Prova scritta dell'esame di

Compilatori / Linguaggi & Compilatori

Appello del 12 settembre 2012

ESERCIZIO 1

Si consideri la grammatica acontestuale G = (V, T, P, S) dove $V = \{S, X, Y\}, T = \{0, 1, 2\}$ e P contiene le produzioni

$$S \to XYS \mid 0 \hspace{1cm} Y \to 1 \mid \epsilon \hspace{1cm} X \to Y \mid 2$$

- (1.1) Dimostrare che la stringa 0 è una frase ambigua di G.
- (1.2) Dopo aver costruito la tabella di controllo per l'analisi a discesa ricorsiva, verificare che la stringa 0 è una frase di G.
- (1.3) Trovare una grammatica acontestuale C equivalente a G in forma normale di Chomsky. Verificare con l'algoritmo CYK che la stringa 0 è una frase non ambigua di C.

ESERCIZIO 2

Si consideri la grammatica acontestuale G = (V, T, P, S) dove

$$V = \{S, L\}$$
 $T = \{a, , (,)\}$ $P = \{S \rightarrow (L) \mid a, L \rightarrow S \mid L, S\}$

Dopo aver costruito l'automa delle preformule e la tabella delle azioni, verificare con la procedura di riduzione che la stringa a è una frase di G.

Soluzione

ESERCIZIO 1

- (1.1) Le due derivazioni (S, 0) e (S, XYS, YYS, YS, S, 0) hanno distinti alberi di derivazione.
- (1.2) Durante l'analisi a discesa ricorsiva della stringa 0, possiamo subito applicare la produzione $S \to 0$ oppure $S \to XYS$. Nel primo caso, abbiamo finito; nel secondo, dovremo applicare prima la produzione $X \to Y$, poi due volte la produzione $Y \to \varepsilon$ e infine la produzione $S \to 0$.

Tabella di controllo

variabile	0	1	2	#					
S	0, XYS	XYS	XYS						
X	Y	Y	2, Y						
Y	3	1, ε	3						

(1.3) La grammatica C contiene le produzioni

$$S \rightarrow XS \mid YS \mid ZS \mid 0$$

$$Z \rightarrow XY$$

$$X \rightarrow 1 \mid 2$$

$$Y \rightarrow 1$$

ESERCIZIO 2

 $S' \rightarrow S\#$

 $S \rightarrow (L)$

 $S \rightarrow a$

 $\mathtt{L} \to \mathtt{S}$

 $L \rightarrow L, S$

stato 1: $S' \rightarrow \bullet S\# S \rightarrow \bullet (L) S \rightarrow \bullet a$

stato 2: $S' \rightarrow S^{\bullet}\#$

state 3: $S \rightarrow (\bullet L)$ $L \rightarrow \bullet S$ $L \rightarrow \bullet L$, $S \rightarrow \bullet (L)$ $S \rightarrow \bullet a$

stato 4: $S \rightarrow a^{\bullet}$

stato 5: $S \rightarrow (L^{\bullet})$ $L \rightarrow L^{\bullet}, S$

stato 6: $S \rightarrow (L)^{\bullet}$

stato 7: $L \rightarrow S^{\bullet}$

stato 8: $L \rightarrow L, \bullet S \qquad S \rightarrow \bullet (L) \qquad S \rightarrow \bullet a$

stato 9: $L \rightarrow L, S^{\bullet}$

Tabella delle transizioni

stato	a	()	,	S	L
1	4	3			2	
2						
3		3			7	5
4						
5			6	8		
6						
7						
8	4	3			9	
9						

Tabella di controllo (da verificare)

variabile	0	1	2	#
S	0, XYS	XYS	XYS	
X	Y	Y	2, Y	
Y	3	1, ε	3	