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Function cpo’s and domains

Given cpo's (D,Cp) and (E, Cg), the function cpo
(D — E,C) has underlying set

D-E ¥ {f | f: D— E'is a continuous function }

and partial order: f C f' % Vd € D. f(d) Cg f'(d).

Lubs of chains are calculated ‘argumentwise’ (using lubs in F)):

(| ] f2)@) = | | fa(d)-

n=0 n=0

If E is a domain, thensois D — E and L p_g(d) = L, all
de D.



Proposition 3.2.1 (Evaluation and ‘Currying’). Given cpo’s D and E, the
Junction

ev:(D—=FE)xD—E
def

ev(f,d) = f(d)

is continuous. Given any continuous function f : D' x D — E (with D' a cpo), for
each d’ € D' the functiond € D — f(d',d) is continuous and hence determines
an element of the function cpo D — E that we denote by cur(f)(d'). Then

cur(f): D' — (D — E)
cur(f)(d") 4f \d € D. f(d'.d)

is a continuous function.!
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Continuity of the fixpoint operator

Proposition. Let [) be a domain. By Tarski's Fixed Point
Theorem (Slide 13) we know that each continuous function
f € (D — D) possesses a least fixed point, fix(f) € D.

Then the function
fir : (D— D)— D

IS continuous.



Discrete cpo’s and flat domains

For any set X, the relation of equality

def

rC2 & z=2" (2,2 €X)

makes (X, C) into a cpo, called the discrete cpo with underlying
set X.
def

Let X; = X U{L}, where L is some element notin X . Then

dCd & (d=d)v(d=1) (d,d€X,)

makes (X | , C) into a domain (with least element _L), called the
flat domain determined by X .
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Proposition 3.3.1. Let f : X — Y be a partial function between two sets. Then
f 1 - X 11— Y_L

f(d) ifd e X and f is defined at d
fu(d) = {1 ifde X and f is not defined at d
L ifd=1

defines a continuous function between the corresponding flat domains.
Proposition 3.3.2. For each domain D the function
if :B, x (DxD)— D

d if r = true
if (z,(d,d) = {d  ifz = false
-LD lf.’II = 1

IS confinuous.
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Exercises

Let X be a set and D a domain. Show that every monotone function
f: X1 — D is continuous.

Let f: X — Y be a partial function between two sets X, Y. Show
that f, : X, — Y is continuous and strict.
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Styles of semantics

Operational. Meanings for program phrases defined in terms of
the steps of computation they can take during program
execution.

Axiomatic. Meanings for program phrases defined indirectly via
the axioms and rules of some logic of program properties.

Denotational. Concerned with giving mathematical models of
programming languages. Meanings for program phrases
defined abstractly as elements of some suitable mathematical
structure.
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Characteristic features of a
denotational semantics

e Each phrase (= part of a program), P, is given a denotation,
[P] — a mathematical object representing the contribution of
P to the meaning of any complete program in which it occurs.

e The denotation of a phrase is determined just by the
denotations of its subphrases (one says that the semantics is

compositional).
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A simple example of compositionality

Given partial functions [C], [C'] : State — State and a
function [B] : State — {true, false}, we can define

[if B then C else C']] =

As € State.if ([B](s), [C](s), [C'](s))

where
x ifth= true

#f(b,z,2) = {a:’ if b = false
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Denotational semantics of sequential composition

Denotation of sequential composition C'; C” of two commands
[C; C'] = [C'] © [C] = As € State.[C']([C](s))

given by composition of the partial functions from states to states
[C]. IC"] : State — State which are the denotations of the

commands.

Cf. operational semantics of sequential composition:
C,sls C',s|s"
C;C',s|s"
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Fixed point property of [while B do C]

[while B do C] = fig),[c1(Iwhile B do C1)

where, for each b : State — {true, false} and
c,w : State — State, we define

fo.c(w) = As € State.if (b(s), w(c(s)), 8).

e Why does w = f[p), [c](w) have a solution?

e What if it has several solutions—which one do we take to be
[while B do C1]?
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An example

[while X >0do (Y =X Y : X =X —1)]

Let

State L 7 x Z pairs of integers

D % State — State partial functions.

For [while X >0doY =X *Y ; X =X —1] € Dwe
seek a minimal solution to w = f(w), where f : D — D'is
defined by:

(z,y) ifx <0
w(zx—1,x*xy) ifx>0.

fw)(z,y) = {
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E
|

Remember that

State - Z x 7 D def State — State

Partial order _ on D:

w C w' if and only if for all (z,y) € State, if
w is defined at (z,y) then so is w’ and moreover

w(z,y) = w'(z,y).

Leastelement | € Dw.rt. C:

1 . totally undefined partial function
(satisfies 1. T w, all w € D).
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Starting with |, we apply the function f over and over again to build up a
sequence of partial functions wg, wy, wo, ...:

wo déf 1
def
Wn41 = fwn).

