
Jon Bentl~.

programming
pear s

ALGORITHM DESIGN TECHNIQUES

The September 1983 column described the "everyday"
impact that algorithm design can have on programmers:
an algorithmic view of a problem gives insights that
may make a program simpler to unders tand and to
write. In this column we' l l s tudy a contribution of the
field that is less frequent but more impressive: sophisti-
cated algorithmic methods sometimes lead to dramatic
performance improvements.

This column is built around one small problem, with
an emphasis on the algorithms that solve it and the
techniques used to design them. Some of the algorithms
are a little complicated, but the complication is justi-
fied; while the first algorithm we' l l s tudy takes 39 days
to solve a problem of size 10,000, the final algorithm
solves the same problem in just a third of a second.

The Problem and a Simple Program
The problem arose in one-dimensional pat tern recogni-
tion; I'll describe its history later. The input is a vector
X of N real numbers; the output is the max imum sum
found in any contiguous subvector of the input. For in-
stance, if the input vector is

3 7

then the program returns the sum of X[3 .. 7], or 187.
The problem is easy when all the numbers are posi-
f ive- - the maximum subvector is the entire input vec-
tor. The rub comes when some of the numbers are
negative. Should we include a negative number in
hopes that the positive numbers to its sides will com-
pensate for its negative contribution? To complete the
definition of the problem, we'l l say that when all inputs
are negative the maximum sum subvector is the empty
vector, which has sum zero.

The obvious program for this task is simple: for each
pair of integers L and U (where 1 _< L _< U _< N),
compute the sum of X [L . . U] and check whether that
sum is greater than the max imum sum so far. The
pseudocode given in Algorithm 1 is short, straightfor-
ward, and easy to understand. Unfortunately, it has the
severe disadvantage of being slow. On the computer I
typically use, for instance, the code takes about an hour

© 1984 ACM 0001-0782/84[0900-0885

if N is 1,000 and 39 days if N is 10,000 (we'll get to
t iming details later).

Those times are anecdotal; we get a different kind of
feeling for the algori thm's efficiency using "big-oh" no-
tation. 1 The statements in the outermost loop are exe-
cuted exactly N times, and those in the middle loop are
executed at most N times in each execution of the
outer loop. Multiplying those two factors of N shows
that the four lines contained in the middle loop are
executed O(N 2) times. The loop in those four lines is
never executed more than N times, so its cost is O(N).
Multiplying the cost per inner loop times its number of
executions shows that the cost of the entire program is
proportional to N cubed, so we' l l refer to this as a cubic
algorithm.

Those simple steps il lustrate the technique of "big-
oh" analysis of run time and many of its strengths and
weaknesses. Its pr imary weakness is that we still don't
really know the amount of t ime the program will take
for any part icular input; we just know that the number
of steps it executes is O(N3). Two strong points of the
method often compensate for that weakness. "Big-oh"
analyses are usually easy to perform (as above), and the
asymptotic run time is often sufficient for a "back-of-
the-envelope" calculation to decide whether or not a
program is efficient enough for a given application.

The next several sections use asymptotic run time as
the only measure of program efficiency. If that makes

MaxSoFar :-- 0.0

for L := I to N do

for U := L to N do

Sum := 0. O

for I := L to U do

Sum := Sum + X[I]

/* Sum now contains the

sum of X[L..U] */

MaxSoFar := max(MaxSoFar, Sum)

Algorithm 1. The cubic algorithm

i The notation O(N 2) can be thought of as "proportional to N2";
both 15N 2 + 100N and N2/2 - 10 are O(N2). Informally,
f(N) = O(g(N)) means that f(N) < cg(N) for some constant c and
sufficiently large values of N. A formal definition of the nota-
tion can be found in most textbooks on algorithm design or
discrete mathematics.

September 1984 Volume 27 Number 9 Communications of the ACM 885

Programming Pearls

you uncomfortable, peek ahead to the section on "What
Does It Matter?", which shows that for this problem
such analyses are extremely informative. Before you
read on, take a minute to try to find a faster algorithm
for this problem.

