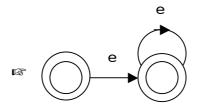
Prova scritta di

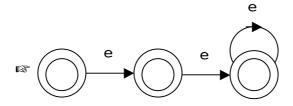
Compilatori

Linguaggi e Compilatori

del 23 gennaio 2012


ESERCIZIO 1. È noto che, date una qualsiasi espressione e dell'algebra di Kleene, sono equivalenti le due espressioni

$$\mathbf{E} = \mathbf{e}^*$$
 $\mathbf{E}' = \mathbf{\epsilon} \mid \mathbf{e}\mathbf{e}^*$


Per verificare l'equivalenza di E ed E', provare l'equivalenza degli automi A e A' di Thompson associati rispettivamente alle due espressioni E ed E' prendendo per "alfabeto" l'insieme $\{e\}$.

Soluzione

L'automa finito deterministico equivalente all'automa ${\bf A}$ di Thompson associato all'espressione ${\bf E}$ è

e l'automa finito deterministico equivalente all'automa \mathbf{A}' di Thompson associato all'espressioni \mathbf{E}' è

Essendo gli stati dei due automi tutti di accettazione, i due automi sono equivalenti.

ESERCIZIO 2. Si consideri la grammatica acontestuale G con produzioni

$$S \rightarrow Aa \mid b$$

$$A \rightarrow Ac \mid Sd \mid B$$

$$B \rightarrow e \mid A \mid \epsilon$$

2a) Trovare una grammatica C in forma normale di Chomsky ed equivalente a G. Applicare poi l'algoritmo CYK per decidere se la stringa ada è o meno una frase di C (e quindi di G) e, se lo è, se è una frase ambigua.

Soluzione

Tenuto conto che le variabili annullabili sono A e B, l'eliminazione delle produzioni nulle porta alla grammatica

$$S \rightarrow Aa \mid a \mid b$$

$$S \rightarrow Aa \mid a \mid b$$
 $A \rightarrow Ac \mid c \mid Sd \mid B$ $B \rightarrow e \mid A$

$$B \rightarrow e \mid A$$

L'eliminazione delle produzioni unitarie $A \rightarrow B$ e $B \rightarrow A$ porta alla grammatica

$$S \rightarrow Aa \mid a \mid b$$

$$A \rightarrow Ac \mid c \mid Sd \mid \epsilon$$

$$S \rightarrow Aa \mid a \mid b$$
 $A \rightarrow Ac \mid c \mid Sd \mid e$ $B \rightarrow Ac \mid c \mid Sd \mid e$

L'eliminazione della variabile improduttiva di II specie B porta alla grammatica G'

$$S \rightarrow Aa \mid a \mid b$$

$$S \rightarrow Aa \mid a \mid b$$
 $A \rightarrow Ac \mid c \mid Sd \mid e$

e una grammatica C in forma normale di Chomsky ed equivalente a G è la seguente

$$S \rightarrow AX \mid a \mid b$$

$$S \rightarrow AX \mid a \mid b$$
 $A \rightarrow AY \mid c \mid SZ \mid e$ $X \rightarrow a$ $Y \rightarrow c$ $Z \rightarrow d$

$$\rightarrow c \quad Z \rightarrow c$$

La stringa ada è una frase non ambigua di C (e quindi di G).

a	ad	ada
d	da	
a		

$X \rightarrow a$	$A \rightarrow SZ$	$S \rightarrow AX$
$S \rightarrow a$		
$z \rightarrow d$	-	
X → a		
S → a		

2b) Trovare una grammatica **H** priva di produzioni ricorsive a sinistra ed equivalente a **G**. Applicare l'algoritmo a discesa ricorsiva per decidere se la stringa ada è o meno una frase di **H**.

Soluzione

A partire dalla grammatica **G**'

$$S \rightarrow Aa \mid a \mid b$$

 $A \rightarrow Ac \mid Sd \mid c \mid e$

ordiniamo i simboli nonterminali: primo S, secondo A. Allora sostituiamo la produzione $A \rightarrow Sd$ con le produzioni $A \rightarrow Aad \mid ad \mid bd$ e otteniamo

$$S \rightarrow Aa \mid a \mid b$$
 $A \rightarrow Ac \mid Aad \mid ad \mid bd \mid c \mid e$

A questo punto, eliminiamo le due produzioni mancine $A \rightarrow Ac \mid Aad$ ed otteniamo la grammatica H:

$$S \rightarrow Aa \mid a \mid b$$
 $A \rightarrow adB \mid bdB \mid cB \mid eB$ $B \rightarrow cB \mid adB \mid \epsilon$

A questo punto calcoliamo i valori delle funzioni I e J; in particolare, abbiamo

$$I(S) = I(A) = \{a, b, c, e\}, I(B) = \{a, c, \epsilon\},$$

$$J(S) = \{\#\}, J(A) = J(B) = \{a\}.$$

Così, la tabella di controllo è

	a	b	С	d	е	#
S	$S \rightarrow Aa S \rightarrow a$	$S \rightarrow Aa S \rightarrow b$	S → Aa		S → Aa	
А	$A \rightarrow adB$	A → bdB	$A \rightarrow cB$		A → eB	
В	$B \rightarrow adB B \rightarrow \epsilon$		B→cB			

Analisi ricorsiva in discesa della stringa ada con backtracking:

etichetta del nodo di controllo simbolo corrente produzioni applicabili $S \hspace{1cm} a \hspace{1cm} \underline{S \to Aa} \hspace{1cm} S \to a$ $A \hspace{1cm} a \hspace{1cm} \underline{A \to adB}$

a a

d d

B a $B \rightarrow adB$ $\underline{B} \rightarrow \varepsilon$