
CHAPTER 8

Algorithms for Data Streams

CAMIL DEMETRESCU and IRENE FINOCCHI

8.1 INTRODUCTION

Efficient processing over massive data sets has taken an increased importance in
the last few decades due to the growing availability of large volumes of data in a
variety of applications in computational sciences. In particular, monitoring huge and
rapidly changing streams of data that arrive online has emerged as an important data
management problem: Relevant applications include analyzing network traffic, online
auctions, transaction logs, telephone call records, automated bank machine operations,
and atmospheric and astronomical events. For these reasons, the streaming model
has recently received a lot of attention. This model differs from computation over
traditional stored data sets since algorithms must process their input by making one
or a small number of passes over it, using only a limited amount of working memory.
The streaming model applies to settings where the size of the input far exceeds the size
of the main memory available and the only feasible access to the data is by making
one or more passes over it.

Typical streaming algorithms use space at most polylogarithmic in the length of
the input stream and must have fast update and query times. Using sublinear space
motivates the design for summary data structures with small memory footprints, also
known as synopses [34]. Queries are answered using information provided by these
synopses, and it may be impossible to produce an exact answer. The challenge is
thus to produce high quality approximate answers, that is, answers with confidence
bounds on the possible error: Accuracy guarantees are typically made in terms of
a pair of user-specified parameters, ε and δ, meaning that the error in answering a
query is within a factor of 1 + ε of the true answer with probability at least 1 − δ.
The space and update time will depend on these parameters and the goal is to limit
this dependence as much as possible.

Major progress has been achieved in the last 10 years in the design of streaming
algorithms for several fundamental data sketching and statistics problems, for which
several different synopses have been proposed. Examples include number of distinct

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenović Copyright © 2008 John Wiley & Sons, Inc.

239

240 ALGORITHMS FOR DATA STREAMS

items, frequency moments, L1 and L2 norms of vectors, inner products, frequent
items, heavy hitters, quantiles, histograms, and wavelets. Recently, progress has been
achieved for other problem classes, including computational geometry (e.g., cluster-
ing and minimum spanning trees) and graphs (e.g., triangle counting and spanners).
At the same time, there has been a flurry of activity in proving impossibility results,
devising interesting lower bound techniques, and establishing important complemen-
tary results.

This chapter is intended as an overview of this rapidly evolving area. The chapter
is not meant to be comprehensive, but rather aims at providing an outline of the main
techniques used for designing algorithms or for proving lower bounds. We refer the
interested reader to the works by Babcock et al. [7], Gibbons and Matias [34] and
Muthukrishnan [57] for an extensive discussion of problems and results not mentioned
here.

8.1.1 Applications

As observed before, the primary application of data stream algorithms is to monitor
continuously huge and rapidly changing streams of data in order to support exploratory
analyses and to detect correlations, rare events, fraud, intrusion, and unusual or anoma-
lous activities. Such streams of data may be, for example, performance measurements
in traffic management, all detail records in telecommunications, transactions in retail
chains, ATM operations in banks, bids in online auctions, log records generated by
Web Servers, or sensor network data. In all these cases, the volumes of data are huge
(several terabytes or even petabytes), and records arrive at a rapid rate. Other relevant
applications for data stream processing are related, for example, to processing mas-
sive files on secondary storage and to monitoring the contents of large databases or
data warehouse environments. In this section, we highlight some typical needs that
arise in these contexts.

8.1.1.1 Network Management Perhaps the most prominent application is re-
lated to network management. This involves monitoring and configuring network
hardware and software to ensure smooth operations. Consider, for example, traffic
analysis in the Internet. Here, as IP packets flow through the routers, we would like
to monitor link bandwidth usage, to estimate traffic demands, to detect faults, con-
gestion, and usage patterns. Typical queries that we would be able to answer are thus
the following. How many IP addresses used a given link in a certain period of time?
How many bytes were sent between a pair of IP addresses? Which are the top 100 IP
addresses in terms of traffic? What is the average duration of an IP session? Which
sessions transmitted more than 1000 bytes? Which IP addresses are involved in more
than 1000 sessions? All these queries are heavily motivated by traffic analysis, fraud
detection, and security.

To get a rough estimate of the amount of data that need to be analyzed to answer
one such query, consider that each router can forward up to 1 billion packets per hour,
and each Internet Service Provider may have many hundreds of routers: thus, many
terabytes of data per hour need to be processed. These data arrive at a rapid rate, and

INTRODUCTION 241

we therefore need algorithms to mine patterns, process queries, and compute statistics
on such data streams in almost real time.

8.1.1.2 Database Monitoring Many commercial database systems have a query
optimizer used for estimating the cost of complex queries. Consider, for example, a
large database that undergoes transactions (including updates). Upon the arrival of
a complex query q, the optimizer may run some simple queries in order to decide
an optimal query plan for q: In particular, a principled choice of an execution plan
by the optimizer depends heavily on the availability of statistical summaries such as
histograms, the number of distinct values in a column for the tables referenced in
a query, or the number of items that satisfy a given predicate. The optimizer uses
this information to decide between alternative query plans and to optimize the use of
resources in multiprocessor environments. The accuracy of the statistical summaries
greatly impacts the ability to generate good plans for complex SQL queries. The
summaries, however, must be computed quickly: In particular, examining the entire
database is typically regarded as prohibitive.

8.1.1.3 Online Auctions During the last few years, online implementations of
auctions have become a reality, thanks to the Internet and to the wide use of computer-
mediated communication technologies. In an online auction system, people register
to the system, open auctions for individual items at any time, and then submit contin-
uously items for auction and bids for items. Statistical estimation of auction data is
thus very important for identifying items of interest to vendors and purchasers, and
for analyzing economic trends.

Typical queries may require to convert the prices of incoming bids between dif-
ferent currencies, to select all bids of a specified set of items, to maintain a table of
the currently open auctions, to select the items with the most bids in a specified time
interval, to maintain the average selling price over the items sold by each seller, to
return the highest bid in a given period of time, or to monitor the average closing
price (i.e., the price of the maximum bid, or the starting price of the auction in case
there were no bids) across items in each category.

8.1.1.4 Sequential Disk Accesses In modern computing platforms, the access
times to main memory and disk vary by several orders of magnitude. Hence, when the
data reside on disk, it is much more important to minimize the number of I/Os (i.e., the
number of disk accesses) than the CPU computation time as it is done in traditional
algorithms theory. Many ad hoc algorithmic techniques have been proposed in the
external memory model for minimizing the number of I/Os during a computation
(see, e.g., the work by Vitter [64]).

Due to the high sequential access rates of modern disks, streaming algorithms can
also be effectively deployed for processing massive files on secondary storage, pro-
viding new insights into the solution of several computational problems in external
memory. In many applications managing massive data sets, using secondary and ter-
tiary storage devices is indeed a practical and economical way to store and move data:
such large and slow external memories, however, are best optimized for sequential

242 ALGORITHMS FOR DATA STREAMS

access, and thus naturally produce huge streams of data that need to be processed in a
small number of sequential passes. Typical examples include data access to database
systems [39] and analysis of Internet archives stored on tape [43]. The streaming
algorithms designed with these applications in mind may have a greater flexibility:
Indeed, the rate at which data are processed can be adjusted, data can be processed
in chunks, and more powerful processing primitives (e.g., sorting) may be available.

8.1.2 Overview of the Literature

The problem of computing in a small number of passes over the data appears already
in papers from the late 1970s. Morris, for instance, addressed the problem of keeping
approximate counts of large numbers [55]. Munro and Paterson [56] studied the space
required for selection when at most P passes over the data can be performed, giving
almost matching upper and lower bounds as a function of P and of the input size.
The paper by Alon et al. [5,6], awarded in 2005 with the Gödel Prize for outstanding
papers in the area of theoretical computer science, provided the foundations of the
field of streaming and sketching algorithms. This seminal work introduced the novel
technique of designing small randomized linear projections that allow the approxi-
mation (to user specified precision) of the frequency moments of a data set and other
quantities of interest. The computation of frequency moments is now fully under-
stood, with almost matching (up to polylogarithmic factors) upper bounds [12,20,47]
and lower bounds [9,14,46,62]. Namely, Indyk and Woodruff [47] presented the first
algorithm for estimating the kth frequency moment using space Õ(n1−2/k). A simpler
one-pass algorithm is described in [12].

Since 1996, many fundamental data statistics problems have been efficiently solved
in streaming models. For instance, the computation of frequent items is particularly
relevant in network monitoring applications and has been addressed, for example,
in many other works [1,16,22,23,51,54]. A plethora of other problems have been
studied in the last few years, designing solutions that hinge upon many different and
interesting techniques. Among them, we recall sampling, probabilistic counting, com-
binatorial group testing, core sets, dimensionality reduction, and tree-based methods.
We will provide examples of application of some of these techniques in Section 8.3.
An extensive bibliography can be found in the work by Muthukrishnan [57]. The
development of advanced techniques made it possible to solve progressively more
complex problems, including the computation of histograms, quantiles, norms, as
well as geometric and graph problems.

