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ALGORITHM DESIGN TECHNIQUES 

The September 1983 column described the "everyday" 
impact that algorithm design can have on programmers: 
an algorithmic view of a problem gives insights that 
may make a program simpler to unders tand and to 
write. In this column we' l l  s tudy a contribution of the 
field that is less frequent but more impressive: sophisti- 
cated algorithmic methods sometimes lead to dramatic 
performance improvements.  

This column is built  around one small problem, with 
an emphasis on the algorithms that solve it and the 
techniques used to design them. Some of the algorithms 
are a little complicated, but the complication is justi- 
fied; while the first algorithm we' l l  s tudy takes 39 days 
to solve a problem of size 10,000, the final algorithm 
solves the same problem in just a third of a second. 

The Problem and a Simple Program 
The problem arose in one-dimensional  pat tern recogni- 
tion; I'll describe its history later. The input  is a vector 
X of N real numbers; the output is the max imum sum 
found in any contiguous subvector of the input. For in- 
stance, if the input  vector is 

3 7 

then the program returns the sum of X[3 ..  7], or 187. 
The problem is easy when all the numbers  are posi- 
f ive- - the  maximum subvector is the entire input  vec- 
tor. The rub comes when some of the numbers are 
negative. Should we include a negative number  in 
hopes that the positive numbers to its sides will com- 
pensate for its negative contribution? To complete the 
definition of the problem, we'l l  say that when all inputs 
are negative the maximum sum subvector is the empty 
vector, which has sum zero. 

The obvious program for this task is simple: for each 
pair of integers L and U (where 1 _< L _< U _< N), 
compute the sum of X [ L . .  U] and check whether  that 
sum is greater than the max imum sum so far. The 
pseudocode given in Algorithm 1 is short, straightfor- 
ward, and easy to understand. Unfortunately, it has the 
severe disadvantage of being slow. On the computer  I 
typically use, for instance, the code takes about an hour 
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if N is 1,000 and 39 days if N is 10,000 (we'll get to 
t iming details later). 

Those times are anecdotal; we get a different kind of 
feeling for the algori thm's efficiency using "big-oh" no- 
tation. 1 The statements in the outermost  loop are exe- 
cuted exactly N times, and those in the middle loop are 
executed at most N times in each execution of the 
outer loop. Multiplying those two factors of N shows 
that the four lines contained in the middle loop are 
executed O(N 2) times. The loop in those four lines is 
never executed more than N times, so its cost is O(N). 
Multiplying the cost per  inner  loop times its number  of 
executions shows that the cost of the entire program is 
proportional to N cubed, so we' l l  refer to this as a cubic 
algorithm. 

Those simple steps il lustrate the technique of "big- 
oh" analysis of run time and many of its strengths and 
weaknesses. Its pr imary weakness is that we still don't  
really know the amount  of t ime the program will take 
for any part icular  input; we just know that the number  
of steps it executes is O(N3). Two strong points of the 
method often compensate for that weakness. "Big-oh" 
analyses are usually easy to perform (as above), and the 
asymptotic run time is often sufficient for a "back-of- 
the-envelope" calculation to decide whether  or not a 
program is efficient enough for a given application. 

The next several sections use asymptotic run time as 
the only measure of program efficiency. If that makes 

MaxSoFar :-- 0.0 

for L := I to N do 

for U := L to N do 

Sum := 0. O 

for I := L to U do 

Sum := Sum + X[I] 

/* Sum now contains the 

sum of X[L..U] */ 

MaxSoFar := max(MaxSoFar, Sum) 

Algorithm 1. The cubic algorithm 

i The notation O(N 2) can be thought of as "proportional to N2"; 
both 15N 2 + 100N and N2/2 - 10 are O(N2). Informally, 
f(N) = O(g(N)) means that f(N) < cg(N) for some constant c and 
sufficiently large values of N. A formal definition of the nota- 
tion can be found in most textbooks on algorithm design or 
discrete mathematics. 
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you uncomfortable, peek ahead to the section on "What 
Does It Matter?", which shows that for this problem 
such analyses are extremely informative. Before you 
read on, take a minute to try to find a faster algorithm 
for this problem. 

