^*)^2)^*$$

(ii) $(a \cup c)^* b(a \cup c)^* ((b(a \cup c)^*)^4)^*$

(iii) $(\Sigma^3)^*$

We can take more general grammars

10/05/18 5. ...

20

Exercises

Show that the following subsets are chain-closed:

- (a) $\{\langle x, y \rangle \in D \times D | x \sqsubseteq y\}$, for every cpo D.
- (b) $\downarrow(d) \coloneqq \{x \in D | x \sqsubseteq d\}$ for every d in any cpo D.
- (c) $f^{-1}[S] \coloneqq \{x \in D | f(x) \in S\}$, for every continuous function $f : D \to E$ and chain-closed subset S of E.
- (d) $S \cup T$ for every chain-closed subsets S, T of any cpo D.
- (e) ∩_{i∈I} S_i for every *I*-indexed family of chain-closed subsets S_i of any cpo D.
- (f) $\{\langle x, y \rangle \in D \times D | x = y\}$, for every cpo D.