Histograms capture the distribution of values in a data set by grouping values into
buckets and maintaining suitable summary statistics for each bucket. Different kinds
of histograms exist: for example, in an equidepth histogram the number of values
falling into each bucket is uniform across all buckets. The problem of computing
these histograms is strictly related to the problem of maintaining the quantiles for the
data set: quantiles represent indeed the bucket boundaries. These problems have been
addressed, for example, in many other works [18,36,37,40,41,56,58,59]. Wavelets are
also widely used to provide summarized representations of data: works on computing
wavelet coefficients in data stream models include [4,37,38,60].

INTRODUCTION 243

A few fundamental works consider problems related to norm estimation, for
example, dominance norms and Lp sums [21,44]. In particular, Indyk pioneered
the design of sketches based on random variables drawn from stable distributions
(which are known to exist) and applied this idea to the problem of estimating Lp

sums [44].
Geometric problems have also been the subject of much recent research in the

streaming model [31,32,45]. In particular, clustering problems received special at-
tention: given a set of points with a distance function defined on them, the goal
is to find a clustering solution (a partition into clusters) that optimizes a certain
objective function. Classical objective functions include minimizing the sum of
distances of points to their closest median (k-median) or minimizing the max-
imum distance of a point to its closest center (k-center). Streaming algorithms
for such problem are presented, for example, in the works by Charikar [17] and
Guha et al. [42].

Differently from most data statistics problems, where O(1) passes and polyloga-
rithmic working space have been proven to be enough to find approximate solutions,
many classical graph problems seem to be far from being solved within similar bounds:
for many classical graph problems, linear lower bounds on the space × passes prod-
uct are indeed known [43]. A notable exception is related to counting triangles in
graphs, as discussed in the works by Bar-Yossef et al. [10], Buriol et al. [13], and
Jowhari and Ghodsi [49]. Some recent papers show that several graph problems can
be solved with one or few passes in the semi-streaming model [26–28,53] where the
working memory size is O(n · polylog n) for an input graph with n vertices: in other
words, akin to semi-external memory models [2,64] there is enough space to store ver-
tices, but not edges of the graph. Other works, such as [3,25,61], consider the design
of streaming algorithms for graph problems when the model allows more powerful
primitives for accessing stream data (e.g., use of intermediate temporary streams and
sorting).

8.1.3 Chapter Outline

This chapter is organized as follows. In Section 8.2 we describe the most common
data stream models: such models differ in the interpretation of the data on the stream
(each item can either be a value itself or indicate an update to a value) and in the
primitives available for accessing and processing stream items. In Section 8.3 we
focus on techniques for proving upper bounds: we describe some mathematical and
algorithmic tools that have proven to be useful in the construction of synopsis data
structures (including randomization, sampling, hashing, and probabilistic counting)
and we first show how these techniques can be applied to classical data statistics
problems. We then move to consider graph problems as well as techniques useful in
streaming models that provide more powerful primitives for accessing stream data
in a nonlocal fashion (e.g., simulations of parallel algorithms). In Section 8.4 we
address some lower bound techniques for streaming problems, using the computation
of the number of distinct items in a data stream as a running example: we explore the
use of reductions of problems in communication complexity to streaming problems,

244 ALGORITHMS FOR DATA STREAMS

and we discuss the use of randomization and approximation in the design of efficient
synopses. In Section 8.5 we summarize our contribution.

8.2 DATA STREAM MODELS

A variety of models exist for data stream processing: the differences depend on how
stream data should be interpreted and which primitives are available for accessing
stream items. In this section we overview the main features of the most commonly
used models.

8.2.1 Classical Streaming

In classical data streaming [5,43,56,57], input data are accessed sequentially in the
form of a data stream� = x1, ..., xn and need to be processed using a working memory
that is small compared to the length n of the stream. The main parameters of the model
are the number p of sequential passes over the data, the size s of the working memory,
and the per-item processing time. All of them should be kept small: typically, one
strives for one pass and polylogarithmic space, but this is not a requirement of the
model.

There exist at least three variants of classical streaming, dubbed (in increasing order
of generality) time series, cash register, and turnstile [57]. Indeed, we can think of
stream items x1, ..., xn as describing an underlying signal A, that is, a one-dimensional
function over the reals. In the time series model, each stream item xi represents the
ith value of the underlying signal, that is, xi = A[i]. In the other models, each stream
item xi represents an update of the signal: namely, xi can be thought of as a pair
(j, Ui), meaning that the jth value of the underlying signal must be changed by the
quantity Ui, that is, Ai[j] = Ai−1[j] + Ui. The partially dynamic scenario in which
the signal can be only incremented, that is, Ui ≥ 0, corresponds to the cash register
model, while the fully dynamic case yields the turnstile model.

8.2.2 Semi-Streaming

Despite the heavy restrictions of classical data streaming, we will see in Section 8.3
that major success has been achieved for several data sketching and statistics prob-
lems, where O(1) passes and polylogarithmic working space have been proven to be
enough to find approximate solutions. On the contrary, there exist many natural prob-
lems (including most problems on graphs) for which linear lower bounds on p × s

are known, even using randomization and approximation: these problems cannot be
thus solved within similar polylogarithmic bounds. Some recent papers [27,28,53]
have therefore relaxed the polylog space requirements considering a semi-streaming
model, where the working memory size is O(n · polylog n) for an input graph with n

vertices: in other words, akin to semi-external memory models [2,64], there is enough
space to store vertices, but not edges of the graph. We will see in Section 8.3.3 that
some complex graph problems can be solved in semi-streaming, including spanners,
matching, and diameter estimation.

ALGORITHM DESIGN TECHNIQUES 245

8.2.3 Streaming with a Sorting Primitive

Motivated by technological factors, some authors have recently started to investigate
the computational power of even less restrictive streaming models. Today’s comput-
ing platforms are equipped with large and inexpensive disks highly optimized for
sequential read/write access to data, and among the primitives that can efficiently
access data in a nonlocal fashion, sorting is perhaps the most optimized and well
understood. These considerations have led to introduce the stream-sort model [3,61].
This model extends classical streaming in two ways: the ability to write intermediate
temporary streams and the ability to reorder them at each pass for free. A stream-sort
algorithm alternates streaming and sorting passes: a streaming pass, while reading
data from the input stream and processing them in the working memory, produces
items that are sequentially appended to an output stream; a sorting pass consists of
reordering the input stream according to some (global) partial order and producing the
sorted stream as output. Streams are pipelined in such a way that the output stream
produced during pass i is used as input stream at pass i + 1. We will see in Sec-
tion 8.3.4 that the combined use of intermediate temporary streams and of a sorting
primitive yields enough power to solve efficiently (within polylogarithmic passes
and memory) a variety of graph problems that cannot be solved in classical stream-
ing. Even without sorting, the model is powerful enough for achieving space–passes
trade-offs [25] for graph problems for which no sublinear memory algorithm is known
in classical streaming.

8.3 ALGORITHM DESIGN TECHNIQUES

Since data streams are potentially unbounded in size, when the amount of computation
memory is bounded it may be impossible to produce an exact answer. In this case,
the challenge is to produce high quality approximate answers, that is, answers with
confidence bounds on the possible error. The typical approach is to maintain a “lossy”
summary of the data stream by building up a synopsis data structure with memory
footprint substantially smaller than the length of the stream. In this section we describe
some mathematical and algorithmic techniques that have proven to be useful in the
construction of such synopsis data structures. Besides the ones considered in this
chapter, many other interesting techniques have been proposed: the interested reader
can find pointers to relevant works in Section 8.1.2. Rather than being comprehensive,
our aim is to present a small amount of results in sufficient detail that the reader can
get a feeling of some common techniques used in the field.

The most natural approach to designing streaming algorithms is perhaps to main-
tain a small sample of the data stream: if the sample captures well the essential char-
acteristics of the entire data set with respect to a specific problem, evaluating a query
over the sample may provide reliable approximation guarantees for that problem. In
Section 8.3.1 we discuss how to maintain a bounded size sample of a (possibly un-
bounded) data stream and describe applications of sampling to the problem of finding
frequent items in a data stream.

246 ALGORITHMS FOR DATA STREAMS

Useful randomized synopses can also be constructed hinging upon hashing tech-
niques. In Section 8.3.2 we address the design of hash-based sketches for estimating
the number of distinct items in a data stream. We also discuss the main ideas behind
the design of randomized sketches for the more general problem of estimating the
frequency moments of a data set: the seminal paper by Alon et al. [5] introduced
the technique of designing small randomized linear projections that summarize large
amounts of data and allow frequency moments and other quantities of interest to
be approximated to user-specified precision. As quoted from the Gödel Award Prize
ceremony, this paper “set the pattern for a rapidly growing body of work, both the-
oretical and applied, creating the now burgeoning fields of streaming and sketching
algorithms.”

Sections 8.3.3 and 8.3.4 are mainly devoted to the semi-streaming and stream-sort
models. In Section 8.3.3 we focus on techniques that can be applied to solve complex
graph problems in O(1) passes and Õ(n) space. In Section 8.3.4, finally, we analyze
the use of more powerful primitives for accessing stream data, showing that sorting
yields enough power to solve efficiently a variety of problems for which efficient
solutions in classical streaming cannot be achieved.