Two Quadratic Algorithms
Most programmers have the same response to Algo-
rithm 1: "There's an obvious way to make it a lot
faster." There are two obvious ways, however, and if
one is obvious to a given programmer then the other
often isn't. Both algorithms are quadrat ic-- they take
O(N 2) steps on an input of size N- - and both achieve
their run time by computing the sum of X[L.. U] in a
constant number of steps rather than in the U - L + 1
steps of Algorithm 1. But the two quadratic algorithms
use very different methods to compute the sum in con-
stant time.

The first quadratic algorithm computes the sum
quickly by noticing that the sum of X[L.. U] has an
intimate relationship to the sum previously computed,
that of X[L.. U - 1]. Exploiting that relationship leads
to Algorithm 2. The statements inside the first loop are
executed N times, and those inside the second loop are
executed at most N times on each execution of the
outer loop, so the total run time is O(N2).

An alternative quadratic algorithm computes the sum
in the inner loop by accessing a data structure (called
CumArray) built before the outer loop is ever executed.
The I th element of CumArray contains the cumulative
sum of the values in X[1 .. I], so the sum of the values
in X[L.. U] can be found by computing CumArray[U] -
CumArray[L - 1]. This results in Algorithm 2b, which
takes O(N 2) time; the analysis is the same as for Algo-
rithm 2.

The algorithms we have seen so far inspect all possi-
ble pairs of starting and ending values of subvectors
and consider the sum of the numbers in that subvector.
Because there are O(N 2) subvectors, any algorithm that
inspects all such values must take at least quadratic
time. Can you think of a way to sidestep this problem
and achieve an algorithm that runs in less time?

A Divide-and-Conquer Algorithm
Our first subquadratic algorithm is complicated; if you
get bogged down in its details, you won' t lose much by
skipping to the next section. It is based on the following
divide-and-conquer schema:

To solve a problem of size N, recursively solve two sub-
problems of size approximately N/2, and combine their
solutions to yield a solution to the complete problem.

In this case the original problem deals with a vector of
size N, so the most natural way to divide it into sub-
problems is to create two subvectors of approximately
equal size, which we'll call A and B:

We then recursively find the maximum subvectors in A

and B, which we'll call MA and MB:

It is tempting to think that we have salved the prob-
lem because the maximum sum subvector of the entire
vector must be either MA or MB, and that is almost
right. In fact, the maximum is either entirely in A,
entirely in B, or it crosses the border between A and B
(which we'll call Mc for the maximum crossing the bor-
der):

Thus our divide-and-conquer algorithm will compute
MA and MB recursively, compute Mc by some other
means, and then return the maximum of the three.

That description is almost enough to write code. All
we have left to describe is how we'll handle small vec-
tors and how we'll compute Mc. The former is easy: the
maximum of a one-element vector is the only value in
the vector (or zero if that number is negative), and the
maximum of a zero-element vector was previously de-
fined to be zero. To compute Mc we observe that its
component in A is the largest subvector starting at the
boundary and reaching into A, and similarly for its
component in B. Putting these facts together leads to
Algorithm 3, which is originally invoked by the state-
ment

Answer := MaxSum(1 , N)

Although the code is complicated (and easy to get
wrong), it does yield a substantial decrease in run time:

MaxSoFar := 0.0

for L := I to N do

Sum := 0.0

for U := L to N do

Sum := Sum + X[I]

/* Sum now contains the

sum of X[L..U] */

MaxSoFar := max(MaxSoFar, Sum)

Algorithm 2. The first quadratic algorithm

CumArray[0] := 0.0

for I := I to N do

CumArray[I] := CumArray[I -- I] + X[I]

MaxSoFar := 0.0

for L := I to N do

for U := L to N do

Sum := CumArray[U] -- CumArray[L --

/* Sum now contains the

sum of X[L..U] */

MaxSoFar := max(MaxSoFar, Sum)

Algorithm 2b. An alternative quadratic algorithm

1]

886 Communications of the ACM September 1984 Volume 27 Number 9

Programming Pearls

recursive function MaxSum(L, U)

if L > U then /* Zero-element vector */

return 0.0

if L = U then /* One-element vector */

return max(0.0, X[L])

M := (L + U)/2 /* A is X[L..M] , B is X[M +

/* Find max crossing to left */

Sum := 0.0; MaxToLeft := 0.0

for I := M downto L do

Sum := Sum + X[I]

MaxToLeft := max(MaxToLeft, Sum)

