Formal Methods 1n software development

a.y.2017/2018
Prof. Anna Labella

10/04/18 1

S9 o

Determine whether M, so F ¢ and M, sy F ¢ hold and justify your answer,
where ¢ 1s the LTL or CTL formula:

*) por

Exercises

-— -_—t - - - e —— - - - .-

Exercises

Which of the following pairs of CTL formulas are equivalent? For those which

are not, exhibit a model of one of the pair which 1s not a model of the

other:

(a) EF ¢ and EG ¢

(b) EF ¢ V EF ¢ and EF (¢ V ¥)

(c) AF ¢ vV AF ¢ and AF (¢ V ¢)

(d) AF -¢ and -EG ¢

(e) EF -¢ and —AF ¢

(f) Al¢1 U Algo U ¢3]] and A[A[¢dy U ¢2] U @3], hint: it might make it simpler
if you think first about models that have just one path

(g) T and AGod — EG o

(h) T and EG ¢ — AG ¢.

10/04/18 3

gModelling a system and checking it

Temporal logics at work

10/04/18 4

Example: mutual exclusion

We have two concurrent processes sharing a resource

This means that for each of them there is a critical phase
A process can stay indefinitely 1n its non critical phase

At any time a process can ask to enter its critical phase

The two processes are not supposed to alternate

10/04/18

Example: mutual exclusion
The solution must satisty:

* Mutual exclusion: the two processes cannot be in their
critical state together

I * Progress: each of them cannot stay in its critical phase forever

l 10/04/18 6

n—t—=c—=n—=t—=c—>........
n for “non-critical”

t for “trying to access”

¢ for “critical”

10/04/18

Example: mutual exclusion
The evolution of a single process
i

Esxpressivity of LTL

m safety G - (¢c,A C,) true

m liveness G (. —Fc;) false
Sp—>S{—>S;—>S;,—>S,—>S;—>S,—>....

10/04/18

E
|

Expressivity of LTL

m Non-blocking
AG(n, —EX1,)

For every state satisfying n, there is a
successor satisfying t,

10/04/18

10

Expressivity of LTL

m no strict sequencing: processes need not
enter their critical section in strict
seguence

There exists at least one path with no strict sequencing:

Time

Su—>S5—>S3—>S,—>S;—>S;—>S,—....

l 10/04/18 11

The second attempt

(o

S

. But we cannot model the fact that a process can stay for a while

In its critical section
10/04/18 12

A modeling example

The following is a description of a microwave oven:

The oven has the following components:
— a switch (which is either on or off, initially off);
— a door (which is either open or closed, initially closed);
— a plate (which is either hot or cold, initially cold).

The user may open or close the door.
He may turn the switch when the oven is off.

Turning the switch when the door is open has no effect (to prevent
accidents).

When the oven is turned on, it first warms up the plate,
then cooks until the dish is ready, and then automatically turns itself off.

Opening the door makes the heat dissipate.

Example
Behavior of the system

open

{;\

[off, open, cold Qoﬁ, closed, cold] [off, closed, hot]

Q close
turn switch turn switch turn switch done

[on, closed, cold} { on, closed, hot]

warm up Q

l h

Example
Specification for the oven

The manufacturer wants us to check the following property :

“Whenever the user turns the switch,
the plate will eventually become warm.”

« We first formulate the property in CTL:
AG (switch = AF warm)

« To check the property, we label the Kripke structure with the two atomic
propositions: warm and switch

Example (continued)

open

{switch} open \ {warm}

[off, open, cold @oﬁ, closed, cold] [oﬂ, closed, hot]
Q close

turn switch turn switch turn switch done
[on, closed, cold] =[on, closed, hot]
warm up
{switch} {warm,

switch}

Note : “Turning the switch” is an action, cook

which we cannot directly model in our state-based semantics,
- therefore we take all the states which are the target of a switching transition.

Example (continued)

« S0, we rewrite the formula :
for, = G (switch = AF warm)
or equivalently,

fop = —(true EU (switch A EG —warm))

- Checking the property yields that the formula is not true — because the
system may stay forever in left most state.

The erroneous behavior happens when
the user keeps turning the switch while the door is open.

