Formal Methods in software development

a.a.2017/2018 Prof.Anna Labella

16/05/18

16/05/18

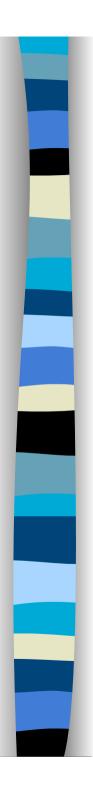
From automata to reactive systems

They are supposed to go on forever as

Communication protocols

Operative systems

Command and control devices



Their features

- Communication
- Observability
- Non determinism vs determinism
- Synchronous vs asynchronous

Labeled transition systems

• TS=(Σ ,S, Δ , S₀), where

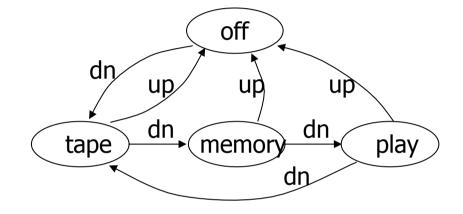
- $-\Sigma$ a non empty finite alphabet
- S a non empty finite set of states
- $\Delta \subseteq S \times \Sigma \times S$ is a transition relation,
- $S_0 \subseteq S$ is the set of initial states
- Similar to a nondeterministic finite state automaton, with possibly more than one initial state, but without terminal states
- Similar to a labeled Kripke model as we have seen in temporal logic

A transition system generates (finite or infinite) words w₀w₁w₂... iff there are states s₀s₁s₂s₃...

s.t. $s_0 \in S_0$ and $(s_i, w_i, s_{i+1}) \in \Delta$

- A state is identified through the possibilities it offers to go on
- termination and deadlock

Example: a recorder



T = <S, Σ , Δ , s₀> without terminal states

- 1. Σ ={up, dn}
- 2. S={off, tape, memory, play}
- Δ={(off,dn,tape), (tape,up,off), (tape,dn,memory), (memory,up,off), (memory,dn,play), (play,dn,tape), (play,up,off)}
- 4. s₀={off}

16/05/18

Parallel transition systems

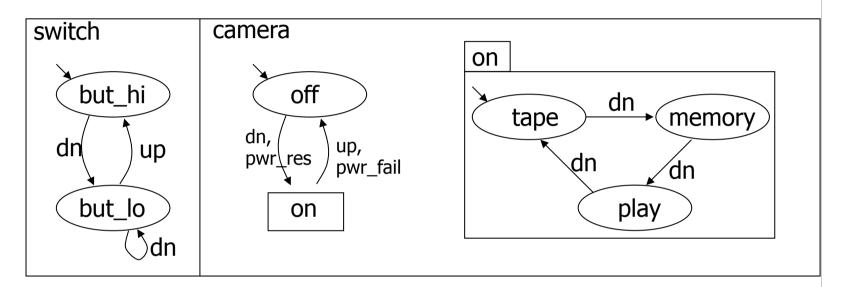
Parallel transition system T=(T₁,...,T_n)

- each T_i is a transition system
- S_i∩S_j=Ø
- interleaving semantics
 - on its private alphabet, each T_i can make an independent move
 - synchronization is via common events

example:

power switch and camcorder mode

Example



- T=(switch, camera)
- {pwr_fail, pwr_res} are private to camera
- synchronization alphabet {up,dn}
- how big is the state space?

The global transition system T associated with a parallel transition system $(T_1,...,T_n)$ is defined as T=(Σ , S, Δ , S₀), where

$$-\Sigma = \bigcup \Sigma_i$$

$$-S = S_1 \times ... \times S_n$$

$$-S_0 = S_{1,0} \times ... \times S_{n,0}$$
, and

$$-((s_1,\ldots,s_n),a,(s_1',\ldots,s_n'))\in\Delta$$
 iff

•
$$a \in \Sigma_i$$
, $((s_i), a, (s_i')) \in \Delta_i$, and

• then
$$s_k = s_k$$
 for all $k \neq i$

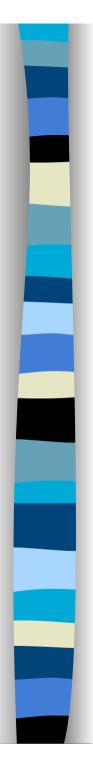
- when a is the result of a synchronisation of T_i and T_i
- $((s_i),a_i,(s_i)) \in \Delta_i$ and $((s_{ji}),a_j,(s_j)) \in \Delta_j$, and
- $s_k = s_k$ for all $k \neq i, j$