/* Find max crossing to right */

Sum := 0.0; MaxToRight := 0.0

for I := M + I to U do

Sum := Sum + X[I]

MaxToRight := max(MaxToRight, Sum)

MaxCrossing := MaxToLeft + MaxToRight

MaxInA := MaxSum(L, M)

MaxInB := MaxSum(M + I, U)

return max(MaxCrossing, MaxInA, MaxInB)

Algorithm 3. A divide-and-conquer algorithm

1..U] * /

it solves the problem in O(N log N) time. There are a
number of ways of proving this fact. An informal argu-
ment observes that the algorithm does O(N) work on
each of O(log N) levels of recursion. The argument can
be made more precise by the use of recurrence rela-
tions; if T(N) denotes the time to solve a problem of size
N, then we can show that T(1) = O(1) and that

T(N3 = 2T(N/2) + O(N).

Most textbooks on algorithm design show that this re-

currence has the solution T(N) = O(N log N).

A Scanning Algorithm
We'll now use the simplest kind of algorithm that oper-
ates on arrays: it starts at the left end (element X[1])
and scans through to the right end (element X[N]),
keeping track of the maximum sum subvector seen so
far. The maximum is init ially zero. Suppose we've
solved the problem for X[1 . . I - 1]; how can we extend
that to a solution for the first I elements? We use rea-
soning similar to that of the divide-and-conquer algo-
rithm: the maximum sum in the first I elements is
either the maximum sum in the first I - 1 elements
(which we'l l call MaxSoFar), or it is that of a subvector
that ends in position I (which we' l l call MaxEndingHere):

I I MaxS°Far]] MaxEndingHere I

Recomputing MaxEndingHere from scratch (using code
like that in Algorithm 3) yields yet another quadratic
algorithm. We can get around this by using the tech-
nique that led to Algorithm 2: instead of computing the
maximum subvector ending in position I from scratch,

we' l l use the max imum subvector that ends in position
I - 1. This results in Algorithm 4.

The key to understanding this program is the vari-
able MaxEndingHere. Before the first assignment state-
ment in the loop, MaxEndingHere contains the value of
the maximum subvector ending in position I - 1; the
assignment statement modifies it to contain the value of
the maximum subvector ending in position I. The state-
ment increases it by the value X[I] so long as doing so
keeps it positive; when it goes negative, it is reset to
zero (that is, the max imum subvector ending at I is the
empty vector). Although the code is subtle, it is short
and fast: its running time is O(N) (so we' l l refer to it as
a linear algorithm). David Gries systematically derives
and verifies this algorithm in his paper "A Note on the
Standard Strategy for Developing Loop Invariants and
Loops" (in Science of Computer Programming 2, pp. 207-
214).

What Does It Matter?
So far I 've played fast and loose with "big-ohs"; it 's t ime
for me to come clean and tell about the run times of the
programs. I implemented the four pr imary algorithms
(all except Algorithm 2b) in the C language on a Digital

MaxSoFar := 0.0

MaxEndingHere := 0.0

for I := I to N do

MaxEndingHere := max(0.0,

MaxEndingHere + X[I])

MaxSoFar := max(MaxSoFar,

MaxEndingHere)

Algorithm 4. The linear algorithm

September 1984 Volume 27 Number 9 Communications of the ACM 86?

Programming Pearls

TABLE I. Summary of the Algorithms

Algorithm 1 2 3 4

Lines of C Code 8 7 14 7

Run time in 3.4N 3 13N 2 46N log N 33N
microseconds

Time to solve 102 3.4 secs 130 msecs 30 msecs 3.3 msecs
problem of size 103 .94 hrs 13 secs .45 secs 33 msecs

104 39 days 22 mins 6.1 secs .33 secs
10 s 108 yrs 1.5 days 1.3 min 3.3 secs
106 108 mill 5 mos 15 min 33 secs

Max problem sec 67 280 2000 30,000
solved in one min 260 2200 82,000 2,000,000

hr 1000 17,000 3,500,000 120,000,000
day 3000 81,000 73,000,000 2,800,000,000

If N multiplies by 1 O, 1000 1 O0 1 O+ 10
time multiplies by

If time multiplies by 2.15 3.16 10- 10
1 O, N multiplies by

Equipment Corporation VAX-11/750, 2 timed them, and
extrapolated the run times to achieve Table I.