8.3.1 Sampling

A small random sample S of the data often captures certain characteristics of the entire
data set. If this is the case, the sample can be maintained in memory and queries can
be answered over the sample. In order to use sampling techniques in a data stream
context, we first need to address the problem of maintaining a sample of a specified
size over a possibly unbounded stream of data that arrive online. Note that simple
coin tossing is not possible in streaming applications, as the sample size would be
unbounded. The standard solution is to use Vitter’s reservoir sampling [63] that we
describe in the following Sections.

8.3.1.1 Reservoir Sampling This technique dates back to the 1980s [63]. Given
a stream � of n items that arrive online, at any instant of time reservoir sampling
guarantees to maintain a uniform random sample S of fixed size m of the part of
stream observed up to that time. Let us first consider the following natural sampling
procedure.

At the beginning, add to S the first m items of the stream. Upon seeing the
stream item xt at time t, add xt to S with probability m/t. If xt is added, evict
a random item from S (other than xt).

It is easy to see that at each time |S| = m as desired. The next theorem proves that,
at each time, S is actually a uniform random sample of the stream observed so far.

Theorem 1 [[63]] Let S be a sample of size m maintained over a stream � =
x1, ..., xn by the above algorithm. Then, at any time t and for each i ≤ t, the probability
that xi ∈ S is m/t.

ALGORITHM DESIGN TECHNIQUES 247

Proof. We use induction on t. The base step is trivial. Let us thus assume that the
claim is true up to time; t that is, by inductive hypothesis Pr[xi ∈ S] = m/t for each
i ≤ t. We now examine how S can change at time t + 1, when item xt+1 is considered
for addition. Consider any item xi with i < t + 1. If xt+1 is not added to S (this
happens with probability 1 − m/(t + 1)), then xi has the same probability of being in
S of the previous step (i.e., m/t). If xt+1 is added to S (this happens with probability
m/(t + 1)), then xi has a probability of being in S equal to (m/t)(1 − 1/m), since it
must have been in S at the previous step and must not be evicted at the current step.
Thus, for each i ≤ t, at time t + 1 we have

Pr[xi ∈ S] =
(

1 − m

t + 1

)
m

t
+ m

t + 1

[
m

t

(
1 − 1

m

)]
= m

t + 1
.

The fact that xt+1 is added to S with probability m/(t + 1) concludes the proof. �

Instead of flipping a coin for each element (that requires to generate n random
values), the reservoir sampling algorithm randomly generates the number of elements
to be skipped before the next element is added to S. Special care is taken to generate
these skip numbers, so as to guarantee the same properties that we discussed in
Theorem 1 for the naı̈ve coin-tossing approach. The implementation based on skip
numbers has the advantage that the number of random values to be generated is the
same as the number of updates of the sample S. We refer to the work by Vitter [63]
for the details and the analysis of this implementation.

We remark that reservoir sampling works well for insert and updates of the incom-
ing data, but runs into difficulties if the data contain deletions. In many applications,
however, the timeliness of data is important, since outdated items expire and should
be no longer used when answering queries. Other sampling techniques have been pro-
posed that address this issue: see, for example, [8,35,52] and the references therein.
Another limitation of reservoir sampling derives from the fact that the stream may
contain duplicates, and any value occurring frequently in the sample is a wasteful
use of the available space: concise sampling overcomes this limitation representing
elements in the sample by pairs (value, count). As described by Gibbons and Ma-
tias [33], this natural idea can be used to compress the samples and allows it to solve,
for example, the top-k problem, where the k most frequent items need to be identified.

In the rest of this section, we provide a concrete example of how sampling can
be effectively applied to certain nontrivial streaming problems. However, as we will
see in Section 8.4, there also exist classes of problems for which sampling-based
approaches are not effective, unless using a prohibitive (almost linear) amount of
memory.

8.3.1.2 An Application of Sampling: Frequent Items Following an ap-
proach proposed by Manku and Motwani [51], we will now show how to use sampling
to address the problem of identifying frequent items in a data stream, that is, items
whose frequency exceeds a user-specified threshold. Intuitively, it should be possible
to estimate frequent items by a good sample. The algorithm that we discuss, dubbed

248 ALGORITHMS FOR DATA STREAMS

sticky sampling [51], supports this intuition. The algorithm accepts two user-specified
thresholds: a frequency threshold ϕ ∈ (0, 1), and an error parameter ε ∈ (0, 1) such
that ε < ϕ. Let � be a stream of n items x1, ..., xn. The goal is to report

� all the items whose frequency is at leastϕ n (i.e., there must be no false negatives);
� no item with frequency smaller than (ϕ − ε)n.

We will denote by f (x) the true frequency of an item x, and by fe(x) the frequency
estimated by sticky sampling. The algorithm also guarantees small error in individual
frequencies; that is, the estimated frequency is less than the true frequency by at most
ε n. The algorithm is randomized, and in order to meet the two goals with probability at
least 1 − δ, for a user-specified probability of failure δ ∈ (0, 1), it maintains a sample
with expected size 2ε−1 log(ϕ−1δ−1) = 2t. Note that the space is independent of the
stream length n.

The sample S is a set of pairs of the form (x, fe(x)). In order to handle poten-
tially unbounded streams, the sampling rate r is not fixed, but is adjusted so that the
probability 1/r of sampling a stream item decreases as more and more items are
considered. Initially, S is empty and r = 1. For each stream item x, if x ∈ S, then
fe(x) is increased by 1. Otherwise, x is sampled with rate r, that is, with probability
1/r: if x is sampled, the pair (x, 1) is added to S, otherwise we ignore x and move to
the next stream item.

After sampling with rate r = 1 the first 2t items, the sampling rate increases geo-
metrically as follows: the next 2t items are sampled with rate r = 2, the next 4t items
with rate r = 4, the next 8t items with rate r = 8, and so on. Whenever the sampling
rate changes, the estimated frequencies of sample items are adjusted so as to keep
them consistent with the new sampling rate: for each (x, fe(x)) ∈ S, we repeatedly
toss an unbiased coin until the coin toss is successful, decreasing fe(x) by 1 for each
unsuccessful toss. We evict (x, fe(x)) from S if fe(x) becomes 0 during this process.
Effectively, after each sampling rate doubling, S is transformed to exactly the state it
would have been in, if the new rate had been used from the beginning.

Upon a frequency items query, the algorithm returns all sample items whose esti-
mated frequency is at least (ϕ − ε)n.

The following technical lemma will be useful in the analysis of sticky sampling.
Although pretty straightforward, we report the proof for the sake of completeness.

Lemma 1 Let r ≥ 2 and let n be the number of stream items considered when the
sampling rate is r. Then 1/r ≥ t/n, where t = ε−1 log(ϕ−1δ−1).

Proof. It can be easily proved by induction on r that n = rt at the beginning of the
phase in which sampling rate r is used. The base step, for r = 2, is trivial: at the
beginning S contains exactly 2t elements by construction. During the phase with
sampling rate r, as far as the algorithm works, rt new stream elements are considered;
thus, when the sampling rate doubles at the end of the phase, we have n = 2rt, as
needed to prove the induction step. This implies that during any phase it must be
n ≥ rt, which proves the claim. �

ALGORITHM DESIGN TECHNIQUES 249

We can now prove that sticky sampling meets the goals in the definition of the
frequent items problem with probability at least 1 − δ using space independent of n.

Theorem 2 [[51]] For any ε, ϕ, δ ∈ (0, 1), with ε < ϕ, sticky sampling solves the
frequent items problems with probability at least 1 − δ using a sample of expected
size (2/ε) log(ϕ−1δ−1).

Proof. We first note that the estimated frequency of a sample element x is an underesti-
mate of the true frequency, that is, fe(x) ≤ f (x). Thus, if the true frequency is smaller
than (ϕ − ε)n, the algorithm will not return x, since it must also be fe(x) < (ϕ − ε)n.

We now prove that there are no false negatives with probability ≥ 1 − δ. Let k

be the number of elements with frequency at least ϕ, and let y1, ..., yk be those
elements. Clearly, it must be k ≤ 1/ϕ. There are no false negatives if and only if all
the elements y1, ..., yk are returned by the algorithm. We now study the probability
of the complementary event, proving that it is upper bounded by δ.

Pr[∃ false negative] ≤
k∑

i=1

Pr[yi is not returned] =
k∑

i=1

Pr[fe(yi) < (ϕ − ε)n].

Since f (yi) ≥ ϕ n by definition of yi, we have fe(yi) < (ϕ − ε)n if and only if the
estimated frequency of yi is underestimated by at least ε n. Any error in the estimated
frequency of an element corresponds to a sequence of unsuccessful coin tosses during
the first occurrences of the element. The length of this sequence exceeds ε n with
probability

(
1 − 1

r

)ε n

≤
(

1 − t

n

)ε n

≤ e−t ε,

where the first inequality follows from Lemma 1. Hence,

Pr[∃ false negative] ≤ k e−t ε ≤ e−t ε

ϕ
= δ

by definition of t. This proves that the algorithm is correct with probability ≥ 1 − δ.
It remains to discuss the space usage. The number of stream elements considered

at the end of the phase in which sampling rate r is used must be at most 2rt (see the
proof of Lemma 1 for details). The algorithm behaves as if each element was sampled
with probability 1/r: the expected number of sampled elements is therefore 2t. �

Manku and Motwani also provide a deterministic algorithm for estimating frequent
items: this algorithm guarantees no false negatives and returns no false positives with
true frequency smaller than (ϕ − ε)n [51]. However, the price paid for being determin-
istic is that the space usage increases to O((1/ε) log(ε n)). Other works that describe
different techniques for tracking frequent items are, for example, [1,16,22,23,54].

