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Abstract. In this paper, we study the problem of finding frequent items
in a continuous stream of items. A new frequency measure is introduced,
based on a flexible window length. For a given item, its current frequency
in the stream is defined as the maximal frequency over all windows from
any point in the past until the current state. We study the properties of
the new measure, and propose an incremental algorithm that allows to
produce the current frequency of an item immediately at any time. It
is shown experimentally that the memory requirements of the algorithm
are extremely small for many different realistic data distributions.

1 Introduction

Mining frequent items over a stream of items presents interesting new challenges
over traditional mining in static databases. It is assumed that the stream can
only be scanned once, and hence if an item is passed, it can not be revisited,
unless it is stored in main memory. Storing large parts of the stream, however,
is not possible because the amount of data passing by is typically huge.

Most previous work on mining frequently occurring items from a stream
either focusses on (1) the whole stream, (2) on only the most recent items in
a window of fixed length [1, 4, 6], or (3) where a time-decaying factor fades out
the history of the stream [5]. In many applications, however, it is not possible
to fix a window length or a decay factor that is most appropriate for every item
at every timepoint in an evolving stream. For example, consider a large retail
chain of which sales can be considered as a stream. Then, in order to do market
basket analysis, it is very difficult to choose in which period of the collected
data you are particularly interested. For many products, the amount of them
sold depends highly on the period of the year. In summer time, e.g., sales of
ice cream increase. During the world cup, sales of beer increase. Such seasonal
behavior of a specific item can only be discovered when choosing the correct
window size for that item, but this size can then also hide a similar behavior
of other items. Therefore, we propose to consider for each item the window
in which it has the highest frequency. More specifically, we define the current
frequency of an item as the maximum over all windows from the past until the
current state. The disadvantage of having a frequency of 100%, when the stream



ends with the particular item, can be resolved by setting a minimum window
length all windows have to obey. Hence, when the stream evolves, the length
of the window containing the highest frequency for a given item can grow and
shrink continuously. We show some important properties on how the length of
the maximal window can evolve.

In our approach, on every timestamp, a new item arrives in the stream. We
present an incremental algorithm that maintains a small summary of relevant
information of the history of the stream that allows to produce the current fre-
quency of an item immediately at any time. That is, when a new item arrives, the
summary is updated, and when at a certain point in time, the current frequency
is required, the result can be obtained instantly from the summary. The struc-
ture of the summary is based on some critical observations about the windows
with the maximal frequency. In short, many points in the stream can never be-
come the starting point of a maximal window, no matter what the continuation
of the stream will be. The summary will thus consist of some statistics about
the few points in the stream that are still candidate starting points of a maximal
window. These important points in the stream will be called the borders.

Critical for the usefulness of the technique are the memory requirements of
the summary that needs to be maintained in memory. We show experimentally
that, even though in worst case the summary depends on the length of the
stream, for realistic data distributionsits size is extremely small. Obviously, this
property is highly desirable as it allows for an efficient and effective computation
of our new measure. Also note that our approach allows exact information as
compared to many approximations considered in other works.

The organization of the paper is as follows. In Section 2, the new measure is
defined and the problem is formally introduced. Section 3 gives the theoretical
results for the basic theorem, on which the incremental algorithm in Section 4 is
based. Section 5 contains experiments that show that the memory requirements
for the algorithm are extremely small for many real-life data distributions.

2 New Frequency Measure in Stream Mining

In this section, we define our new frequency measure for streams and we formally
introduce the problem. Throughout the paper, we assume that the items in the
stream come from a finite set of items I, unless explicitly mentioned otherwise.

2.1 Streams and Max-Frequency

A stream S is a sequence 〈i1, i2, . . . , in〉 of items, where n is the length of the
stream, denoted |S|. The number of occurrences of an item i in the stream S will
be denoted count(i, S). The frequency of i in S, is defined as

freq(i, S) :=
count(i, S)

|S|
.



The concatenation of m streams S1, . . . , Sm is denoted S1 · S2 · . . . · Sm. Every
stream is glued at the end of the previous stream. Let S = 〈i1, i2, . . . , in〉. Then,
S[s, t] denotes the sub-stream or window 〈is, is+1, . . . , it〉. The sub-stream of S

consisting of the last k items of S, denoted last(k, S), is

last(k, S) = S
[
|S| − k + 1, |S|

]
.

We are now ready to define our new frequency measure:

Definition 1. The max-frequency mfreq(i, S) of an item i in a stream S is

defined as the maximum of the frequency of i over all windows extending from

the end of the stream; that is:

mfreq(i, S) := max
k=1...|S|

(freq(i, last(k, S))) .