This table makes a number of points. The most im-
portant is that proper algorithm design can make a big
difference in run time; that point is underscored by the
middle rows. The table also shows something of the
different character of cubic, quadratic, N log N and
linear algorithms: the last two rows show how the prob-
lem size and run time vary as a function of each other.

Another important point is that when we're compar-
ing cubic, quadratic, and linear algorithms with one
another, the constant factors of the programs don't mat-
ter much. To underscore this point, I conducted an
experiment in which I tried to make the constant fac-
tors of two algorithms differ by as much as possible. To
achieve a huge constant factor I implemented Algo-
rithm 4 on a BASIC interpreter on a Radio Shack TRS-
80 Model III microcomputer. For the other end of the
spectrum, Eric Grosse of AT&T Bell Laboratories and I
implemented Algorithm 1 in fine-tuned FORTRAN on a
CRAY-1 supercomputer. We got the disparity we
wanted: the run time of the cubic algorithm was meas-
ured as 3.0N 3 nanoseconds, while the run time of the
linear algorithm was 19,500,000N nanoseconds. Table II

shows how those expressions translate to times for var-
ious problem sizes (the same data is displayed graphi-
cally in Figure 1.)

The difference in constants (a factor of six and a half
million) allowed the cubic algorithm to start off faster,
but the linear algorithm was bound to catch up. In this
case, the break-even point for the two algorithms is
around 2,500, where each takes about 50 seconds.

Principles
The history of the problem sheds light on the algorithm
design techniques. The problem arose in a pattern-
matching procedure designed by Ulf Grenander of
Brown University in the two-dimensional form de-
scribed in Problem 7. In that form, the maximum sum
subarray was the maximum likelihood estimator of a
certain kind of pattern in a digitized picture. Because
the two-dimensional problem required too much time
to solve, Grenander simplified it to one dimension to
gain insight into its structure.

Grenander observed that the cubic time of Algorithm
I was prohibitively slow, and derived Algorithm 2. In
1977 he described the problem to Michael Shamos of
UNILOGIC, Ltd. (then of Carnegie-Mellon University)

TABLE II. The Tyranny of Asymptotics

N
Cray-1,

FORTRAN,
CubicAIgonthm

TRS-80,
BASIC,

LinearAIgonthm

10
100

1000
10,000

100,000
1,000,000

3.0 microsecs
3.0 millisecs

3.0 secs
49 mins
35 days
95 yrs

200 millisecs
2.0 secs
20 secs
3.2 mins
32 mins
5.4 hrs

2 VAX is a trademark of Digital Equipment Corporation.

868 Communications of the ACM September 1984 Volume 27 Number 9

Programming Pear)s

Run Time in
Nanoseconds

10 TM

1015

1012

10 o

100

10 s

10 0

m

CRAY 1 (3.0N 3]

I I I I I
10 0 101 10 2 1 0 s 1 0 4 1 0 5

century

year
month

day

hour

second

Run Time in
Common Units

millisecond

microsecond

nanosecond

10 e

Problem Size (NI

FIGURE 1. The Run Times of Two Programs

who overnight designed Algorithm 3. When Shamos
showed me the problem shortly thereafter, we thought
that it was probably the best possible; researchers had
just shown that several similar problems require time
proportional to N log N. A few days later Shamos de-
scribed the problem and its history at a seminar at-
tended by Jay Kadane (a statistician at Carnegie-Mellon
University), who designed the linear-time Algorithm 4
within a minute. Fortunately, we know that there can
be no better algorithm: any algorithm must look at all N
inputs.

Even though the one-dimensional problem is now
completely solved, Grenander's original two-dimen-
sional problem remains open. Because of the computa-
tional expense of all known algorithms, Grenander had
to abandon that approach to the pattern-matching prob-
lem. Readers who feel that the linear-time algorithm
for the one-dimensional problem is "obvious" are there-
fore urged to find an "obvious" algorithm for Problem 7!

Although the algorithms in this story were never in-
corporated into a system, they do illustrate several im-
portant algorithm design techniques that have had sub-
stantial impact on many systems (see the sidebar on
page 870):

Save state to avoid recomputation. This simple form of
dynamic programming arose in Algorithms 2 and 4.
By using space to store results, we avoid using time to
recompute them.