250 ALGORITHMS FOR DATA STREAMS

8.3.2 Sketches

In this section we exemplify the use of sketches as randomized estimators of the
frequency moments of a data stream. Let � = x1, ..., xn be a stream of n values
taken from a universe U of size u, and let fi, for i ∈ U, be the frequency (number of
occurrences) of value i in �, that is, fi = |{j : xj = i}|. The kth frequency moment
Fk of � is defined as

Fk =
∑
i∈U

f k
i .

Frequency moments represent useful statistical information on a data set and are
widely used in database applications. In particular, F0 and F1 represent the number
of distinct values in the data stream and the length of the stream, respectively. F2,
also known as Gini’s index, provides valuable information about the skew of the data.
F∞, finally, is related to the maximum frequency element in the data stream, that is,
maxi∈U fi.

8.3.2.1 Probabilistic Counting We begin our discussion from the estimation
of F0. The problem of counting the number of distinct values in a data set using small
space has been studied since the early 1980s by Flajolet and Martin [29,30], who
proposed a hash-based probabilistic counter. We first note that a naı̈ve approach to
compute the exact value of F0 would use a counter c(i) for each value i of the universe
U, and would therefore require O(1) processing time per item, but linear space. The
probabilistic counter of Flajolet and Martin [29,30] relies on hash functions to find a
good approximation of F0 using only O(log u) bits of memory, where u is the size of
the universe U.

The counter consists of an array C of log u bits. Each stream item is mapped to
one of the log u bits by means of the combination of two functions h and t. The
hash function h : U → [0, u − 1] is drawn from a set of strongly 2-universal hash
functions: it transforms values of the universe into integers sufficiently uniformly
distributed over the set of binary strings of length log u. The function t, for any
integer i, gives the number t(i) of trailing zeros in the binary representation of i.
Updates and queries work as follows:

• Counter update: Upon seeing a stream value x, set C[t(h(x))] to 1.

• Distinct values query: Let R be the position of the rightmost 1 in the counter
C, with 1 ≤ R ≤ log u. Return 2R.

Notice that all stream items by the same value will repeatedly set the same counter bit
to 1. Intuitively, the fact that h distributes items uniformly over [0, u − 1] and the use
of function t guarantee that counter bits are selected in accordance with a geometric
distribution; that is, 1/2 of the universe items will be mapped to the first counter bit,
1/4 will be mapped to the second counter bit, and so on. Thus, it seems reasonable
to expect that the first log F0 counter bits will be set to 1 when the stream contains

ALGORITHM DESIGN TECHNIQUES 251

F0 distinct items: this suggests that R, as defined above, yields a good approximation
for F0. We will now give a more formal analysis. We will denote by Zj the number
of distinct stream items that are mapped (by the composition of functions t and h) to
a position ≥ j. Thus, R is the maximum j such that Zj > 0.

Lemma 2 Let Zj be the number of distinct stream items x for which t(h(x)) ≥ j.
Then, E[Zj] = F0/2j and Var[Zj] < E[Zj].

Proof. Let Wx be an indicator random variable whose value is 1 if and only if
t(h(x)) ≥ j. Then, by definition of Zj ,

Zj =
∑

x∈U∩�

Wx. (8.1)

Note that |U ∩ �| = F0. We now study the probability that Wx = 1. It is not difficult
to see that the number of binary strings of length log u that have exactly j trailing
zeros, for 0 ≤ j < log u, is 2log u−(j+1). Thus, the number of strings that have at
least j trailing zeros is 1 + ∑log u−1

i=j 2log u−(i+1) = 2log u−j . Since h distributes items
uniformly over [0, u − 1], we have that

Pr[Wx = 1] = Pr[t(h(x)) ≥ j] = 2log u−j

u
= 2−j.

Hence, E[Wx] = 2−j and Var[Wx] = E[W2
x] − E[Wx]2 = 2−j − 2−2j = 2−j(1 −

2−j). We are now ready to compute E[Zj] and Var[Zj]. By (8.1) and by linearity of
expectation we have

E[Zj] = F0 ·
(

1 · 1

2j
+ 0 ·

(
1 − 1

2j

))
= F0

2j
.

Due to pairwise independence (guaranteed by the choice of the hash function h) we
have Var[Wx + Wy] = Var[Wx] + Var[Wy] for any x, y ∈ U ∩ � and thus

Var[Zj] =
∑

x∈U∩�

Var[Wx] = F0

2j

(
1 − 1

2j

)
< F02j = E[Zj].

This concludes the proof. �

Theorem 3 [[5,29,30]] Let F0 be the exact number of distinct values and let 2R be
the output of the probabilistic counter to a distinct values query. For any c > 2, the
probability that 2R is not between F0/c and c F0 is at most 2/c.

Proof. Let us first study the probability that the algorithm overestimates F0 by a
factor of c. We begin by noticing that Zj takes only nonnegative values, and thus we

252 ALGORITHMS FOR DATA STREAMS

can apply Markov’s inequality to estimate the probability that Zj ≥ 1, obtaining

Pr[Zj ≥ 1] ≤ E[Zj]

1
= F0

2j
, (8.2)

where the equality is by Lemma 2. If the algorithm overestimates F0 by a factor of c,
then it must exist an index j such that C[j] = 1 and 2j/F0 > c (i.e., j > log2(c F0)).
By definition of Zj , this implies Zlog2(c F0) ≥ 1. Thus,

Pr[∃j : C[j] = 1 and 2j/F0 > c] ≤ Pr[Zlog2(c F0) ≥ 1] ≤ F0

2log2(c F0) = 1

c
,

where the last inequality follows from (8.2). The probability that the algorithm over-
estimates F0 by a factor of c is therefore at most 1/c.

Let us now study the probability that the algorithm underestimates F0 by a factor
of 1/c. Symmetrically to the previous case, we begin by estimating the probability
that Zj = 0. Since Zj takes only nonnegative values, we have

Pr[Zj = 0] = Pr[|Zj − E[Zj]| ≥ E[Zj]] ≤ Var[Zj]

E[Zj]2 <
1

E[Zj]
= 2j

F0
(8.3)

using Chebyshev inequality and Lemma 2. If the algorithm underestimates F0
by a factor of 1/c, then there must exist an index j such that 2j < F0/c (i.e.,
j < log2(F0/c)) and C[p] = 0 for all positions p ≥ j. By definition of Zj , this im-
plies Zlog2(F0/c) = 0, and with reasonings similar to the previous case and by using
(8.3), we obtain that the probability that the algorithm underestimates F0 by a factor
of 1/c is at most 2log2(F0/c)/F0 = 1/c.

The upper bounds on the probabilities of overestimates and underestimates imply
that the probability that 2R is not between F0/c and c F0 is at most 2/c. �

The probabilistic counter of Flajolet and Martin [29,30] assumes the existence of
hash functions with some ideal random properties. This assumption has been more
recently relaxed by Alon et al. [5], who adapted the algorithm so as to use simpler
linear hash functions. We remark that streaming algorithms for computing a (1 + ε)-
approximation of the number of distinct items are presented, for example, in the work
by Bar-Yossef et al. [11].

8.3.2.2 Randomized Linear Projections and AMS Sketches We now con-
sider the more general problem of estimating the frequency moments Fk of a data set,
for k ≥ 2, focusing on the seminal work by Alon et al. [5].

In order to estimate F2, Alon et al. introduced a fundamental technique based
on the design of small randomized linear projections that summarize some essential
properties of the data set. The basic idea of the sketch designed in the work by Alon
et al. [5] for estimating F2 is to define a random variable whose expected value is F2,
and whose variance is relatively small. We follow the description from the work Alon
et al. [4].

ALGORITHM DESIGN TECHNIQUES 253

The algorithm computes µ random variables Y1, ..., Yµ and outputs their median
Y as the estimator for F2. Each Yi is in turn the average of α independent, identically
distributed random variables Xij , with 1 ≤ j ≤ α. The parameters µ and α need to be
carefully chosen in order to obtain the desired bounds on space, approximation, and
probability of error: such parameters will depend on the approximation guarantee λ

and on the error probability δ.
Each Xij is computed as follows. Select at random a hash function ξ mapping the

items of the universe U to {−1, +1}: ξ is selected from a family of 4-wise independent
hash functions. Informally, 4-wise independence means that for every four distinct
values u1, ..., u4 ∈ U and for every 4-tuple ε1, ..., ε4 ∈ {−1, +1}, exactly (1/16)-
fraction of the hash functions in the family map ui to εi, for i = 1, ..., 4. Given ξ,
we define Zij = ∑

u∈U fu ξ(u) and Xij = Z2
ij . Notice that Zij can be considered as a

random linear projection (i.e., an inner product) of the frequency vector of the values
in U with the random vector associated with such values by the hash function ξ.