+ A “reasonable” user should eventually realize that
turning the switch when the door is open does no good. So,

consider only executions that do not stay forever in this state.

not expressible in CTL

UNESCO math&dev. butin CTL fair
TUNIS - février 2008

(Slmpllfled) sensor
C| Timer

C!+T,

C = car sensor
T = timer

Model Checking Example
Traffic light controller
.

Road 1

G1
C+T Y1
R1

Traffic light controller - Model
Checking

m Model Checking task: check
— safety condition
— fairness conditions

m Safety condition: no green lights
on both roads at the same time
AG-(G1AG2)

m Fairness condition: eventually
one road has green light
EF(G1v G2)

Checking conditions

We can associate with each formula the set of
states satisfying it

Checking the Safety Condition
AG(G1AG2)="EF (G1AG2)

S(G1 A G2) = S(G1) N S(G2) = {1}N{3}
=

= S(EF(GIAG2)=0

= S(-EF(G1AG2))="Q
= {1, 2, 3, 4)

Each state is included in {1,2,3,4} =
the safety condition is true (for each state)

M EENE E

Checking the Fairness Condition

EF(G1vG2)=E(true U (G1v G2))
S(G1 v G2) = S(G1)US(G2) = {1} U {3} = {1,3}
S(EF (G1 v G2)) = {1,2,3,4)

- (going backward from {1,3}, find predecessors)
N

S -@

Since {1,2,3,4} contains all states, the condition is
true for all the states

Another Check

(E X)2 (Y1) = E X (E X (Y1))
(starting at S;=G1R2, is there a
path s.t. Y1 is true in 2 steps ?)

W s sy ={2

m S (EX (Y1) ={1}
(predecessor of 2)

= S (EX (EX(Y1)) ={1,4}
(predecessors of 1)

B Property E X2 (Y1) is true for states {1,4}, hence true

Explicit Model Checking -
complexity

m CTL model checking is linear in the size of
the formula and the size of the structure M

®m Not a good news:

— what if you have 10°° states?

— Number of states grows exponentially with number
of variables

— Explicit model checking limited to ... 10° states
m Symbolic model checking can do much better

Mutual exclusion again (in CTL)

The first modeling attempt
(o)

TS)
w N
by

AG-(clAac2) safety
AG(t1=AFcl) liveness

9\1

Does it work?

Mutual exclusion again (in CTL)

The problem is solved by using CTL with fairness
1.e. by restricting ourselves to fair paths

InLTL GF¢ or GFy— GF¢ butnotin CTL

- Lack of fairness may result into a violation of liveness

CTL with fairness

Formally, we consider the problem where we are given K and ¢ as
before and additionally a fairness constraint F c S.

We call a run fair (w.r.t. F) iff it contains infinitely many states from F.

The problem is to compute S,(¢) for the case where the operators
EG and EU consider only fair runs (w.r.t. F).

Therefore, we introduce the following modified operators:

SAEG; @) ={ s| 7 a fair run p of K s.t.
p(0)=sand Vi=>0, p(i) € Sy(@) }

S(@, EU; ¢,) ={ s| 7 a fair run p of K s.t.
p(0) = s and Fi such that p(i) € S(¢,) and Vk < i, p(k) € S{@,) }

CTL with fairness

 First, observe that fair runs have the following properties:
1. pisafairruniff piis fairforall i =>0.

2. pisafairruniff phas a fair suffix o for some i.
- Using this, we can rewrite the EU, operator as follows:
¢, EU ¢, = ¢ EU(P, A EG;true)

- Thus, it is enough to provide a new algorithm for EG;

Exercises

Express the following properties in CTL and LTL whenever possible. If neither

is possible, try to express the property in CTL*:

(a) Whenever p is followed by ¢ (after finitely many steps), then the system
enters an ‘interval’ in which no r occurs until £.

(b) Event p precedes s and t on all computation paths. (You may find it easier
to code the negation of that specification first.)

(c) After p, g is never true. (Where this constraint is meant to apply on all
computation paths.)

(d) Between the events g and r, event p is never true.

e) Transitions to states satisfying p occur at most twice.

(
- (f) Property p is true for every second state along a path.

10/04/18 29