Process Equivalences

Sameness of behaviour = equivalence of states Many process equivalences have been proposed For instance: $q_1 \sim q_2$ iff

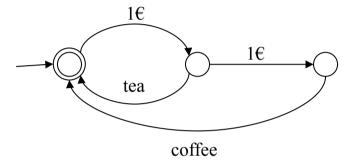
- q_1 and q_2 have the same paths, or
- q₁ and q₂ may always refuse the same interactions, or
- q_1 and q_2 pass the same tests, or
- q_1 and q_2 satisfy the same temporal formulas, or
- $-q_1$ and q_2 have identical branching structure

CCS: Focus on <u>bisimulation equivalence</u>

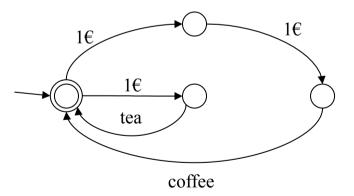


Finite State Automata

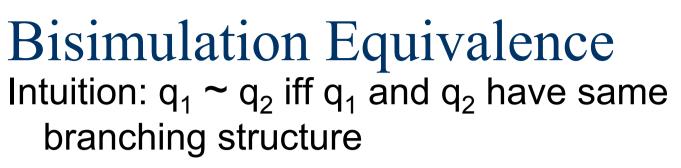
Coffee machine A₁:



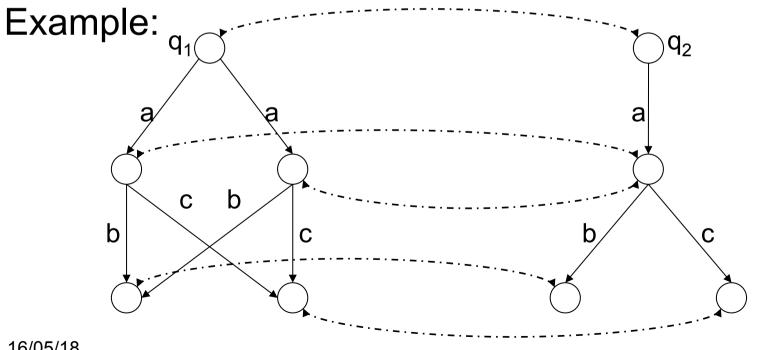
Coffee machine A₂:



Are the two machines "the same"?



Idea: Find relation which will relate two states with the same transition structure, and make sure the relation is preserved



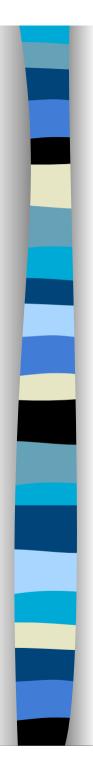
Strong Bisimulation Equivalence

Given: Labelled transition system T = (Q,Σ,R) Looking for a relation S \subseteq Q × Q on states

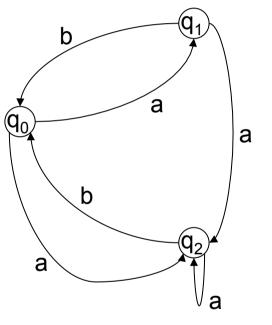
S is a strong bisimulation relation if whenever $q_1 S q_2$ then: $- q_1 \rightarrow^{\alpha} q_1$ ' implies $q_2 \rightarrow^{\alpha} q_2$ ' for some q_2 ' such that q_1 ' S q_2 ' $- q_2 \rightarrow^{\alpha} q_2$ ' implies $q_1 \rightarrow^{\alpha} q_1$ ' for some q_1 ' such that q_1 ' S q_2 '