It can be proved that E[Y] = F2 and that, thanks to averaging of the Xij , each Yi

has small variance. Computing Y as the median of Yi allows it to boost the confidence
using standard Chernoff bounds. We refer the interested reader to the work by Alon
et al. [5] for a detailed proof. We limit here to formalize the statement of the result
proved in the work by Alon et al. [5].

Theorem 4 [[5]] For every k ≥ 1, λ > 0, and δ > 0, there exists a randomized
algorithm that computes a number Y that deviates from F2 by more than λF2 with
probability at most δ. The algorithm uses only

O

(
log(1/δ)

λ2 (log u + log n)

)

memory bits and performs one pass over the data.

Let us now consider the case of Fk, for k ≥ 2. The basic idea of the sketch designed
in the work by Alon et al. [5] is similar to that described above, but each Xij is now
computed by sampling the stream � as follows: an index p = pij is chosen uniformly
at random in [1, n] and the number r of occurrences of xp in the stream following
position p is computed by keeping a counter. Xij is then defined as n(rk − (r −
1)k). We refer the interested reader to the works by Alon et al. [4–6] for a detailed
description of this sketch and for the extension to the case where the stream length
n is not known. We limit here to formalize the statement of the result proved in the
work by Alon et al. [5]:

Theorem 5 [[5]] For every k ≥ 1, λ > 0 and δ > 0, there exists a randomized
algorithm that computes a number Y such that Y deviates from Fk by more than λFk

with probability at most δ. The algorithm uses

O

(
k log(1/δ)

λ2 u1−1/k(log u + log n)

)

254 ALGORITHMS FOR DATA STREAMS

memory bits and performs only one pass over the data.

Notice that Theorem 5 implies that F2 can be estimated using O((log(1/δ)/λ2)
√

u

(log u + log n)) memory bits: this is worse by a
√

u factor than the bound obtained
in Theorem 4.

8.3.3 Techniques for Graph Problems

In this section we focus on techniques that can be applied to solve graph problems in
the classical streaming and semi-streaming models. In Section 8.3.4 we will consider
results obtained in less restrictive models that provide more powerful primitives for
accessing stream data in a nonlocal fashion (e.g., stream-sort). Graph problems appear
indeed to be difficult in classical streaming, and only few interesting results have been
obtained so far. This is in line with the linear lower bounds on the space × passes
product proved in the work by Henzinger et al. [43], even using randomization and
approximation.

One problem for which sketches could be successfully designed is counting the
number of triangles: if the graphs have certain properties, the algorithm presented
in the work by Bar-Yossef et al. [10] uses sublinear space. Recently, Cormode and
Muthukrishnan [24] studied three fundamental problems on multigraph degree se-
quences: estimating frequency moments of degrees, finding the heavy hitter degrees,
and computing range sums of degree values. In all cases, their algorithms have space
bounds significantly smaller than storing complete information. Due to the lower
bounds in the work by Henzinger et al. [43], most work has been done in the semi-
streaming model, in which problems such as distances, spanners, matchings, girth,
and diameter estimation have been addressed [27,28,53]. In order to exemplify the
techniques used in these works, in the rest of this section we focus on one such result,
related to computing maximum weight matchings.

8.3.3.1 Approximating Maximum Weight Matchings Given an edge
weighted, undirected graph G(V, E, w), the weighted matching problem is to find
a matching M∗ such that w(M∗) = ∑

e∈M∗ w(e) is maximized. We recall that edges
in a matching are such that no two edges have a common end point. We now present a
one-pass semi-streaming algorithm that solves the weighted matching problem with
approximation ratio 1/6; that is, the matching M returned by the algorithm is such
that

w(M∗) ≤ 6 w(M).

The algorithm has been proposed in the work by Feigenbaum et al. [27] and is very
simple to describe. Algorithms with better approximation guarantees are described
in the work by McGregor [53].

As edges are streamed, a matching M is maintained in main memory. Upon
arrival of an edge e, the algorithm considers the set C ⊆ M of matching edges

ALGORITHM DESIGN TECHNIQUES 255

that share an end point with e. If w(e) > 2w(C), then e is added to M while the
edges in C are removed; otherwise (w(e) ≤ 2w(C)) e is ignored.

Note that, by definition of matching, the set C of conflicting edges has cardinality
at most 2. Furthermore, since any matching consists of at most n/2 edges, the space
requirement in bits is clearly O(n log n).

In order to analyze the approximation ratio, we will use the following notion of
replacement tree associated with a matching edge (see also Fig. 8.1). Let e be an edge
that belongs to M at the end of the algorithm’s execution: the nodes of its replacement
tree Te are edges of graph G, and e is the root of Te. When e has been added to M, it
may have replaced one or two other edges e1 and e2 that were previously in M: e1 and
e2 are children of e in Te, which can be fully constructed by applying the reasoning
recursively. It is easy to upper bound the total weight of nodes of each replacement
tree.

Lemma 3 Let R(e) be the set of nodes of the replacement tree Te, except for the
root e. Then, w(R(e)) ≤ w(e).

Proof. The proof is by induction. When e is a leaf in Te (base step), R(e) is empty and
w(R(e)) = 0. Let us now assume that e1 and e2 are the children of e in Te (the case of
a unique child is similar). By inductive hypothesis, w(e1) ≥ w(R(e1)) and w(e2) ≥
w(R(e2)). Since e replaced e1 and e2, it must have been w(e) ≥ 2 (w(e1) + w(e2)).
Hence, w(e) ≥ w(e1) + w(e2) + w(R(e1)) + w(R(e2)) = w(R(e)). �

(c)

120

130 40

10
62 30

2

50
4

a b c

d f
e

g h i

a b c

d f
e

g h i

(f)

(a)

120

130 40

10
62 30

2

50
4

a b c

d f
e

g h i

(c,f)(b,e)

(e,f)

(d,e)

(d,g) (h,i)

(d)

(c,f,2)
(b,e,10)
(h,i,4)
(e,f,30)
(h,f,50)
(e,g,40)
(d,e,62)
(a,d,120)
(d,g,130)

(b)

Σ =

a b c

d f
e

g h i

(e)

FIGURE 8.1 (a) A weighted graph and an optimal matching Opt (bold edges); (b) order in
which edges are streamed; (c) matching M computed by the algorithm (bold solid edges) and
edges in the history H \ M (dashed edges); (d) replacement trees of edges in M; (e) initial
charging of the weights of edges in Opt; (f) charging after the redistribution.

256 ALGORITHMS FOR DATA STREAMS

Theorem 6 [[27]] In one pass and space O(n log n), the above algorithm constructs
a (1/6)-approximate weighted matching M.

Proof. Let Opt = {o1, o2, ...} be the set of edges in a maximum weight matching and
let H = ⋃

e∈M(R(e) ∪ {e}) be the set of edges that have been part of the matching at
some point during the algorithm’s execution (these are the nodes of the replacement
trees).

We will show an accounting scheme that charges the weight of edges in Opt to
edges in H . The charging strategy, for each edge o ∈Opt, is the following:

� If o ∈ H , we charge w(o) to o itself.
� If o �∈ H , let us consider the time when o was examined for insertion in M, and

let C be the set of edges that share an end point with o and were in M at that
time. Since o was not inserted, it must have been |C| ≥ 1 and w(o) ≤ 2 w(C).
If C contains only one edge, we charge w(o) to that edge. If C contains two
edges e1 and e2, we charge w(o)w(e1)/(w(e1) + w(e2)) ≤ 2 w(e1) to e1 and
w(o)w(e2)/(w(e1) + w(e2)) ≤ 2 w(e2) to e2.

The following two properties hold: (a) the charge of o to any edge e is at most 2 w(e);
(b) any edge of H is charged by at most two edges of Opt, one per end point (see also
Fig. 8.1).

We now redistribute some charges as follows: if an edge o ∈ Opt charges an edge
e ∈ H and e gets replaced at some point by an edge e′ ∈ H that also shares an end
point with o, we transfer the charge of o from e to e′. With this procedure, property (a)
remains valid since w(e′) ≥ w(e). Moreover, o will always charge an incident edge,
and thus property (b) also remains true. In particular, each edge e ∈ H \ M will be
now charged by at most one edge in Opt: if at some point there are two edges charging
e, the charge of one of them will be transferred to the edge of H that replaced e. Thus,
only edges in M can be charged by two edges in Opt. By the above discussion we get

w(Opt) ≤
∑

e∈H\M
2w(e) +

∑
e∈M

4w(e) =
∑
e∈M

2w(R(e)) +
∑
e∈M

4w(e)

≤
∑
e∈M

6w(e) = 6w(M),

where the first equality is by definition of H and the last inequality is by Lemma 3. �

8.3.4 Simulation of PRAM Algorithms

In this section we show that a variety of problems for which efficient solutions in
classical streaming are not known or impossible to obtain can be solved very effi-
ciently in the stream-sort model discussed in Section 8.2.3. In particular, we show
that parallel algorithms designed in the PRAM model [48] can yield very efficient al-
gorithms in the stream-sort model. This technique is very similar to previous methods

ALGORITHM DESIGN TECHNIQUES 257

developed in the context of external memory management for deriving I/O efficient
algorithms (see, e.g., the work by Chiang et al. [19]). We recall that the PRAM
is a popular model of parallel computation: it consists of a number of processors
(each processor is a standard Random Access Machine) that communicate through a
common, shared memory. The computation proceeds in synchronized steps: no pro-
cessor will proceed with instruction i + 1 before all other processors complete the
ith step.