Using the definition of f on Slide 6, one finds that

wl(l'ay) = f(_l_)(:z:,y) - {fli,dzzined ji i (1)

(z,y) ifzr<0

wa(z,y) = f(wi)(z,y) = (0,y) fzr=1
undefined ifzr > 2
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((z,y)
(0,y)
(0,2 %y)
| undefined

((z,y)
(0,)
wy(z,y) = f(ws)(z,y) = (0,2*y)
(0,6 *y)
Lundeﬁned

wy(z,y) = flwsz)(z,y) = {

and in general
(z,y) ifr<0
wa(z,y) = { (0, (Iz) *y) fO0<z
undefined ifz>n
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ifxz<0
fr=1
fr=2
fzx>3

fr<0
fr=1
fr=2
fr=3
ifr>4

<n



where as usual, !z is the factorial of . Thus we get an increasing sequence of partial
functions
wplwCwC...Cw,C ...

defined on larger and larger sets of states (z, y) and agreeing where they are defined.
The union of all these partial functions is the element w__, € D given by

(=) fz<0
wm(m’y)_{(o,(!z)*y) ifz>0.

Note that w.. is a fixed point of the function f, since for all (z, y) we have

) (=z,y) ifz <0 N
flw)(z,y) = {wm(l_ Clzxy) ifz>0 (by definition of f)
(z,y) ifz<0
=< (0,1xy) ifz=1 (by definition of w..)
0, (z—-1)*z*xy) ifx>1
= Weo (T, Y)-
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In fact one can show that w., is the least fixed point of f, in the sense that for all
weD

(3) w=f(w) = 1w Cw.
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Chain-closed and admissible subsets

Let [) be a cpo. A subset S C D is called chain-closed iff for all
chansdg CdiCdyC...inD

(¥n>0.dn€S) = (| |dn) €S

n=>0

If ) is adomain, S C D) is called admissible iff it is a
chain-closed subsetof D and L € S.

A property ®(d) of elements d € D is called chain-closed/admissible
iff {d € D | ®(d)} is a chain-closed/admissible subset of D.
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Scott’s Fixed Point Induction Principle

Let f : I) — D) be a continuous function on a domain [).

For any admiasible subsst S C [, to prove that the least fixed
pointof fizin S, i.e. that

fix(f) €S
it suffices to prove
vde D(de S = f(d) € S).

10/05/18
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Using Scott’s induction

Example 4.2.1. Suppose that D is a domain and that f : (D x (D x D)) — D is
a continuous function. Let g : (D x D) — (D x D) be the continuous function

defined by

g(dy,d3) = (f(dy, (dy1,d2)), f(dy, (d2,d2))) (dy,d2 € D).

def : .
Then u; = ug, where (u1,u2) = fiz(g). (Note that g is continuous because we

can express it in terms of composition, projections and pairing and hence apply
Proposition 3.1.1 and Slide 37: g = (f o (w1, (w1, m2)), f o {my, (w2, m32))).)

Proof. We have to show that fiz(g) € A where

AE {(d1,d2) € D x D | dy = da}.

It is not hard to see that A is an admissible subset of the product domain D x D.
- So by Scott’s Fixed Point Induction Principle, we just have to check that
¥(d1,d2) € D x D ((d1,d2) € A = g(dy,dz2) € A)

or equivalently, that V(dy,d2) € D x D (dy = da = f(dy,dy,d3) =
f(dy,d2,d3)), which is clearly true. [




E
|

Reverting to the example

Given the command while X >0do (Y:=X %Y ;X := X — 1)

We prove the partial correctness of (7):

Vr,y 2 0. fiz(f)(z,y) # L = fix(f)(z,y) = (0, () xy)
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S E {we D|Va,y>0.wiz,y) # L = w(z,y)=(0,() *y)}.

It is not hard to see that S is admissible. Therefore, to prove (7), by Scott
Induction it suffices to check that w € S implies f(w) € S, for all w € D. So

suppose w € S, that z,y > 0, and that f(w)(z,y) # L. We have to show that
f(w)(z,y) = (0, ('z) * y). We consider the two cases z = 0 and = > 0 separately.
If z = 0, then by definition of f (See Slide 6)

fw)(z,y) = (z,y) = (0,y) = (0,1 xy) = (0, (10) xy) = (0, (lz) x y).
On the other hand, if z > 0, then by definition of f
w(x — 1, zxy) = f(w)(z,y) # L (by assumption)

and then since w € S and z — 1,z xy > 0, we must have w(z — 1,z x y) =
(0,'(x — 1) * (z * y)) and hence once again

f(w)(@,y) = wiz - Lzxy) = 0,z — 1) * (zxy)) = (0, () xy).
i
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Example (cf. CST Pt I, 1988, p4, q3)

Let Dbeadomainandp: D— B, . h,k: D — D be
continuous functions, with A strict (ie. h(L) = L).