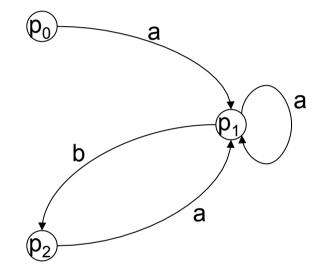
 q_1 and q_2 are strongly bisimilar iff q_1 S q_2 for some strong bisimulation relation S

 $q_1 \sim q_2$: q_1 and q_2 are strongly bisimilar



Exercise

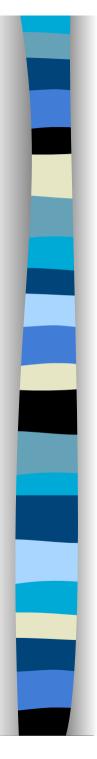




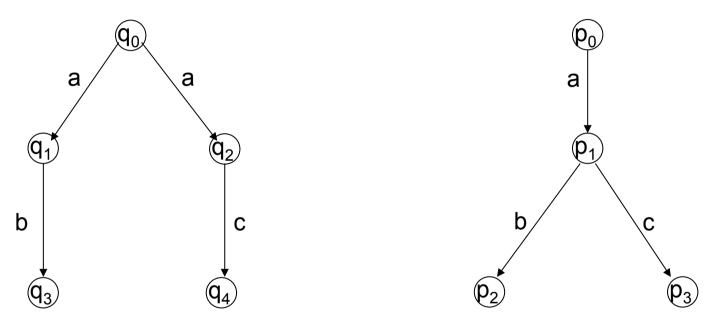
Does $q_0 \sim p_0$ hold?

16/05/18

14



Exercise



Does $q_0 \sim p_0$ hold?

16/05/18

15

Weak Transitions

What to do about internal activity?

 τ : Transition label for activity which is not externally visible

$$\begin{array}{l} q \Rightarrow^{\varepsilon} q' \text{ iff } q = q_0 \rightarrow^{\tau} q_1 \rightarrow^{\tau} \dots \rightarrow^{\tau} q_n = q', n \ge 0 \\ q \Rightarrow^{\tau} q' \text{ iff } q \Rightarrow^{\varepsilon} q' \\ q \Rightarrow^{\alpha} q' \text{ iff } q \Rightarrow^{\varepsilon} q_1 \rightarrow^{\alpha} q_2 \Rightarrow^{\varepsilon} q' (\alpha \neq \tau) \end{array}$$

Beware that $\Rightarrow^{\tau} = \Rightarrow^{\varepsilon}$ (non-standard notation)

Observational equivalence, v.1.0: Bisimulation equivalence with \Rightarrow in place of \rightarrow Let $q_1 \approx q_2$ iff $q_1 \sim q_2$ with \Rightarrow^{α} in place of \rightarrow^{α}