Theorem 7 Let A be a PRAM algorithm that uses N processors and runs in time T .
Then, A can be simulated in stream-sort in p = O(T) passes and space s = O(log N).

Proof. Let � = (1, val1)(2, val2) · · · (M, valM) be the input stream that represents
the memory image given as input to algorithm A, where valj is the value contained
at address j, and M = O(N). At each step of algorithm A, processor pi reads one
memory cell at address ini, updates its internal state sti, and possibly writes one output
cell at address outi. In a preprocessing pass, we append to � the N tuples:

(p1, in1, st1, out1) · · · (pN, inN, stN, outN),

where ini and outi are the cells read and written by pi at the first step of algorithm
A, respectively, and sti is the initial state of pi. Each step of A can be simulated by
performing the following sorting and scanning passes:

1. We sort the stream so that each (j, valj) is immediately followed by tuples
(pi, ini, sti, outi) such that ini = j; that is, the stream has the form

(1, val1)(pi11 , 1, sti11 , outi11)(pi12 , 1, sti12 , outi12) · · ·
(2, val2)(pi21 , 2, sti21 , outi21)(pi22 , 2, sti22 , outi22) · · ·
. . .
(M, valM)(piM1 , M, stiM1 , outiM1)(piM2 , M, stiM2 , outiM2) · · ·

This can be done, for example, by using 2j as sorting key for tuples (j, valj)
and 2ini + 1 as sorting key for tuples (pi, ini, sti, outi).

2. We scan the stream, performing the following operations:

• If we read (j, valj), we let currval = valj and we write (j, valj,“old”) to the
output stream.

• If we read (pi, ini, sti, outi), we simulate the task performed by processor
pi, observing that the value valini that pi would read from cell ini is readily
available in currval. Then we write to the output stream (outi, resi,“new”),
where resi is the value that pi would write at address outi, and we write tuple
(pi, in′

i, st′i, out′i), where in′
i and out′i are the cells to be read and written at the

next step of A, respectively, and st′i is the new state of processor pi.

3. Notice that at this point, for each j we have in the stream a triple of the form
(j, valj,“old”), which contains the value of cell j before the parallel step, and
possibly one or more triples (j, resi,“new”), which store the values written by
processors to cell j during that step. If there is no “new” value for cell j, we
simply drop the “old” tag from (j, valj,“old”). Otherwise, we keep for cell j

258 ALGORITHMS FOR DATA STREAMS

one of the new triples pruned of the “new” tag, and get rid of the other triples.
This can be easily done with one sorting pass, which lets triples by the same j be
consecutive, followed by one scanning pass, which removes tags and duplicates.

To conclude the proof, we observe that if A performs T steps, then our stream-sort
simulation requires p = O(T) passes. Furthermore, the number of bits of working
memory required to perform each processor task simulation and to store currval is
s = O(log N). �

Theorem 7 provides a systematic way of constructing streaming algorithms (in the
stream-sort model) for several fundamental problems. Prominent examples are list
ranking, Euler tour, graph connectivity, minimum spanning tree, biconnected com-
ponents, and maximal independent set, among others: for these problems there exist
parallel algorithms that use a polynomial number of processors and polylogarithmic
time (see, e.g., the work by Jájá [48]). Hence, according to Theorem 7, these prob-
lems can be solved in the stream-sort model within polylogarithmic space and passes.
Such bounds essentially match the results obtainable in more powerful computational
models for massive data sets, such as the parallel disk model [64]. As observed by Ag-
garwal et al. [3], this suggests that using more powerful, harder to implement models
may not always be justified.

8.4 LOWER BOUNDS

An important technique for proving streaming lower bounds is based on communi-
cation complexity lower bounds [43]. A crucial restriction in accessing a data stream
is that items are revealed to the algorithm sequentially. Suppose that the solution of
a computational problem needs to compare two items directly; one may argue that if
the two items are far apart in the stream, one of them must be kept in main memory for
long time by the algorithm until the other item is read from the stream. Intuitively, if
we have limited space and many distant pairs of items to be compared, then we cannot
hope to solve the problem unless we perform many passes over the data. We formal-
ize this argument by showing reductions of communication problems to streaming
problems. This allows us to prove lower bounds in streaming based on lower bounds
in communication complexity. To illustrate this technique, we prove a lower bound
for the element distinctness problem, which clearly implies a lower bound for the
computation of the number of distinct items F0 addressed in Section 8.3.2.

Theorem 8 Any deterministic or randomized algorithm that decides whether a
stream of n items contains any duplicates requires p = 	(n/s) passes using s bits of
working memory.

Proof. The proof follows from a two-party communication complexity lower bound
for the bit-vector-disjointness problem. In this problem, Alice has an n-bit-vector A

and Bob has an n-bit-vector B. They want to know whether A · B > 0, that is, whether

LOWER BOUNDS 259

there is at least one index i ∈ {1, . . . , n} such that A[i] = B[i] = 1. By a well-known
communication complexity lower bound [50], Alice and Bob must communicate
	(n) bits to solve the problem. This results holds also for randomized protocols: any
algorithm that outputs the correct answer with high probability must communicate
	(n) bits.

We now show that bit-vector-disjointness can be reduced to the element distinctness
streaming problem. The reduction works as follows. Alice creates a stream of items
SA containing indices i such that A[i] = 1. Bob does the same for B, that is, he creates
a stream of items SB containing indices i such that B[i] = 1. Alice runs a streaming
algorithm for element distinctness on SA, then she sends the content of her working
memory to Bob. Bob continues to run the same streaming algorithm starting from the
memory image received from Alice, and reading items from the stream SB. When the
stream is over, Bob sends his memory image back to Alice, who starts a second pass
on SA, and so on. At each pass, they exchange 2s bits. At the end of the last pass,
the streaming algorithm can answer whether the stream obtained by concatenating
SA and SB contains any duplicates; since this stream contains duplicates if and only
if A · B > 0, this gives Alice and Bob a solution to the problem.

Assume by contradiction that the number of passes performed by Alice and Bob
over the stream is o(n/s). Since at each pass they communicate 2s bits, then the
total number of bits sent between them over all passes is o(n/s) · 2s = o(n), which
is a contradiction as they must communicate 	(n) bits as noticed above. Thus, any
algorithm for the element distinctness problem that uses s bits of working memory
requires p = 	(n/s) passes. �

Lower bounds established in this way are information-theoretic, imposing no restric-
tions on the computational power of the algorithms. The general idea of reducing a
communication complexity problem to a streaming problem is very powerful, and
allows it to prove several streaming lower bounds. Those range from computing sta-
tistical summary information such as frequency moments [5] to graph problems such
as vertex connectivity [43], and imply that for many fundamental problems there are
no one-pass exact algorithms with a working memory significantly smaller than the
input stream.

A natural question is whether approximation can make a significant difference for
those problems, and whether randomization can play any relevant role. An interesting
observation is that there are problems, such as the computation of frequency moments,
for which neither randomization nor approximation is powerful enough for getting a
solution in one pass and sublinear space, unless they are used together.

8.4.1 Randomization

As we have seen in the proof of Theorem 8, lower bounds based on the communi-
cation complexity of the bit-vector-disjointness problem hold also for randomized
algorithms, which yields clear evidence that randomization without approximation
may not help. The result of Theorem 8 can be generalized for all one-pass frequency
moments. In particular, it is possible to prove that any randomized algorithm for com-

260 ALGORITHMS FOR DATA STREAMS

puting the frequency moments that outputs the correct result with probability higher
than 1/2 in one pass must use 	(n) bits of working memory. The theorem can be
proven using communication complexity tools.

Theorem 9 [[6]] For any nonnegative integer k �= 1, any randomized algorithm
that makes one pass over a sequence of at least 2n items drawn from the universe
U = {1, 2, . . . , n} and computes Fk exactly with probability >1/2 must use 	(n) bits
of working memory.

8.4.2 Approximation

Conversely, we can show that any deterministic algorithm for computing the frequency
moments that approximates the correct result within a constant factor in one pass must
use 	(n) bits of working memory. Differently from the lower bounds addressed earlier
in this section, we give a direct proof of this result without resorting to communication
complexity arguments.

Theorem 10 [[6]] For any nonnegative integer k �= 1, any deterministic algorithm
that makes one pass over a sequence of at least n/2 items drawn from the universe
U = {1, 2, . . . , n} and computes a number Y such that |Y − Fk| ≤ Fk/10 must use
	(n) bits of working memory.

Proof. The idea of the proof is to show that if the working memory is not large
enough, for any deterministic algorithm (which does not use random bits) there exist
two subsets S1 and S2 in a suitable collection of subsets of U such that the memory
image of the algorithm is the same after reading either S1 or S2; that is, S1 and S2 are
indistinguishable. As a consequence, the algorithm has the same memory image after
reading either S1 :S1 or S2 :S1, where A :B denotes the stream of items that starts with
the items of A and ends with the items of B. If S1 and S2 have a small intersection,
then the two streams S1 :S1 and S2 :S1 must have rather different values of Fk, and
the algorithm must necessarily make a large error on estimating Fk on at least one of
them. We now give more details on the proof assuming that k ≥ 2. The case k = 0
can be treated symmetrically.