Let f1, f2 : (D x D)
such that for all dy, do
fi(dy,dz) =
fa(dy,dz)

where if (b, dy,d3) = {

— D be the least continuous functions

€D

if (p(d1) , d2, h(f1(k(d1),d2)))
if (p(d1), da, fa(k(d1),h(d2)))

(dy ith= true
dy ith= false.

Then f1 = fo.
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Let D, p, h, and k be as on Slide 22. Defining E to be the
function domain (D x D) — D, let

9% (91,92) : (E x E)— (E x E)

where g1, g2 : (E X E) — E are the continuous functions
defined by

da if p(dy) = true
g1(u1,u2)(dy,d2) © h(ui(k(dy),d2)) it p(dy) = false
1 ifp(dy) = L
da if p(dy) = true
g2(u1,u2)(d1, dz) o us(k(dy), h(dz)) ifp(dy) = false
1 ifp(dy) =L

(@aluy,us € Eanddy,ds € D).
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h(u(k(dy), d2)) = u(k(d1), h(d2))

This 1s not true 1n general,
hence we restrict ourselves to the set:

Sdéf {(UI,UQ) e Ex FE | Up = U & V(dl,dg) eDxD
h(ui(dy,dz)) = ui(dy, h(d2))}
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We have to prove that fix(g) in the admissible set A
V(up,u2) € E x E ((u1,u2) € A = g(ug,uz) € A)
g91(u,u)(d1,d2) = ga(u,u)(dy,d2) holds provided



We first have to check that S is admissible. It is chain-closed because if

(u1,0,u2,0) C (u1,1,u2,1) C (u12,u22) C ...
elementsisin S, then| | - (u1n,u2,) = (50 21,4, |_|j>0 up ;) is alsoin S since

and

1s a chain in ¥ x FE each of whose

|_| Uy = |_| up , (because uy, = ug,,eachn)

n=0

n=>0

(| ] u1,n)(d1, d2)) = h(| | u1.n(d1,d2))

n=>0

n=>0

h(uy n(di,dz))

n=>0

u1,n(dy, h(dz))

n=>0

function lubs are argumentwise
h is continuous

each (uq n,u2,)isin S

= (I_I u1 n)(d1,h(d2)) function lubs are argumentwise.

n=>0



Also, S contains the least element (L, 1) of £ x F, because when (uy,us) =
(L, L) clearly u; = uy and furthermore for all (d,,ds) € D x D

h(uy(dy,dz2)) = h(L(dy,d2))

= h(L) by definitionof L € (D x D) — D
=1 h is strict, by assumption

= 1(dy,h(d3)) by definition of | € (D x D) — D
= uy(dy, h(dz2)).

To prove f, = f5 it is enough to show that ( f, fo) = fiz(g) € S: and since S
is admissible, by Scott Induction it suffices to prove for all (u,,us) € E x FE that

(u1,u2) € S = (g1(u1,u2), g2(u1,u2)) € S.

So suppose (uy,uz) € S,i.e.that u; = ug and

(8) V(d1,d2) € D x D. h(uy(dy,d2)) = uy(dy, h(dz)).
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It is clear from the definition of g; and go on Slide 23 that vy = wug and (8)
imply gi1(u1,u2) = g2(u1,u2). So to prove (gi1(ui,u2),g2(ui,u2)) € S, we
just have to check that k(g (uy,u2)(dy,d2)) = g1(uy,uz)(dy, h(d3)) holds for all
(dy,d3) € D x D. But

(h(d>) if p(dy) = true
h(g1(u1,u2)(d1,dz2)) = { h(h(ui(k(dy),dz))) if p(dy) = false
(L) if p(dy) = L
h(d ) if p(d,) = true
g1(u1,u2)(dr, h(d2)) = § h(ui(k(d1),h(d2))) if p(dy) = false
|1 if p(dy) = L

So since h(h(u1(k(d1),dz2))) = h(u1(k(d1),h(dz2))) by (8), and since h(L) =
we get the desired result. H
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Exercises

Exercise 4.4.2. Give an example of a subset S C ) x )’ of a produet cpo that is
not chain-closed, but which satisfies:

(@) foralld € D, {d' | (d,d") € S} is a chain-closed subset of [)’; and
(b) foralld' € D', {d| (d,d") € S} is a chain-closed subset of [).

5. Let D, D' be domains. We say that a function f : D — D’ 1s a continuous
isomorphism if it is continuous, bijective, and its inverse f~! : D' — D is
also continuous.

(a) Show that if f is continuous and bijective, and f~! is monotone, then
f 1s a continuous 1somorphism.

(b) Find an example for a continuous and bijective f that is not a con-
tinuous 1somorphism.
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