16/05/18

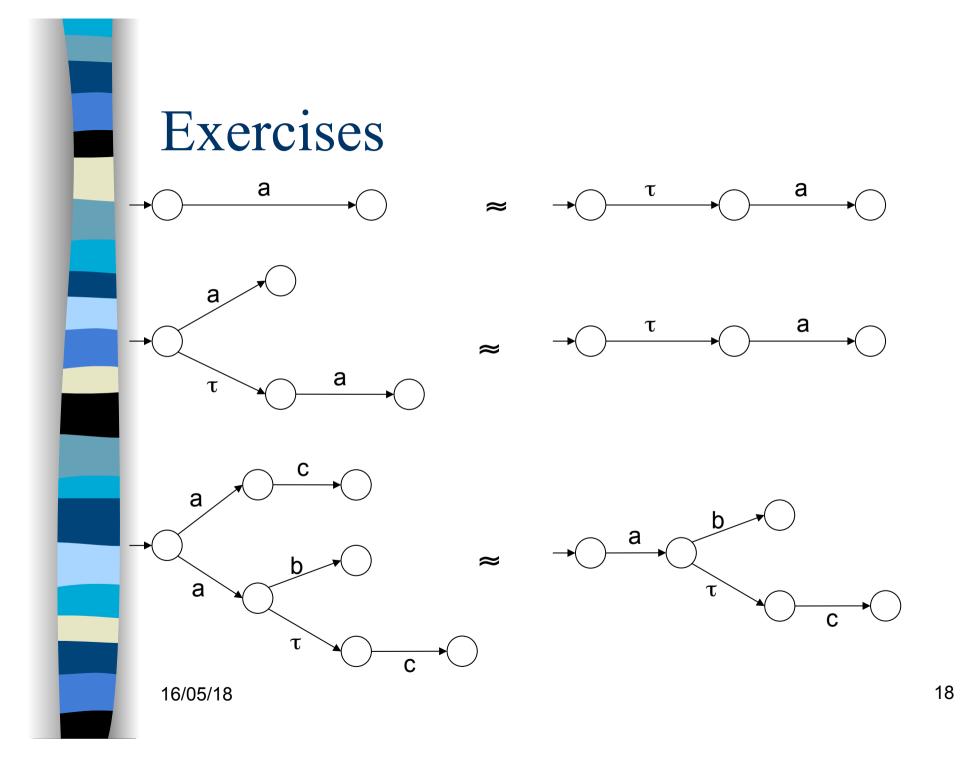
Observational Equivalence

Let $S \subseteq Q \times Q$. The relation S is a *weak* bisimulation relation if whenever $q_1 S q_2$ then:

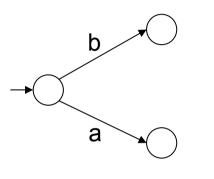
- $-q_1 \rightarrow^{\alpha} q_1$ ' implies $q_2 \Rightarrow^{\alpha} q_2$ ' for some q_2 ' such that q_1 ' S q_2 '
- $-q_2 \rightarrow^{\alpha} q_2$ ' implies $q_1 \Rightarrow^{\alpha} q_1$ ' for some q_1 ' such that q_1 ' S q_2 '

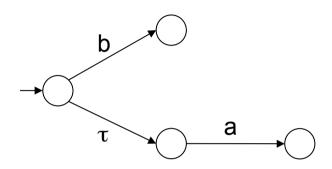
 q_1 and q_2 are observationally equivalent, or weakly bisimulation equivalent, if $q_1 S q_2$ for some weak bisimulation relation S

 $q_1 \approx q_2$: q_1 and q_2 are observationally equivalent/weakly bisimilar

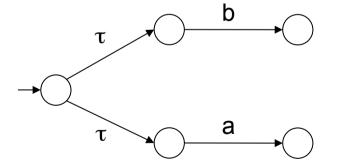


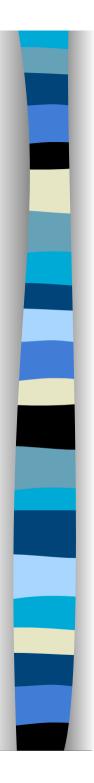
Exercises



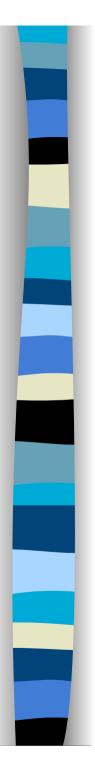


All three are inequivalent



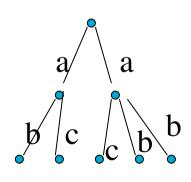


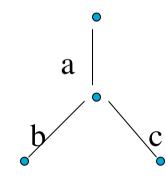
StrongWeakBranching



Strong

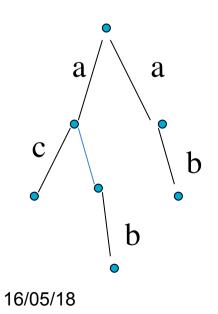
If a process/state can do a move, then the other one can do the same and viceversa.

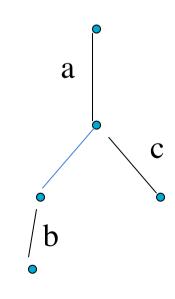


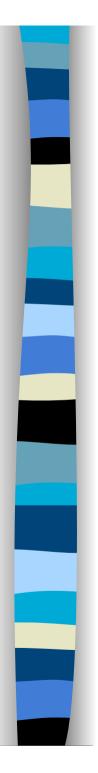


weak

A process can go through (non equivalent, non consecutive) states with invisible moves Trying to simulate the other one.







branching

A process can go through different (equivalent) states with invisible moves while the other does not move, but has the same possibilities.