Two Quadratic Algorithms 
Most programmers have the same response to Algo- 
rithm 1: "There's an obvious way to make it a lot 
faster." There are two obvious ways, however, and if 
one is obvious to a given programmer then the other 
often isn't. Both algorithms are quadrat ic-- they take 
O(N 2) steps on an input of size N- - and  both achieve 
their run time by computing the sum of X[L.. U] in a 
constant number of steps rather than in the U - L + 1 
steps of Algorithm 1. But the two quadratic algorithms 
use very different methods to compute the sum in con- 
stant time. 

The first quadratic algorithm computes the sum 
quickly by noticing that the sum of X[L.. U] has an 
intimate relationship to the sum previously computed, 
that of X[L..  U - 1]. Exploiting that relationship leads 
to Algorithm 2. The statements inside the first loop are 
executed N times, and those inside the second loop are 
executed at most N times on each execution of the 
outer loop, so the total run time is O(N2). 

An alternative quadratic algorithm computes the sum 
in the inner loop by accessing a data structure (called 
CumArray) built before the outer loop is ever executed. 
The I th element of CumArray contains the cumulative 
sum of the values in X[1 .. I], so the sum of the values 
in X[L.. U] can be found by computing CumArray[U] - 
CumArray[L - 1]. This results in Algorithm 2b, which 
takes O(N 2) time; the analysis is the same as for Algo- 
rithm 2. 

The algorithms we have seen so far inspect all possi- 
ble pairs of starting and ending values of subvectors 
and consider the sum of the numbers in that subvector. 
Because there are O(N 2) subvectors, any algorithm that 
inspects all such values must take at least quadratic 
time. Can you think of a way to sidestep this problem 
and achieve an algorithm that runs in less time? 

A Divide-and-Conquer Algorithm 
Our first subquadratic algorithm is complicated; if you 
get bogged down in its details, you won' t  lose much by 
skipping to the next section. It is based on the following 
divide-and-conquer schema: 

To solve a problem of size N, recursively solve two sub- 
problems of size approximately N/2,  and combine their 
solutions to yield a solution to the complete problem. 

In this case the original problem deals with a vector of 
size N, so the most natural way to divide it into sub- 
problems is to create two subvectors of approximately 
equal size, which we'll call A and B: 

We then recursively find the maximum subvectors in A 

and B, which we'll call MA and MB: 

It is tempting to think that we have salved the prob- 
lem because the maximum sum subvector of the entire 
vector must be either MA or MB, and that is almost 
right. In fact, the maximum is either entirely in A, 
entirely in B, or it crosses the border between A and B 
(which we'll call Mc for the maximum crossing the bor- 
der): 

Thus our divide-and-conquer algorithm will compute 
MA and MB recursively, compute Mc by some other 
means, and then return the maximum of the three. 

That description is almost enough to write code. All 
we have left to describe is how we'll handle small vec- 
tors and how we'll compute Mc. The former is easy: the 
maximum of a one-element vector is the only value in 
the vector (or zero if that number is negative), and the 
maximum of a zero-element vector was previously de- 
fined to be zero. To compute Mc we observe that its 
component in A is the largest subvector starting at the 
boundary and reaching into A, and similarly for its 
component in B. Putting these facts together leads to 
Algorithm 3, which is originally invoked by the state- 
ment 

Answer := MaxSum(1 , N) 

Although the code is complicated (and easy to get 
wrong), it does yield a substantial decrease in run time: 

MaxSoFar := 0.0 

for L := I to N do 

Sum := 0.0 

for U := L to N do 

Sum := Sum + X[I] 

/* Sum now contains the 

sum of X[L..U] */ 

MaxSoFar := max(MaxSoFar, Sum) 

Algorithm 2. The first quadratic algorithm 

CumArray[0] := 0.0 

for I := I to N do 

CumArray[I] := CumArray[I -- I] + X[I] 

MaxSoFar := 0.0 

for L := I to N do 

for U := L to N do 

Sum := CumArray[U] -- CumArray[L -- 

/* Sum now contains the 

sum of X[L..U] */ 

MaxSoFar := max(MaxSoFar, Sum) 

Algorithm 2b. An alternative quadratic algorithm 

1] 
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recursive function MaxSum(L, U) 

if L > U then /* Zero-element vector */ 

return 0.0 

if L = U then /* One-element vector */ 

return max(0.0, X[L] ) 