This mfreq(i, S) is used as a new frequency measure for stream mining. For a

given item, its current frequency in the stream is defined as the maximal fre-

quency over all evolving windows from the end to the beginning of the stream.

The longest window in which the max-support is reached, is called the max-
imal window for i in S, and its starting point is denoted maxwin(i, S). That is,

maxwin(i, S) is the smallest index such that

mfreq(i, S) = freq(i, S
[
maxwin(i, S), |S|

]
) . 2

Note that, by definition, the max-frequency of an item a in a stream that ends
with an a, is always 100%, independently of the overall frequency of a. Hence,
even in a stream where a is extremely rare, at some points, the max-frequency
will be maximal! This disadvantage of max-frequency, however, can easily be
resolved by either considering streams of blocks of items instead of single items,
or by setting a minimal length all windows must obey. We did not include these
solutions in the paper, as they are not fundamental for the theory developed.

Example 1. We focus on target item a.

mfreq(a, abaaab) = max
k=1...6

(freq(a, last(k, abaaab)))
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Notice that our definition of frequency is quite different from the usual ap-
proaches, where the frequency of an item i in a stream S is either defined as
freq(i, last(wl , S)) for a fixed window length wl , or with a time-decaying factor;

e.g., freq(i, S) =
∑|S|/wl

j=1
djfreq(i, S[(j − 1)wl + 1, jwl ]), with d < 1.



2.2 Problem Statement

Notice that we defined a stream as a statical object. In reality, however, a stream
is an evolving object. At every timepoint, a new item might be inserted at the
end of the stream. As such, evolving streams are essentially unbounded, and
when processing them, it is to be assumed that only a small partcan be kept in
memory.

In our examples, new entrieswill be added on the right side of the stream.
This means that the older items are on the left side of the stream. For simplicity
we assume that the first item arrived at timestamp 1, and since then, at every
timestamp a new item was inserted. St denotes the stream up to timestamp t.

The problem we study in the paper is the following: For an evolving stream S

and a fixed item a, maintain a small summary of the stream in time, such that,

at any timepoint t, mfreq(a, St) can be produced instantly from the summary.

More formally, we will introduce a summary of a stream summary(S), an
update procedure Update, and a procedure Get mfreq , such that, if we assume
that on timestamp t + 1 item i is added to the stream, Update(summary(St), i)
equals summary(St · 〈i〉) equals summary(St+1), and Get mfreq(summary(St′))
equals mfreq(a, St′). Because Update has to be executed every time a new item
arrives, it has to be extremely efficient, in order to be finished before the next
item arrives. Similarly, because the stream continuously grows, the summary
must be independent of the number of items seen so far, or, at least grow very
slowly as the stream evolves. The method we develop will indeed meet these
criteria, as the experiments will show.
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Fig. 1. Max-frequency of a stream at every timepoint.

In Fig. 1, the max-frequency has been given for an example evolving stream.
The starting point maxwin(a, S) of each maximal window is marked with |.

3 Properties of Max-Frequency

In this section we show some properties of max-frequency that are crucial for
the incremental algorithm that maintains the summary of the stream. Obviously,



checking all possible windows to find the maximal one is infeasible algorithmi-
cally, given the constraints of stream problems. Fortunately, not every point in
the stream needs to be checked. The theoretical results from this section show
exactly which points need to be inspected. These points will be called the borders

in the stream. The summary of the stream will consist exactly of the recording
of these borders, and the frequency of the target item up to the most recent
timepoint.

Theorem 1. Consider a stream S1 ·B1 ·B2 ·S2. If B2 ·S2 is the maximal window

for a in S, then freq(a, B1) < freq(a, B2)

Proof. If B2 · S2 is the maximal window for a in S, then this implies that the
frequency of a in B2 ·S2 is strictly higher than in B1 ·B2 ·S2 and at least as high as
in S2 (remember that in the case of multiple windows with maximal frequency,
the largest one is selected). Let now l1 = |B1|, l2 = |B2|, and l3 = |S2|, and let
a1 = count(a, B1), a2 = count(a, B2), and a3 = count(a, S2), as depicted in:

S1

︷ ︸︸ ︷
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︷ ︸︸ ︷

a1

B2

︷ ︸︸ ︷

a2

S2

︷ ︸︸ ︷

a3

←→ ←→ ←→
l1 l2 l3

.

Then, the conditions on the frequency translate into:

a2 + a3

l2 + l3
>

a1 + a2 + a3

l1 + l2 + l3
and

a2 + a3

l2 + l3
≥

a3

l3
.

From these conditions, it can be derived that

freq(a, B1) =
a1

l1
<

a2

l2
= freq(a, B2). 2

Based on this theorem, it is possible to give an exact characterization of
which points in St can potentially become the starting point of the maximal
window at a future point in time, after new items have been added. The next
corollary gives this characterization.