Preprocess information into data structures. This was the
technique underlying Algorithm 2b: the CumArray
structure allowed the sum of a subvector to be ac-
cessed in just a couple of operations.

Divide-and-conquer algorithms. Algorithm 3 uses a sim-
ple form of divide-and-conquer; textbooks on algo-
rithm design describe more advanced forms.

Scanning algorithms. Problems on arrays can often be
solved by asking "how can I extend a solution for
X[1.. I - 1] to a solution for X[1.. I]?" In Algorithm
4 we had to remember both the old answer and some
auxiliary data to compute the new answer.

Cumulatives. Algorithm 2b uses a cumulative table in
which the I th element contains the sum of the first I
values of X; such tables are common when dealing
with ranges. In business data processing applications,
for instance, one finds the sales from March to Octo-
ber by subtracting the February year-to-date sales
from the October year-to-date sales.

Lower bounds. Algorithm designers sleep peacefully
only when their algorithm is known to be the best
possible because they have proved a matching lower
bound. The linear lower bound for this problem was
easy; more complex lower bounds can be difficult.

P r o b l e m s
1. Algorithms 3 and 4 use subtle code that is easy to get

wrong. Use the program verification techniques de-
scribed in the December 1983 column to argue the
correctness of the code; specify the loop invariants
carefully.

2. Our analysis of the four algorithms was done only at
the "big-oh" level of detail. Analyze the number of
additions and comparisons done by each algorithm
as exactly as possible; does this exercise give any
insight into the behavior of the algorithms?

September 1984 Volume 27 Number 9 Communications of the ACM 869

Programming Pearls

The Impact of Algorithms
Although the problem studied in this column illustrates
several important techniques, it is really a " toy ' - - i t
was never incorporated into a system. We'll now sur-
vey several very real problems in which algorithm de-
sign techniques proved their worth.

Numerical Analysis. The standard example of the
power of algorithm design is the Fast Fourier Trans-
form. Its divide-and-conquer structure reduced the
time required for Fourier analysis from O(N 2) to
O(N log N). Because problems in signal processing and
time series analysis frequently process inputs of size
N = 1,000 or greater, the algorithm speeds up programs
by factors of more than 100. The Fast Fourier Trans-
form has opened whole new areas of engineering.

Graph Algorithms. In a common approach to building
integrated circuitry, the designer describes an electrical
circuit as a graph that is later transformed into a chip
design. A popular approach to laying out the circuit
uses the "graph partitioning" problem to divide the en-
tire electrical circuit into subcomponents. Heuristic al-
gorithms for graph partitioning developed in the early
1970s used O(N 2) time to partition a circuit with a total
of N components and wires. Fiduccia and Mattheyses
describe "A linear-time heuristic for improving net-
work partition" in the 19th Design Automation Confer-
ence. Because typical problems involve a few thousand

components, their method reduces layout time from a
few hours to a few minutes.

Geometric Algorithms. Late in their design, integrated
circuits are specified as geometric "artwork" that is
eventually etched onto chips. Design systems process
the artwork to perform tasks such as extracting the
electrical circuit it describes, which is then compared
to the circuit the designer specified. In the days when
integrated circuits had N = 1,000 geometric figures that
specified 100 transistors, algorithms that compared all
pairs of geometric figures in O(N 2) time could perform
the task in a few minutes. Now that VLSI chips contain
millions of geometric components, quadratic algorithms
would take months of CPU time. "Plane sweep" (or
"scan line") algorithms have reduced the running time
to O(N log N), so the designs can now be processed in a
small number of hours. The paper "Space efficient algo-
rithms for VLSI artwork analysis" by Szymanski and
Van Wyk in the 20th Design Automation Conference de-
scribes efficient algorithms for such tasks that use only
small amounts of primary memory.

Other Problem Domains. These stories just scratch the
surface of the application of algorithm design tech-
niques in real systems; for more examples, see the fur-
ther reading. If readers know of additional case studies
that have not been published, I would appreciate learn-
ing about them.

3. We defined the maximum subvector of an array of
negative numbers to be zero (the sum of the empty
subvector). Suppose that we had instead defined it to
be the value of the element closest to zero; how
would you change the programs?

