
22/03/18 1

a.y. 2017/2018
Prof. Anna Labella

Formal Methods in software development

Speaking of formal methods:
where Computer Science is
situated?

22/03/18 2

n Between analytical a priori (as
mathematics)

n and synthetic a posteriori (as earth
sciences) . . .

n Where computer science is?
Gilles Dowek (2013): computer science is
an analytical a posteriori science.

Why?

n What we are reasoning about?
n About what is a materialisation of our

own thinking
n Software is a materialisation of our

thinking
n Software Engineering is the way of

better organizing our software using
our more abstract tools

22/03/18 3

22/03/18 4

Microsoft's Research in Software Engineering in Redmond, USA.
 “Our mission is to advance the state of the art in SE,
to bring those advances to Microsoft’s business, and to take care
of those SE technologies that are critical to the company,
 but not inherently linked to particular products.”

The opinion by industry

Research in Software Engineering (RiSE)

RiSE understands the importance of logic and
builds powerful inference engines that
help understand complex systems.▪
Tools: Z3 ...
Projects: DKAL LAI L&F M3

22/03/18 5

Explaining the title:
Formal Methods

22/03/18 6

What is a method? (1)

n Something that gives the means to
achieve a certain goal

n Some examples: physics
In physics we introduce measures
(mathematical objects) for the
phenomena we are going to observe and
then mathematical tools (e.g. differential
equations) to manipulate them in order to
obtain some previsions

22/03/18 7

What is a method? (2)

n Chemistrians have successfully tried the
same way (both are sciences in the
strict sense of the term because they
use mathematical tools)

n Sociologists didn’t find the correct
mathematical representation as yet, i.e.
a quantisation of their phenomena that
allows mathematical computation
(statistics?)

22/03/18 8

What is a method? (3)

n  In computer science, we are still in a
relatively primitive stadium: what we
usually have is only a formal technique

We express our “facts” in a language and
try to manipulate this language in order to
make “calculations”.

22/03/18 9

A compiler is a computer program (or a set of programs) that
transforms source code written in a programming language (the
source language) into another computer language (the target
language), with the latter often having a binary form known as
object code.
 The most common reason for converting source code is to
create an executable program.

The name "compiler" is primarily used for programs that
translate source code from a high-level programming language
to a lower level language (e.g., assembly language or machine
code).

An example (the first one in c.s.)
of working method: compilers

22/03/18 10

In order to construct a compiler, first the grammar of the
source language is defined in the BNF using formal rules.

Hence the mathematical substratum is
 formal languages theory

A compiler is likely to perform many or all of the following
operations: lexical analysis, preprocessing, parsing, semantic
analysis (syntax-directed translation), code generation, and
code optimization.

Program faults caused by incorrect compiler behaviour can
be very difficult to track down and work around; therefore,
compiler implementors invest significant effort to ensure
compiler correctness.

22/03/18 11

What is the use of formal
methods?

n  Introducing new concepts

n Avoiding errors

22/03/18 12

Introducing new concepts

n Software development - life cycle

n Costing of the various phases

n Evaluation of the cost of design errors

22/03/18 13

Avoiding errors

n The errors are not only expensive and
difficult to correct

n But can lead to critical situations

22/03/18 14

•  The first flight of the Ariane 5 (Ariane 5 flight 501)
held June 4, 1996 failed and the rocket self-destructed 40
seconds after launch because of a malfunction of the control
software, created by one of the most famous bug in the history.
•  A value in 64-bit floating point, probably the one of the pressure,
was converted in a 16-bit integer with a sign. This caused a
trap (operational error) in the processor: the number
was too large to be represented with a 16-bit integer.
•  Efficiency reasons had pushed designers to disable
the control software (written in Ada) on the trap,
although other similar conversions in the code were correct.
•  This error unleashed a reactions chain that caused the destructive
deviation of the rocket because of the enormous aerodynamic
forces.
•  It was necessary almost a year and a half to understand
what was the malfunction that led to the destruction of the rocket.

22/03/18 15

Why formalisation?

n  In terms of specific requirements it is
useful to understand what actually is
needed and

n  to check the validity of certain properties
that are required (rapid prototyping)

22/03/18 16

•  Suppose you are working for a software company and your task is to write
programs which are meant to solve sophisticated problems, or
computations.

•  Typically, such a project involves an outside customer – a utility company,
for example – who has written up an informal description, in plain English,
of the real-world task that is at hand. In this case, it could be the
development and maintenance of a database of electricity accounts with all
the possible applications of that – automated billing, customer service etc.
Since the informality of such descriptions may cause ambiguities which
eventually could result in serious and expensive design flaws, it is
desirable to condense all the requirements of such a project into formal
specifications.

•  These formal specifications are usually symbolic encodings of real-world
constraints into some sort of logic.

22/03/18 17

 Thus, a framework for producing the software could be:
•  Convert the informal description R of requirements for an application

domain into an ‘equivalent’ formula φR of some symbolic logic;
•  Write a program P which is meant to realise φR in the programming

environment supplied by your company, or wanted by the particular
customer;

•  Prove that the program P satisfies the formula φR .