We now formally define the important notion of a border. Intuitively, a border
is a point in the stream that can still become the starting point of the maximal
window.

Definition 2. The position q in S is called a border for a in S if there exists

another stream B such that q = maxwin(a, S · B).

Corollary 1. Let S be a stream, and let q = 1. Position q is a border for item

a if and only if the first item in the stream equals the target item a.
Let S be a stream, and let 2 ≤ q ≤ |S|. Position q is a border for item a in

S if and only if for all indices j, k with 1 ≤ j < q and q ≤ k ≤ |S|, it holds that

freq(a, S[j, q − 1]) < freq(a, S[q, k]).



Proof. Only if: Suppose that there exist indices j and k, and a stream B such
that freq(a, S[j, q−1]) ≥ freq(a, S[q, k]), and q = maxwin(a, S ·B). This situation
is in contradiction with Theorem 1: split the stream S ·B as (S[1, j−1]) · (S[j, q−
1]) ·(S[q, k]) ·(S[k+1, |S|] ·B). In this stream, (S[q, |S|]) ·B is the maximal window,
while freq(a, S[j, q − 1]) ≥ freq(a, S[q, k]).

If: It can be shown that the item at timepoint q must be the target item a.
If enough non-target items are added to the stream S, eventually q will become
the starting point of the maximal window. The full proof of this part, however,
is omitted due to space restrictions. 2

Example 2. Assume we have the following stream S27:

4/9 4/10 2/3 1/2

aaabbbabb ababababbb b aab ab ba

In the stream, two positions have been marked with |. Both these points do not
meet the criteria given in Corollary 1 to be a border. Indeed, for both positions, a
block before and after it is indicated such that the frequency in the before-block
is higher than in the after-block. In this stream, the only positions that meet
the requirement are indicated in aaabbbabbababababbbb|aababb|a. 2

The following simple facts play an important role in the algorithm that will
be developed in the next section.

Corollary 2. Every border always ends on a target item. If p is not a border in

S, then neither it can ever be a border in any extension S · B.

4 Algorithm

Based on the theorems of Section 3, we now present an incremental algorithm
to maintain a summary.

The summary. The summary for an item a in the stream St is the array of
that contains a pair (p, x/y) for every border on position p, with x the number of
occurrences of a since p, i.e., count(a, St[p, t]), and y the length of the block from
p until the end of the stream St, i.e., t−p+1. The output of the algorithm in the
case of r borders is written as an array of the form [(p1, x1/y1), · · · , (pr, xr/yr)],
visualized by

Tt =
p1 · · · pr

x1/y1 · · · xr/yr
.

This array is in fact summary(St), and is abbreviated by Tt. In this array, the
border positions are ordered from old to most recent, reflecting in p1 < · · · < pr.
The corresponding frequencies must follow the same ordering x1/y1 < · · · <
xr/yr; indeed, consider two consecutive borders pi and pi+1. Suppose for the
sake of contradiction, that xi/yi ≥ xi+1/yi+1. From this, it follows that

freq(a, S[pi, pi+1 − 1]) =
xi − xi+1

yi − yi+1

≥
xi

yi
= freq(a, S[pi+1, |S|]) .



According to Theorem 1 this implies that pi+1 cannot be a border because the
frequency of a in a before-block is at least the frequency of a in an after-block for
pi+1. Notice that this implies that the current frequency can always be obtained

immediately from the summary; the most recent entry in the summary is always

the largest and thus holds the current max-support.

In every next step, the algorithm adjusts the stored values in the array based
on the newly entered item in the stream. Hence, at every step, we need to test
for every border of St if it is still a border in St+1. Hence, we need to check
if still the frequency in all before blocks is smaller than the frequency in all
after blocks. However, adding a new item to the stream does not introduce a new

before-block, and only one after-block! Hence, only one test has to be performed
for every border of St: the before-block with the highest frequency of a has to
be compared to the new after-block. The frequency of the new after-block for
border pi can easily be obtained from the pair (pi, xi/yi) in the summary of St:
if the new item is a non-target item, the frequency of a in the new after-block is
xi/(yi+1). Notice that, as the before block never changes when a new item enters

the stream, and the insertion of the target item a only results in an increased

frequency in the new after block, the addition of a target-item will never result

in the removal of borders.

Based on the observation that in any summary the borders must be in order
w.r.t. the frequency of a, it is not too hard to see that the before-block with the
maximal frequency is exactly the block St[pi−1, pi − 1]. Via a similar reasoning
as above, it follows that pi is still a border for St+1 if and only if the updated
frequency xi/(yi + 1) is still larger than the updated frequency xi−1/(yi + 1) of
pi−1. To summarize, we have the following properties:

– The frequencies in the summary are always increasing.