4. Suppose that we wished to find the subvector with
sum closest to zero rather than that with maximum
sum. What is the most efficient algorithm you can
design for this task? What design techniques are ap-
plicable? What if we wished to find the subvector
with sum closest to a given real number T?

5. A turnpike consists of N - 1 stretches of road be-
tween N toll stations; each stretch of road has an
associated cost of travel. It is trivial to tell the cost of
going between any two stations in O(N) time using
only an array of the costs or in constant time using a
table of O(N 2) elements. Is it possible to build a data
structure that requires O(N) space but allows the
cost of any route to be computed in constant time?

6. After the array X[1 .. N] is initialized to zero, N of
the following operations are performed

for I := L to U do

X[I] := X[I] + V

where L, U, and V are parameters of each operation

(L and U are integers satisfying 1 ~ L ~ U ~ N and V
is a real). After the N operations, the values of X[1]
through X[N] are reported in order. This problem
arose in gathering statistics in a simulation program;
the method just sketched requires O(N 2) time. Can
you find a faster algorithm?

7. [Research Problem.] In the maximum subarray prob-
lem we are given an N x N array of reals, and we
must find the maximum sum contained in any rec-
tangular subarray. What is the complexity of this
problem?

Solution to July's Problem
This is the straightforward program for finding the
maximum value in the array X of N values:

Max: =X[1] ; I:=]

while I<<N do

/* Invariant: Max holds

for X[I..I] */

I := I + I

if X [I]>Max then

Max:=X[I]

It makes a total of 2N comparisons: N in the while loop

8?0 Communications of the ACM September 1984 Volume 27 Number 9

Programming Pearls

compare I to N, and N in the if statement compare X[I]
to Max.

In his unpublished note "Finding the Maximum",
R.G. Dromey of the University of Wollongong (P.O. Box
1144, Wollongong N.S.W. 2500, Australia) shows how to
reduce the number of comparisons by a factor of almost
two to N + logaN. His code uses X[N+I] as a sentinel
element that is always equal to the variable Max.

I:=I

while I<=N do

Max:=X[I] ; X[N+I] := Max; I:=I+1

while X[I]<Max do I:=I+]

Because of the sentinel, the program compares I to N
only when it finds a new maximum; in Section 1.2.10
of his Art of Computer Programming, Knuth shows that
roughly log,.N maxima are found, on the average.

In his note, Dromey derives the program by asking
how one could efficiently confirm that Max indeed
contains the maximum, under the "best-case" assump-
tion that it is initialized that way. He concludes, "The
design lesson from this problem is that investigating a
'best-situation' can provide insight into a more efficient
solution. The second implementation, in the terminol-

Further Reading
Only extensive study can put these algorithm design
techniques at your fingertips; most programmers will
get this only from the serious study of a textbook on
algorithms. Data Structures and Algorithms by Aho, Hop-
croft, and Ullman is an excellent undergraduate text;
Chapter 10 on "Algorithm Design Techniques" is espe-
cially relevant to this column. If you'd like more of an
introduction before jumping into a textbook, you may
enjoy my survey article "An Introduction to Algorithm
Design" in IEEE Computer Magazine, Volume 12, Num-
ber 2, February 19791

ogy of Jackson's Principles of Program Design, arrived at a
closer match between the structure of the data and the
dynamic behaviour of the algorithm. Such matching
frequently leads to more efficient implementations."

For Correspondence: Jon Bentley, AT&T Bell Laboratories, Room 2C-317,
600 Mountain Avenue, Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

ACM Algorithms
Collected Algorithms from ACM (CALGO) now includes quar-
terly issues of complete algorithm listings on microfiche as part
of the regular CALGO supplement service.

The ACM Algorithms Distribution Service now offers microfiche
containing complete listings of ACM algorithms, and also offers
compilations of algorithms on tape as a substitute for tapes
containing single algorithms. The fiche and tape compilations
are available by quarter and by year. Tape compilations covering
five years will also be available.

To subscribe to CALGO, request an order form and a free
ACM Publications Catalog from the ACM Subscription De-
partment, Association for Computing Machinery, 11 West
42nd Street, New York, NY 10036. To order from the ACM
Algorithms Distributions Service, refer to the order form that
appears in every issue of ACM Transactions on Mathematical
Software.

September 1984 Volume 27 Number 9 Communications of the ACM 871