M := (L + U)/2 /* A is X[L..M] , B is X[M + 

/* Find max crossing to left */ 

Sum := 0.0; MaxToLeft := 0.0 

for I := M downto L do 

Sum := Sum + X[I] 

MaxToLeft := max(MaxToLeft, Sum) 

/* Find max crossing to right */ 

Sum := 0.0; MaxToRight := 0.0 

for I := M + I to U do 

Sum := Sum + X[I] 

MaxToRight := max(MaxToRight, Sum) 

MaxCrossing := MaxToLeft + MaxToRight 

MaxInA := MaxSum(L, M) 

MaxInB := MaxSum(M + I, U) 

return max(MaxCrossing, MaxInA, MaxInB) 

Algorithm 3. A divide-and-conquer algorithm 

1..U] * /  

it solves the problem in O(N log N) time. There are a 
number  of ways of proving this fact. An informal argu- 
ment observes that the algorithm does O(N) work on 
each of O(log N) levels of recursion. The argument can 
be made more precise by the use of recurrence rela- 
tions; if T(N) denotes the time to solve a problem of size 
N, then we can show that T(1) = O(1) and that 

T(N3 = 2T(N/2) + O(N). 

Most textbooks on algorithm design show that this re- 

currence has the solution T(N) = O(N log N). 

A Scanning Algorithm 
We'll  now use the simplest kind of algorithm that oper- 
ates on arrays: it starts at the left end (element X[1]) 
and scans through to the right end (element X[N]), 
keeping track of the maximum sum subvector seen so 
far. The maximum is init ially zero. Suppose we've 
solved the problem for X[1 . .  I - 1]; how can we extend 
that to a solution for the first I elements? We use rea- 
soning similar to that of the divide-and-conquer  algo- 
rithm: the maximum sum in the first I elements is 
either the maximum sum in the first I - 1 elements 
(which we'l l  call MaxSoFar), or it is that of a subvector 
that ends in position I (which we' l l  call MaxEndingHere): 

I I MaxS°Far ] ] MaxEndingHere I 

Recomputing MaxEndingHere from scratch (using code 
like that in Algorithm 3) yields yet another quadratic 
algorithm. We can get around this by using the tech- 
nique that led to Algorithm 2: instead of computing the 
maximum subvector ending in position I from scratch, 

we' l l  use the max imum subvector that ends in position 
I - 1. This results in Algorithm 4. 

The key to understanding this program is the vari- 
able MaxEndingHere. Before the first assignment state- 
ment in the loop, MaxEndingHere contains the value of 
the maximum subvector ending in position I - 1; the 
assignment statement modifies it to contain the value of 
the maximum subvector ending in position I. The state- 
ment increases it by the value X[I] so long as doing so 
keeps it positive; when it goes negative, it is reset to 
zero (that is, the max imum subvector ending at I is the 
empty vector). Although the code is subtle, it is short 
and fast: its running time is O(N) (so we' l l  refer to it as 
a linear algorithm). David Gries systematically derives 
and verifies this algorithm in his paper "A Note on the 
Standard Strategy for Developing Loop Invariants and 
Loops" (in Science of Computer Programming 2, pp. 207- 
214). 

What Does It Matter? 
So far I 've played fast and loose with "big-ohs"; it 's t ime 
for me to come clean and tell about the run times of the 
programs. I implemented the four pr imary algorithms 
(all except Algorithm 2b) in the C language on a Digital 

MaxSoFar := 0.0 

MaxEndingHere := 0.0 

for I := I to N do 

MaxEndingHere := max(0.0, 

MaxEndingHere + X[I]) 

MaxSoFar := max(MaxSoFar, 

MaxEndingHere) 

Algorithm 4. The linear algorithm 
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TABLE I. Summary of the Algorithms 

Algorithm 1 2 3 4 

Lines of C Code 8 7 14 7 

Run time in 3.4N 3 13N 2 46N log N 33N 
microseconds 

Time to solve 102 3.4 secs 130 msecs 30 msecs 3.3 msecs 
problem of size 103 .94 hrs 13 secs .45 secs 33 msecs 

104 39 days 22 mins 6.1 secs .33 secs 
10 s 108 yrs 1.5 days 1.3 min 3.3 secs 
106 108 mill 5 mos 15 min 33 secs 

Max problem sec 67 280 2000 30,000 
solved in one min 260 2200 82,000 2,000,000 

hr 1000 17,000 3,500,000 120,000,000 
day 3000 81,000 73,000,000 2,800,000,000 

If N multiplies by 1 O, 1000 1 O0 1 O+ 10 
time multiplies by 

If time multiplies by 2.15 3.16 10-  10 
1 O, N multiplies by 

Equipment Corporation VAX-11/750, 2 timed them, and 
extrapolated the run times to achieve Table I. 