The next phase of the software development framework involves constructing
the program P and after that the last task is to verify that P satisfies φR.
Here again, our framework is oversimplifying what goes on in practice, since
often proving that P satisfies its specification φR goes hand-in-hand with
inventing a suitable P. (From Huth Ryan book)

22/03/18 18

•  It is necessary to choose a suitable
programming language and, according to
its primitives,

•  Build a mathematical model

But, beyond formalisation, a proof method

.

22/03/18 19

A specification language must:
n  Be formal

n  Founded on a mathematical theory
(semantics)

n  Allow proofs of properties

n  Enable the development of support tools

22/03/18 20

This course is intended to give an introduction
to formal methods for the specification,
development and testing of software

It aims to introduce the main formal methodologies,
and show how these are applied in software development.

Topics could change from one year to another one,
has it already happened

I will propose you a logical, though many-faceted,
approach, but other ones could be proposed as well

22/03/18 21

•  need for formalization of requirements for the
production of the software,

•  i.e. translate requirements expressed in the
current language form in conditions for the
development of software

The problems that we face (1)

22/03/18 22

•  the problem of producing a secure
software in the sense of absolute
reliability: examples of critical situations

•  Economy in formalisation

The problems that we face (2)

22/03/18 23

Advantages

n The verification of the properties to meet
is made a priori

n This will not be a test by cases, but

n a proof that came with the software

product

22/03/18 24

Difficulties

n Stiffness of any formalization, especially
in complex cases

n Acquisition of a new "language ”

n Slow start

22/03/18 25

An overview
n  Which kind of theory?

 Transition systems
 Set theory
 Universal Algebra
 Lambda-calculus, etc.

n  An application field
 Data processing
 Real-time systems
 Protocols, etc.

n  A community of use

22/03/18 26

Specific and general methods
n Shaping the individual aspects of the

system software: architectures, interfaces,
visible behaviors, algorithms …

n Provide a mathematical context: choices
are differed, but often not so
“methodological"

22/03/18 27

Specifying and verifying

n We will deal with the problem of
specifying and verifying and of
relationships between them

n Though their actual implementation will
be left to other courses; e.g.

Automatic Software Verification Methods

22/03/18 28

Great variety of mathematical
theories

n Algebraic Methods (terms are objects)
n Logical Methods (terms are proofs)

22/03/18 29

Algebraic methods

n Terms are objects in an algebraic
structure (denotational semantics)

n We compose and decompose them via

operations

22/03/18 30

Distributed computing

n Processes (operational semantics:
abstract machine metaphor)

22/03/18 31

Logical methods

n Terms are elementary inferences:
states and transitions

n We compose them in proofs

22/03/18 32

• From a semi-formal and graphical language
as: statecharts and UML to “describe”
to a formal language to “speak about”.

• We are looking for a language to model
and reason about computer systems.
To this purpose we need to improve our
logical knowledge.

The strategy (1)

22/03/18 33

• Maybe in the future the special kinds of
logics we are going to expose, will be
obsolete, but we are trying to establish
a method.

• Already now we had to choose
between several possible
formalisations.

The strategy (2)

22/03/18 34

•  In the ancient times a calculus for our way of

reasoning;
•  maybe more than one way of reasoning:

mathematics, retorics, philosophy, theology,
….

•  More recently, a calculus to play games

•  In our approach:

Logic is the calculus of computation
 (Amir Pnueli)

What is logic?

Program of the course
n Temporal Logics and Model checking

n Hoare Logic and verification of programs

n Reactive systems and Hennessy-Milner

logic

n Denotational semantics (algebraic

approach)
22/03/18 35

Preliminaries

n Propositional and predicative logics in
the form of sequent calculus: from that
we will introduce temporal logic

n Order structures: from that we will

introduce cpo

22/03/18 36

22/03/18 37

•  Textbook:
there is not a real textbook; all lessons will be available
on the site of the course
http://twiki.di.uniroma1.it/twiki/view/MFS/WebHome

•  A survey can be found in:
“Understanding formal methods” by J.-F. Monin Springer, ©2003
in our library

•  But it is more useful to follow some chapters of
“Logic in Computer Science” by Huth Ryan (2nd edition)
freely downloadable at
ftp://ftp.cs.bham.ac.uk/pub/authors/M.D.Ryan/tmp/Anongporn/Ch1+3.pdf

•  The rest of the material can be found in a Dropbox special folder.
(you will contact me via e.mail in order to have the link)

…..final examination
n  a project in collaboration (prof. Mari will explain

the modalities at the end of this lesson) +
an interview over a part of the program,
n  the interview on a part of the program is

alternative to the solution of some exercises
performed in the last half an hour of every
lesson

n  to this purpose, please, everytime bring with you
some paper

22/03/18 38

…..final examination

 or
n an interview over all the program

22/03/18 39