Using a standard construction in coding theory, it is possible to build a family
F of 2	(n) subsets of U of size n/4 each such that any two of them have at most
n/8 common items. Notice that, for every set in F , the frequency of any value of
U in that set is either 0 or 1. Fix a deterministic algorithm and let s < log2 F be
the size of its working memory. Since the memory can assume at most 2s different
configurations and we have |F | > 2s possible distinct input sets in F , then by the
pigeonhole principle there must be two input sets S1, S2 ∈ F such that the memory
image of the algorithm after reading either one of them is the same. Now, if we
consider the two streams S1 :S1 and S2 :S1, the memory image of the algorithm after
processing either one of them is the same. Since by construction of F , S1 and S2
contain n/4 items each, and have at most n/8 items in common, then

LOWER BOUNDS 261

� Each of the n/4 distinct items in S1 :S1 has frequency 2, thus

F
S1:S1
k =

n∑
i=1

f k
i = 2k · n

4
.

� If S1 and S2 have exactly n/8 items in common, then S2 :S1 contains exactly
n/8 + n/8 = n/4 items with frequency 1 and n/8 items with frequency 2.
Hence,

F
S2:S1
k =

n∑
i=1

f k
i = n

4
+ 2k · n

8
.

Notice that, for k ≥ 2, F
S2:S1
k can only decrease as |S1 ∩ S2| decreases, and

therefore we can conclude that

F
S2:S1
k ≤ n

4
+ 2k · n

8
.

To simplify the notation, let A = F
S2:S1
k and B = F

S1:S1
k . The maximum relative error

performed by the algorithm on either input S2 :S1 or input S1 :S1 is

max

{ |Y − A|
A

,
|Y − B|

B

}
.

In order to prove that the maximum relative error is always ≥ 1/10, it is sufficient to
show that

|Y − B|
B

<
1

10
⇒ |Y − A|

A
≥ 1

10
. (8.4)

Let C = n/4 + 2k · n/8. For k ≥ 2, it is easy to check that A ≤ C ≤ B = 2k · n/4.
Moreover, the maximum relative error obtained for any Y < A is larger than the
maximum relative error obtained for Y = A (similarly for Y > B): thus, the value of
Y that minimizes the relative error is such that A ≤ Y ≤ B. Under this hypothesis,
|Y − B| = B − Y and |Y − A| = Y − A. With simple calculations, we can show that
proving (8.4) is equivalent to proving that

Y >
9

10
B ⇒ Y ≥ 11

10
A.

Notice that C = n/4 + B/2. Using this fact, it is not difficult to see that 9B ≥ 11C

for any k ≥ 2, and therefore the above implication is always satisfied since C ≥ A.
Since the maximum relative error performed by the algorithm on either input

S1 :S1 or input S2 :S1 is at least 1/10, we can conclude that if we use fewer than
log2 F = 	(n) memory bits, there is an input on which the algorithm outputs a value
Y such that |Y − Fk| > Fk/10, which proves the claim. �

262 ALGORITHMS FOR DATA STREAMS

8.4.3 Randomization and Approximation

A natural approach that combines randomization and approximation would be to use
random sampling to get an estimator of the solution. Unfortunately, this may not
always work: as an example, Charikar et al. [15] have shown that estimators based
on random sampling do not yield good results for F0.

Theorem 11 [[15]] Let E be a (possibly adaptive and randomized) estimator of
F0 that examines at most r items in a set of n items and let err = max{E/F0, F0/E}
be the error of the estimator. Then, for any p > 1/er, there is a choice of the set of
items such that err ≥ √

((n − r)/2r) ln(1/p) with probability at least p.

The result of Theorem 11 states that no good estimator can be obtained if we only
examine a fraction of the input. On the contrary, as we have seen in Section 8.3.2,
hashing techniques that examine all items in the input allow it to estimate F0 within
an arbitrary fixed error bound with high probability using polylogarithmic working
memory space for any given data set.

We notice that, while the ideal goal of a streaming algorithm is to solve a problem
using a working memory of size polylogarithmic in the size of the input stream, for
some problems this is impossible even using approximation and randomization, as
shown in the following theorem from the work by Alon et al. [6].

Theorem 12 [[6]] For any fixed integer k > 5, any randomized algorithm that
makes one pass over a sequence of at least n items drawn from the universe U =
{1, 2, . . . , n} and computes an approximate value Y such that |Y − Fk| > Fk/10
with probability < 1/2 requires at least 	(n1−5/k) memory bits.

Theorem 12 holds in a streaming scenario where items are revealed to the algorithm
in an online manner and no assumptions are made on the input. We finally notice that
in the same scenario there are problems for which approximation and randomization
do not help at all. A prominent example is given by the computation of F∞, the
maximum frequency of any item in the stream.

Theorem 13 [[6]] Any randomized algorithm that makes one pass over a sequence
of at least 2n items drawn from the universe U = {1, 2, . . . , n} and computes an
approximate value Y such that |Y − F∞| ≥ F∞/3 with probability < 1/2 requires
at least 	(n) memory bits.

8.5 SUMMARY

In this chapter we have addressed the emerging field of data stream algorithmics,
providing an overview of the main results in the literature and discussing computa-
tional models, applications, lower bound techniques, and tools for designing efficient
algorithms. Several important problems have been proven to be efficiently solvable

REFERENCES 263

despite the strong restrictions on the data access patterns and memory requirements
of the algorithms that arise in streaming scenarios. One prominent example is the
computation of statistical summaries such as frequency moments, histograms, and
wavelet coefficient, which are of great importance in a variety of applications includ-
ing network traffic analysis and database optimization. Other widely studied problems
include norm estimation, geometric problems such as clustering and facility location,
and graph problems such as connectivity, matching, and distances.

From a technical point of view, we have discussed a number of important tools for
designing efficient streaming algorithms, including random sampling, probabilistic
counting, hashing, and linear projections. We have also addressed techniques for
graph problems and we have shown that extending the streaming paradigm with a
sorting primitive yields enough power for solving a variety of problems in external
memory, essentially matching the results obtainable in more powerful computational
models for massive data sets.

Finally, we have discussed lower bound techniques, showing that tools from the
field of communication complexity can be effectively deployed for proving strong
streaming lower bounds. We have discussed the role of randomization and approx-
imation, showing that for some problems neither one of them yields enough power,
unless they are used together. We have also shown that other problems are intrinsically
hard in a streaming setting even using approximation and randomization, and thus
cannot be solved efficiently unless we consider less restrictive computational models.

ACKNOWLEDGMENTS

We are indebted to Alberto Marchetti-Spaccamela for his support and encouragement,
and to Andrew McGregor for his very thorough reading of this survey. This work
has been partially supported by the Sixth Framework Programme of the EU under
Contract IST-FET 001907 (“DELIS: Dynamically Evolving Large Scale Information
Systems”) and by MIUR, the Italian Ministry of Education, University and Research,
under Project ALGO-NEXT (“Algorithms for the Next Generation Internet and Web:
Methodologies, Design and Experiments”).

REFERENCES

1. Agrawal D, Metwally A, El Abbadi, A. Efficient computation of frequent and top-k elements
in data stream. In: Proceedings of the 10th International Conference on Database Theory;
2005; p 398–412.

2. Abello J, Buchsbaum A, Westbrook JR. A functional approach to external graph algorithms.
Algorithmica 2002; 32(3):437–458.

3. Aggarwal G, Datar M, Rajagopalan S, Ruhl M. On the streaming model augmented with a
sorting primitive. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’04); 2004.

264 ALGORITHMS FOR DATA STREAMS

4. Alon N, Gibbons P, Matias Y, Szegedy M. Tracking join and self-join sizes in limited
storage. In: Proceedings of the 18th ACM Symposium on Principles of Database Systems
(PODS’99); 1999; p 10–20.

5. Alon N, Matias Y, Szegedy M. The space complexity of approximating the frequency
moments. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing
(STOC’96): ACM Press; 1996; p 20–29.

6. Alon N, Matias Y, Szegedy M. The space complexity of approximating the frequency
moments. J Comput Syst Sci 1999; 58(1):137–147.

7. Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data stream
systems. In: Proceedings of the 21st ACM Symposium on Principles of Database Systems
(PODS’02); 2002; p 1–16.

8. Babcock B, Datar M, Motwani R. Sampling from a moving window over streaming data.
In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’02); 2002; p 633–634.

9. Bar-Yossef Z, Jayram T, Kumar R, Sivakumar D. Information statistics approach to data
stream and communication complexity. In: Proceedings of the 43rd Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS’02); 2002.

10. Bar-Yossef Z, Kumar R, Sivakumar D. Reductions in streaming algorithms, with an ap-
plication to counting triangles in graphs. In: Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’02); 2002; p 623–632.

11. Bar-Yossef Z, Jayram T, Kumar R, Sivakumar D, Trevisan L. Counting distinct elements
in a data stream. In: Proceedings of the 6th International Workshop on Randomization and
Approximation Techniques in Computer Science; 2002; p 1–10.

12. Bhuvanagiri L, Ganguly S, Kesh D, Saha C. Simpler algorithm for estimating frequency
moments of data streams. In: Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’06); 2006; p 708–713.