This table makes a number of points. The most im- 
portant is that proper algorithm design can make a big 
difference in run time; that point is underscored by the 
middle rows. The table also shows something of the 
different character of cubic, quadratic, N log N and 
linear algorithms: the last two rows show how the prob- 
lem size and run time vary as a function of each other. 

Another important point is that when we're compar- 
ing cubic, quadratic, and linear algorithms with one 
another, the constant factors of the programs don't  mat- 
ter much. To underscore this point, I conducted an 
experiment in which I tried to make the constant fac- 
tors of two algorithms differ by as much as possible. To 
achieve a huge constant factor I implemented Algo- 
rithm 4 on a BASIC interpreter on a Radio Shack TRS- 
80 Model III microcomputer. For the other end of the 
spectrum, Eric Grosse of AT&T Bell Laboratories and I 
implemented Algorithm 1 in fine-tuned FORTRAN on a 
CRAY-1 supercomputer. We got the disparity we 
wanted: the run time of the cubic algorithm was meas- 
ured as 3.0N 3 nanoseconds, while the run time of the 
linear algorithm was 19,500,000N nanoseconds. Table II 

shows how those expressions translate to times for var- 
ious problem sizes (the same data is displayed graphi- 
cally in Figure 1.) 

The difference in constants (a factor of six and a half 
million) allowed the cubic algorithm to start off faster, 
but the linear algorithm was bound to catch up. In this 
case, the break-even point for the two algorithms is 
around 2,500, where each takes about 50 seconds. 

Principles 
The history of the problem sheds light on the algorithm 
design techniques. The problem arose in a pattern- 
matching procedure designed by Ulf Grenander of 
Brown University in the two-dimensional form de- 
scribed in Problem 7. In that form, the maximum sum 
subarray was the maximum likelihood estimator of a 
certain kind of pattern in a digitized picture. Because 
the two-dimensional problem required too much time 
to solve, Grenander simplified it to one dimension to 
gain insight into its structure. 

Grenander observed that the cubic time of Algorithm 
I was prohibitively slow, and derived Algorithm 2. In 
1977 he described the problem to Michael Shamos of 
UNILOGIC, Ltd. (then of Carnegie-Mellon University) 

TABLE II. The Tyranny of Asymptotics 

N 
Cray-1, 

FORTRAN, 
CubicAIgonthm 

TRS-80, 
BASIC, 

LinearAIgonthm 

10 
100 

1000 
10,000 

100,000 
1,000,000 

3.0 microsecs 
3.0 millisecs 

3.0 secs 
49 mins 
35 days 
95 yrs 

200 millisecs 
2.0 secs 
20 secs 
3.2 mins 
32 mins 
5.4 hrs 

2 VAX is a trademark of Digital Equipment Corporation. 

868 Communications of the ACM September 1984 Volume 27 Number 9 



Programming Pear)s 

Run Time in 
Nanoseconds 

10 TM 

1015 

1012 

10 o 

100 

10 s 

10 0 

m 

CRAY 1 (3.0N 3] 

I I I I I 
10 0 101 10 2 1 0  s 1 0  4 1 0  5 

century 

year 
month 

day 

hour 

second 

Run Time in 
Common Units 

millisecond 

microsecond 

nanosecond 

10 e 

Problem Size (NI 

FIGURE 1. The Run Times of Two Programs 

who overnight designed Algorithm 3. When Shamos 
showed me the problem shortly thereafter, we thought 
that it was probably the best possible; researchers had 
just shown that several similar problems require time 
proportional to N log N. A few days later Shamos de- 
scribed the problem and its history at a seminar at- 
tended by Jay Kadane (a statistician at Carnegie-Mellon 
University), who designed the linear-time Algorithm 4 
within a minute. Fortunately, we know that there can 
be no better algorithm: any algorithm must look at all N 
inputs. 