– When the target item is added to the stream, all borders remain borders.
The frequencies of the borders can be updated by incrementing all nomina-
tors and denominators by 1. A new entry with the current timestamp and
frequency 1/1 can be added, unless the last entry has also 100% frequency.

– If a non-target item enters the stream, the frequencies of the borders can
be updated by adding 1 to the denominators of the frequencies. All former
borders for which after the update, the frequency no longer is larger than in
the previous entry, are no borders anymore.

Algorithm 1 is based on these observations.

The Algorithm. Before the first target item enters the stream, the array
will remain empty. The pseudo-code of the algorithm to create Tt+1, based on
Tt and the item t that enters the stream at time t + 1 is given in Algorithm 1.
In short, when a new item i enters the stream, the frequencies are updated by
increasing the nominators if i equals the target item, and always increasing the
denominators. If the item i is the target item, a new border will be added only
if the frequency of the last block in Tt was not equal to 1. Furthermore, we have
to take into account that some of the borders of St might no longer be borders
in St+1. This can only happen if the item that enters the stream is a non-target



Algorithm 1 Update(Tt, i) for target item a on time t + 1

Require: Tt = summary(St) = [(p1, x1/y1), · · · , (pr, xr/yr)]
Ensure: Tt+1 = summary(St+1) = summary(St · 〈i〉)

1: Set Tt+1 := [ ]
2: if (Tt is empty) then

3: if (i = target item a) then

4: Tt+1 := [(t + 1, 1/1)]
5: else

6: if (i = target item a) then

7: for 1 ≤ j ≤ r do

8: Tt+1 := Tt+1 +
�
pj , (xj + 1)/(yj + 1)

�
9: if xr 6= yr then

10: Tt+1 := Tt+1 +
�
t + 1, 1/1

�
11: else

12: high := 0
13: for all j := 1 . . . r do

14: if (xj)/(yj + 1) > high then

15: Tt+1 := Tt+1 +
�
pj , (xj)/(yj + 1)

�
16: high := (xj)/(yj + 1)

item, and is tested in lines 12-16: the frequencies have to increase for increasing
positions of the borders.
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Fig. 2. Example for stream baaabaababbaaaaba.

We explain the working of the algorithm for the stream baaabaababbaaaaba.
For each timestamp, the output of the algorithm is given in Figure 2.

In this example, some interesting things happen. First of all, the stream starts
with a junk item b. Therefore, Update(T0, b) = Update([ ], b) on timestamp 1
remains empty, i.e., T1 = [ ]. The algorithm in fact really starts at timestamp
2. At this moment, Update([ ], a) results in T2 = [(2, 1/1)], corresponding to the
stream b|a with a border at position 2. On timestamp 8, another interesting fact
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Fig. 3. Size of the summaries for two items a and b

happens. T7 = [(2, 5/6), (6, (2/2))], corresponding with the stream b|aaab|aa.
Update(T7, b) will yield T8 = [(2, 5/7)], and not [(2, 5/7), (6, 2/3)], because the
frequency decreases from the border at position 2 to the border at position 6,
and hence, we can conclude that position 6 is no longer a border.

5 Experiments

From the description of the algorithm it is clear that the update procedure is
very efficient, given the summaries remain small. Producing the current support
of the target item is obviously very efficient, as it amounts to simply a lookup in
the most recent entry. Hence, the complete approach will be feasible if and only
if the summaries remain small. Therefore, for different streams, we have recorded
the size of the summary. The results are reported in Figure 3. The streams we
consider are over the items a and b, and have length 107. After every 10 000
items, the size of the summary for the items a and b are reported. The streams
are randomly generated. The probability of having item a in the stream is given
by the line P (a). Thus, in the random graph, the probability of having a is 1/2
in the whole stream, independent of the moment. The probability of b is 1 minus



the probability of a. The graphs report the average over 100 streams, generated
with the indicated distributions. In general, we can conclude that the size of the
summary is extremely small w.r.t. the size of the stream. If the probability of
the target item increases, also the size of the summary will increase, when the
probability decreases, the summary will shrink. This is easily explained by the
entries in the summary that need to have increasing frequency.

6 Conclusion and Future Work

We presented a new frequency measure for items in streams that does not rely
on a fixed window length or a time-decaying factor. Based on the properties of
the measure, an algorithm to compute it was shown. An experimental evaluation
supported the claim that the new measure can be computed from a summary
with extremely small memory requirements, that can be maintained and updated
efficiently.

In the future, we will look at the same topic, but try to mine for frequent
itemsets instead of items, based on this new frequency measure.
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