
Design and development of
embedded systems for the

Internet of Things (IoT)

Fabio Angeletti
Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Why C?

2

Test on 21 Android Devices
with 32-bits and 64-bits
processors and different

versions of Android.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

C in a nutshell
C is not Python or Java.

C is hard to learn and sometimes can be
hard to handle.

3

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

C is everywhere
C is fast.
C is a small language.
C is designed to be compiled by simple compilers.
C map efficiently machine instructions.
C is portable and works on every platforms.

C is used by the 99% of the Operating Systems.
Every developer must know at least the basic
notions.

4

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

The reality

Something is wrong!

5

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

C is powerful
C offers some special features ideally for system
programming:

• Explicit memory management
• Explicit error detection
• Low-level features like bit operations
• No complex pre-built data-structures

This means more control but more possible mistakes.

6

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

The first example
/* Hello World program */

#include <stdio.h>

int main() {
printf("Hello World.\n”);
return 0;

}

Compile phase: gcc -o hello hello.c
Execute phase: ./hello

Anyone doesn’t know this stuff?

7

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Primitive types
The basic and the most powerful one: void
The none type: NULL
The integers: char, short, int, long, long long
The floating points: float, double, long double

Only by the standard C99 is define the boolean type but usually it is not
used to back compatibility. Use instead 1 or 0.
Every type can be signed or not signed.
The size of every type depends on the platforms.

chart -> 1 bytes short -> 2 bytes int -> 4 bytes long -> 8 bytes
float -> 4 bytes double -> 8 bytes long double -> 16 bytes

8

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Integer with different bases
Usually we represent integer with base 10 but sometimes is not the best
choice for the embedded systems.
C allows to handle some special representation adding the following
prefixes:

Hexadecimal (base 16):
0x (%x to use with printf)

Octal (base 8):
0 (%o to use with printf)

There isn’t a standard support for the binary representation but you can write
your own functions to translate a base 10 int to a base 2 int.

I hope you will do for the next lesson!

9

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Bitwise operations in C

10

Symbol Operator Example

& Bitwise AND 101 & 001 = 001

| Bitwise Inclusive OR 110 | 101 = 111

^ XOR 110 ^ 100 = 011

<< Left shift 00110 << 2 = 1100

>> Right shift 00110 >> 2 = 0011

~ Bitwise Not (1 complement) ~110 = 001

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Not so complex types
There isn’t a predefined type for a string or for other structures like map/

dictionary without using external libraries (not always suggested).
What is a string in C?

A sequence of chars terminated by a \0.

 char[] course = “IoT17\0”;

There are some utilities function to manipulate strings (string.h):
strncpy, strncmp, strncat

11

What is an array in C?
Same story. A sequence of a predefined type but without \0 char.

 int a[10];
 for (int i = 0; i < 10; i++) {

 a[i] = 0;
 }

There are some utilities function to manipulate data:
memcpy, memcmp

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Not so complex types (2)

12

An enum is a user-defined data type that consists of constants.

enum months {
JANUARY,
FEBRUARY,
MARCH

};

enum months {
JANUARY = 1,
FEBRUARY = 3,
MARCH

};

Each element of enum gets an integer value and used like an integer.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Enumerations

13

enum week {sunday, monday, tuesday,
wednesday, thursday, friday, saturday};

int main() {
enum week today;
today = wednesday;

 printf("Day %d”, today + 1);
 return 0;
}

A struct is used to aggregate different data with the same meaning.

struct birthday {
char* name;
enum months month;
int day;
int year;

};

struct my_birthday;

my_birthday.name = “Fabrizio\0”

my_birthday.month = JUNE;

Struct can refer also to other structures.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Structures

14

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 15

SEEMS EASY,
DOESN’T IT?

A pointer is a special variable that contains variable address.
int* pointer = &var;

If you assign a value to the pointer you modify also the original variable:
*pointer = 2;

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Pointers

16

&var is the address of the variable

*var is the pointer to the variable

A pointer variable must be always initialized
with a valid address

or with the NULL value.

A pointer point to a address but you have to specify a type to
understand what is written inside the address.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Pointers (2)

17

1 2 3 4 5 6

pointer

char short int

7 8

long

Enter the void
Void means nothing, emptiness. A function “returning” void actually does not
return anything.
The size of void is undefined for this reason.

void* pointer;

is used to store addresses of unspecified types

You can cast to a specific type to do specific tasks.

void* pointer;

(int) pointer;

NEVER READ OR WRITE A NOT ALLOWED MEMORY AREA

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 18

Pointer arithmetic
char* pointer;

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 19

1 2 3 4 5 6 7 8

pointer

pointer += 1

char my_array[5];

my_array[3] = 0;

&my_array += 3 or

&my_array += 3 * sizeof(type)

Memory management
Global Variables

• Declared outside the body function
• Space allocated statically before program execution
• Cannot deallocate space until program finishes
• Name has to be unique for the whole program

Local Variables

• Declared in the body of the function
• Space allocated when entering the function
• Space automatically deallocated when functions returns

NEVER REFER TO A LOCAL VARIABLE AFTER THE FUNCTION RETURN

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 20

Memory management (2)
Dynamic Variables

• Memory has to be explicitly allocated
• Memory has to be explicitly deallocated (only one time)
• Dynamic variables are allocated in the the heap
 (a special area of memory)

Allocate memory:

void* malloc(int)

Deallocate memory:

void* free(void*)

Reallocate memory:

void* realloc(void *ptr, size_t size)

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 21

Functions
In C you can pass the values to the functions by:
• Value
• Reference

/* arguments passed by value */
int sum(int a, int b) {
return (a + b); /* return by value */

}

/* arguments passed by reference */
int psum(int* pa, int* pb) {
return ((*pa) + (*pb));

}

int psum(int *p) {
p = a + b; / return by reference */

}

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 22

Functions (2)
In C is also defined a pointer to a function. Usually used to force another
programmer to implement their own version of common functionalities.

• The OS needs specific tasks such as sendPacket() and receivePacket(). We
can implement our version and pass to a function by reference.

• Another example is to implement specific comparator or iterator such as is
common in Java Programming.

void myproc(int d) {}

void mycaller(void (*f)(int), int param) {
f(param); /* call function f with param */

}

void main(void) {
mycaller(myproc, 10); /* call myproc using mycaller */

}

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 23

Compiling phase

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 24

Preprocessor Compiler Linker

.c files

.h files

.o file

libs

Preprocessor commands
We can use special functions of preprocessors to help us

• Import modules

/* include standard library declaration */
#include <stdio.h>
/* include custom declarations */
#include “myheader.h”

• Symbol definition

#define DEBUG 0
#define MAX_LIST_LENGTH 100
if (DEBUG)
printf("Max length of list is %d.\n", MAX_LIST_LENGTH);

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 25

Preprocessor commands (2)
• Conditional compilation

#ifdef DEBUG
printf("DEBUG: line " _LINE_ " has been reached.\n");

#endif

#ifndef HEADER_H
#include “header.h”

#endif

• Macro definition

#define min(X, Y) ((X) < (Y) ? (X) : (Y))
int res = min(1, 2);

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 26

You have always to remember
• To initialize variables before using, especially pointers.

• The life of pointer should be short and equal to the life of the pointed
object.

• Do not return local variables by reference
• Do not dereference (*p) pointer before initialization or deallocation

• C has no error handler except for assert system. You always should do
error handling by your hand.

• C require practices, focus and you should always follow standards,
convention and what suggested by the operating system or by the
platform you are working on. Check Google and StackOverflow.

• On desktop you can use valgrind to check your program or gdb to debug.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 27

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso 28