Even though the one-dimensional problem is now 
completely solved, Grenander's original two-dimen- 
sional problem remains open. Because of the computa- 
tional expense of all known algorithms, Grenander had 
to abandon that approach to the pattern-matching prob- 
lem. Readers who feel that the linear-time algorithm 
for the one-dimensional problem is "obvious" are there- 
fore urged to find an "obvious" algorithm for Problem 7! 

Although the algorithms in this story were never in- 
corporated into a system, they do illustrate several im- 
portant algorithm design techniques that have had sub- 
stantial impact on many systems (see the sidebar on 
page 870): 

Save state to avoid recomputation. This simple form of 
dynamic programming arose in Algorithms 2 and 4. 
By using space to store results, we avoid using time to 
recompute them. 

Preprocess information into data structures. This was the 
technique underlying Algorithm 2b: the CumArray 
structure allowed the sum of a subvector to be ac- 
cessed in just a couple of operations. 

Divide-and-conquer algorithms. Algorithm 3 uses a sim- 
ple form of divide-and-conquer; textbooks on algo- 
rithm design describe more advanced forms. 

Scanning algorithms. Problems on arrays can often be 
solved by asking "how can I extend a solution for 
X[1.. I - 1] to a solution for X[1.. I]?" In Algorithm 
4 we had to remember both the old answer and some 
auxiliary data to compute the new answer. 

Cumulatives. Algorithm 2b uses a cumulative table in 
which the I th element contains the sum of the first I 
values of X; such tables are common when dealing 
with ranges. In business data processing applications, 
for instance, one finds the sales from March to Octo- 
ber by subtracting the February year-to-date sales 
from the October year-to-date sales. 

Lower bounds. Algorithm designers sleep peacefully 
only when their algorithm is known to be the best 
possible because they have proved a matching lower 
bound. The linear lower bound for this problem was 
easy; more complex lower bounds can be difficult. 

P r o b l e m s  
1. Algorithms 3 and 4 use subtle code that is easy to get 

wrong. Use the program verification techniques de- 
scribed in the December 1983 column to argue the 
correctness of the code; specify the loop invariants 
carefully. 

2. Our analysis of the four algorithms was done only at 
the "big-oh" level of detail. Analyze the number of 
additions and comparisons done by each algorithm 
as exactly as possible; does this exercise give any 
insight into the behavior of the algorithms? 
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The Impact of Algorithms 
Although the problem studied in this column illustrates 
several important techniques, it is really a " toy ' - - i t  
was never incorporated into a system. We'll now sur- 
vey several very real problems in which algorithm de- 
sign techniques proved their worth. 

Numerical Analysis. The standard example of the 
power of algorithm design is the Fast Fourier Trans- 
form. Its divide-and-conquer structure reduced the 
time required for Fourier analysis from O(N 2) to 
O(N log N). Because problems in signal processing and 
time series analysis frequently process inputs of size 
N = 1,000 or greater, the algorithm speeds up programs 
by factors of more than 100. The Fast Fourier Trans- 
form has opened whole new areas of engineering. 

Graph Algorithms. In a common approach to building 
integrated circuitry, the designer describes an electrical 
circuit as a graph that is later transformed into a chip 
design. A popular approach to laying out the circuit 
uses the "graph partitioning" problem to divide the en- 
tire electrical circuit into subcomponents. Heuristic al- 
gorithms for graph partitioning developed in the early 
1970s used O(N 2) time to partition a circuit with a total 
of N components and wires. Fiduccia and Mattheyses 
describe "A linear-time heuristic for improving net- 
work partition" in the 19th Design Automation Confer- 
ence. Because typical problems involve a few thousand 

components, their method reduces layout time from a 
few hours to a few minutes. 

Geometric Algorithms. Late in their design, integrated 
circuits are specified as geometric "artwork" that is 
eventually etched onto chips. Design systems process 
the artwork to perform tasks such as extracting the 
electrical circuit it describes, which is then compared 
to the circuit the designer specified. In the days when 
integrated circuits had N = 1,000 geometric figures that 
specified 100 transistors, algorithms that compared all 
pairs of geometric figures in O(N 2) time could perform 
the task in a few minutes. Now that VLSI chips contain 
millions of geometric components, quadratic algorithms 
would take months of CPU time. "Plane sweep" (or 
"scan line") algorithms have reduced the running time 
to O(N log N), so the designs can now be processed in a 
small number of hours. The paper "Space efficient algo- 
rithms for VLSI artwork analysis" by Szymanski and 
Van Wyk in the 20th Design Automation Conference de- 
scribes efficient algorithms for such tasks that use only 
small amounts of primary memory. 