13. Buriol L, Frahling G, Leonardi S, Marchetti-Spaccamela A, Sohler C. Counting triangles
in data streams. In: Proceedings of the 25th ACM Symposium on Principles of Database
Systems (PODS’06); 2006; p 253–262.

14. Chakrabarti A, Khot S, Sun X. Near-optimal lower bounds on the multi-party communica-
tion complexity of set disjointness. In: Proceedings of the IEEE Conference on Computa-
tional Complexity; 2003; p 107–117.

15. Charikar M, Chaudhuri S, Motwani R, Narasayya V. Towards estimation error guarantees
for distinct values. In: Proceedings of the 19th ACM Symposium on Principles of Database
Systems (PODS’00); 2000; p 268–279.

16. Charikar M, Chen K, Farach-Colton M. Finding frequent items in data streams. In: Pro-
ceedings of the 29th International Colloquium on Automata, Languages and Programming
(ICALP’02); 2002; p 693–703.

17. Charikar M, O’Callaghan L, Panigrahy R. Better streaming algorithms for clustering prob-
lems. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing
(STOC’03); 2003.

18. Chaudhuri S, Motwani R, Narasayya V. Random sampling for histogram construction:
How much is enough? In: Proceedings of the ACM SIGMOD International Conference on
Management of Data; 1998; p 436–447.

REFERENCES 265

19. Chiang Y, Goodrich MT Grove EF Tamassia R, Vengroff DE, Vitter JS External-memory
graph algorithms. In: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’95); 1995; p 139–149.

20. Coppersmith D, Kumar R. An improved data stream algorithm for frequency moments.
In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’04); 2004; p 151–156.

21. Cormode G, Muthukrishnan S. Estimating dominance norms on multiple data streams. In:
Proceedings of the 11th Annual European Symposium on Algorithms (ESA’03); 2003; p
148–160.

22. Cormode G, Muthukrishnan S. What is hot and what is not: Tracking most frequent items
dynamically. In: Proceedings of the 22nd ACM Symposium on Principles of Database
Systems (PODS’03); 2003.

23. Cormode G, Muthukrishnan S. An improved data stream summary: the count-min sketch
and its applications. J Algorithms 2005; 55(1):58–75.

24. Cormode G, Muthukrishnan S. Space efficient mining of multigraph streams. In: Pro-
ceedings of the 24th ACM Symposium on Principles of Database Systems (PODS’05);
2005.

25. Demetrescu C, Finocchi I, Ribichini A. Trading off space for passes in graph streaming
problems. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’06); 2006; p 714–723.

26. Elkin M, Zhang J. Efficient algorithms for constructing (1 + ε, β)-spanners in the distributed
and streaming models. In: Proceedings of the 23rd Annual ACM Symposium on Principles
of Distributed Computing (PODC’04); 2004; p 160–168.

27. Feigenbaum J, Kannan S, McGregor A, Suri S, Zhang J. On graph problems in a semi-
streaming model. In: Proceedings of the 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP’04); 2004.

28. Feigenbaum J, Kannan S, McGregor A, Suri S, Zhang J. Graph distances in the streaming
model: the value of space. In: Proceedings of the 16th ACM/SIAM Symposium on Discrete
Algorithms (SODA’05); 2005; p 745–754.

29. Flajolet P, Martin GN. Probabilistic counting. In: Proceedings of the 24th Annual Sympo-
sium on Foundations of Computer Science; 1983; p 76–82.

30. Flajolet P, Martin GN. Probabilistic counting algorithms for database applications. J Comput
Syst Sci 1985; 31(2):182–209.

31. Frahling G, Indyk P, Sohler C. Sampling in dynamic data streams and applications. In:
Proceedings of the 21st ACM Symposium on Computational Geometry; 2005; p 79–88.

32. Frahling G, Sohler C. Coresets in dynamic geometric data streams. In: Proceedings of the
37th Annual ACM Symposium on Theory of Computing (STOC’05); 2005.

33. Gibbons PB, Matias Y. New sampling-based summary statistics for improving approxi-
mate query answers. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data; 1998.

34. Gibbons PB, Matias Y. Synopsis data structures for massive data sets. In: External Memory
Algorithms. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Volume 50; 1999; 39–70. [Q1]

35. Gibbons PB, Matias Y, Poosala V. Fast incremental maintenance of approximate histograms.
In: Proceedings of 23rd International Conference on Very Large Data Bases (VLDB’97);
1997.

266 ALGORITHMS FOR DATA STREAMS

36. Gilbert A, Kotidis Y, Muthukrishnan S, Strauss M. How to summarize the universe: dynamic
maintenance of quantiles. In: Proceedings of 28th International Conference on Very Large
Data Bases (VLDB’02); 2002; p 454–465.

37. Gilbert AC, Guha S, Indyk P, Kotidis Y, Muthukrishnan S, Strauss M. Fast, small-space
algorithms for approximate histogram maintenance. In: Proceedings of the 34th ACM
Symposium on Theory of Computing (STOC’04); 2002; p 389–398.

38. Gilbert AC, Kotidis Y, Muthukrishnan S, Strauss M. Surfing wavelets on streams: one-
pass summaries for approximate aggregate queries. In: Proceedings of 27th International
Conference on Very Large Data Bases (VLDB’01); 2001; p 79–88.

39. Golab L, Ozsu MT. Data stream management issues — a survey. Technical report TR
CS-2003-08. School of Computer Science, University of Waterloo; 2003.

40. Guha S, Indyk P, Muthukrishnan S, Strauss M. Histogramming data streams with fast
per-item processing. In: Proceedings of the 29th International Colloquium on Automata,
Languages and Programming (ICALP’02); 2002; p 681–692.

41. Guha S, Koudas N, Shim K. Data streams and histograms. In: Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing (STOC’01); 2001; p 471–475.

42. Guha S, Mishra N, Motwani R, O’Callaghan L. Clustering data streams. In: Proceedings
of the 41st Annual IEEE Symposium on Foundations of Computer Science (FOCS’00);
2000; p 359–366.

43. Henzinger M, Raghavan P, Rajagopalan S. Computing on data streams. In: External Memory
Algorithms. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Volume 50; 1999; 107–118. [Q1]

44. Indyk P. Stable distributions, pseudorandom generators, embeddings and data stream com-
putation. In: Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science (FOCS’00); 2000; p 189–197.

45. Indyk P. Algorithms for dynamic geometric problems over data streams. In: Proceedings of
the 36th Annual ACM Symposium on Theory of Computing (STOC’04); 2004; p 373–380.

46. Indyk P, Woodruff D. Tight lower bounds for the distinct elements problem. In: Proceedings
of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03);
2003.

47. Indyk P, Woodruff D. Optimal approximations of the frequency moments. In: Proceedings
of the 37th Annual ACM Symposium on Theory of Computing (STOC’05); 2005.

48. Jájá J. An Introduction to Parallel Algorithms. Addison-Wesley; 1992.

49. Jowhari H, Ghodsi M. New streaming algorithms for counting triangles in graphs. In:
Proceedings of the 11th Annual International Conference on Computing and Combinatorics
(COCOON’05); 2005; p 710–716.

50. Kushilevitz E, Nisan N. Communication Complexity. Cambridge University Press; 1997.

51. Manku GS, Motwani R. Approximate frequency counts over data streams. In: Proceedings
28th International Conference on Very Large Data Bases (VLDB’02); 2002; p 346–357.

52. Matias Y, Vitter JS, Wang M. Dynamic maintenance of wavelet-based histograms. In:
Proceedings of 26th International Conference on Very Large Data Bases (VLDB’00);
2000.

53. McGregor A. Finding matchings in the streaming model. In: Proceedings of the 8th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX’05), LNCS 3624; 2005; p 170–181.

REFERENCES 267

54. Misra J, Gries D. Finding repeated elements. Sci Comput Program 1982; 2:143–152.

55. Morris R. Counting large numbers of events in small registers. Commun ACM, 1978;
21(10):840–842.

56. Munro I, Paterson M. Selection and sorting with limited storage. Theor Comput Sci 12:315–
323, 1980. A preliminary version appeared in IEEE FOCS’78.

57. Muthukrishnan S. Data streams: algorithms and applications. Technical report; 2003. Avail-
able at http://athos.rutgers.edu/∼muthu/stream-1-1.ps.

58. Muthukrishnan S, Strauss M. Maintenance of multidimensional histograms. In: Proceedings
of the FSTTCS; 2003; p 352–362.

59. Muthukrishnan S, Strauss M. Rangesum histograms. In: Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’03); 2003.

60. Muthukrishnan S, Strauss M. Approximate histogram and wavelet summaries of streaming
data. Technical report, DIMACS TR 2004-52; 2004.

61. Ruhl M. Efficient algorithms for new computational models. PhD Thesis. Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology;
2003.

62. Saks M, Sun X. Space lower bounds for distance approximation in the data stream model.
In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC’02);
2002; p 360–369.

63. Vitter JS. Random sampling with a reservoir. ACM Trans Math Software 1995; 11(1):37–
57.

64. Vitter JS. External memory algorithms and data structures: dealing with massive data. ACM
Comput Surv, 2001; 33(2):209–271.

[Q1]:- Please provide the details of the publisher in References 34, 43.