Other Problem Domains. These stories just scratch the 
surface of the application of algorithm design tech- 
niques in real systems; for more examples, see the fur- 
ther reading. If readers know of additional case studies 
that have not been published, I would appreciate learn- 
ing about them. 

3. We defined the maximum subvector of an array of 
negative numbers to be zero (the sum of the empty 
subvector). Suppose that we had instead defined it to 
be the value of the element closest to zero; how 
would you change the programs? 

4. Suppose that we wished to find the subvector with 
sum closest to zero rather than that with maximum 
sum. What is the most efficient algorithm you can 
design for this task? What design techniques are ap- 
plicable? What if we wished to find the subvector 
with sum closest to a given real number T? 

5. A turnpike consists of N - 1 stretches of road be- 
tween N toll stations; each stretch of road has an 
associated cost of travel. It is trivial to tell the cost of 
going between any two stations in O(N) time using 
only an array of the costs or in constant time using a 
table of O(N 2) elements. Is it possible to build a data 
structure that requires O(N) space but allows the 
cost of any route to be computed in constant time? 

6. After the array X[1 .. N] is initialized to zero, N of 
the following operations are performed 

for I := L to U do 

X[I] := X[I] + V 

where L, U, and V are parameters of each operation 

(L and U are integers satisfying 1 ~ L ~ U ~ N and V 
is a real). After the N operations, the values of X[1] 
through X[N] are reported in order. This problem 
arose in gathering statistics in a simulation program; 
the method just sketched requires O(N 2) time. Can 
you find a faster algorithm? 

7. [Research Problem.] In the maximum subarray prob- 
lem we are given an N x N array of reals, and we 
must find the maximum sum contained in any rec- 
tangular subarray. What is the complexity of this 
problem? 

Solution to July's Problem 
This is the straightforward program for finding the 
maximum value in the array X of N values: 

Max: =X[1] ; I:= ] 

while I<<N do 

/* Invariant: Max holds 

for X[I..I] */ 

I := I + I 

if X [I]>Max then 

Max:=X[I] 

It makes a total of 2N comparisons: N in the while loop 
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compare I to N, and N in the if statement compare X[I] 
to Max. 

In his unpublished note "Finding the Maximum", 
R.G. Dromey of the University of Wollongong (P.O. Box 
1144, Wollongong N.S.W. 2500, Australia) shows how to 
reduce the number  of comparisons by a factor of almost 
two to N + logaN. His code uses X[N+I] as a sentinel 
element that is always equal to the variable Max. 

I:=I 

while I<=N do 

Max:=X[I] ; X[N+I] := Max; I:=I+1 

while X[I]<Max do I:=I+] 

Because of the sentinel, the program compares I to N 
only when it finds a new maximum; in Section 1.2.10 
of his Art of Computer Programming, Knuth shows that 
roughly log,.N maxima are found, on the average. 

In his note, Dromey derives the program by asking 
how one could efficiently confirm that Max indeed 
contains the maximum, under  the "best-case" assump- 
tion that it is initialized that way. He concludes, "The 
design lesson from this problem is that investigating a 
'best-situation' can provide insight into a more efficient 
solution. The second implementation, in the terminol- 

Further Reading 
Only extensive study can put these algorithm design 
techniques at your fingertips; most programmers will 
get this only from the serious study of a textbook on 
algorithms. Data Structures and Algorithms by Aho, Hop- 
croft, and Ullman is an excellent undergraduate text; 
Chapter 10 on "Algorithm Design Techniques" is espe- 
cially relevant to this column. If you'd like more of an 
introduction before jumping into a textbook, you may 
enjoy my survey article "An Introduction to Algorithm 
Design" in IEEE Computer Magazine, Volume 12, Num- 
ber 2, February 19791 

ogy of Jackson's Principles of Program Design, arrived at a 
closer match between the structure of the data and the 
dynamic behaviour of the algorithm. Such matching 
frequently leads to more efficient implementations." 
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