
Design and development of
embedded systems for the

Internet of Things (IoT)

Fabio Angeletti
Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

FreeRTOS in details

�2

In this lesson we will review some topics we studied during last
lesson and we will explore the following FreeRTOS routines and
topics:

• Datatypes and Coding Style
• Dynamic memory management (Heap System)
• Task
• Queue
• Interrupt
• Task notifications

At the end of the class we will talk about the final project
in details and the deadlines.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Datatypes and coding styles

�3

• It’s better to specify if a variable is signed or unsigned.

• Variables are prefixed with their type: 'c' for char, 's' for int16t
(short), 'l' int32t (long), and 'x' for BaseType_t and any other non-
standard types (structures, task handles, queue handles, etc.).

• If a variable is unsigned, it is also prefixed with a 'u'. If a variable is
a pointer, it is also prefixed with a ‘p’.

• Functions are prefixed with both the type they return, and the file
they are defined within

xQueueReceive() returns a variable BaseType_t and is defined in queue.c

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Datatypes and coding styles (2)

�4

• BaseType_t
The most efficient, natural, type for the architecture. For example, on
a 32-bit architecture BaseType_t will be defined to be a 32-bit type. On a
16-bit architecture BaseType_t will be defined to be a 16-bit type.

• TickleType_t
If configUSE_16_BIT_TICKS is set to 1, then TickType_t is defined to be
an unsigned 16-bit type. If configUSE_16_BIT_TICKS is set to 0, then
TickType_t is defined to be an unsigned 32-bit type.

Type Value

pdTRUE 1

pdFALSE 0

pdPASS 1

pdFAIL 0

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Task

�5

Tasks are implemented as C functions. Return void and take a void pointer
parameter, as shown here.

void ATaskFunction(void const *pvParameters) {

/* Variables can be declared just as per a normal function. Each instance of
a task created will have its own copy of the variable. This would not be true
if the variable was declared static. */
int32_t lVariableExample = 0;

/* A task will normally be implemented as an infinite loop. */
for(;;) or while(1) {

/* The code to implement the task functionality will go here. */
}

}

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Memory management

�6

Heap Area Static Area

RAM

xTaskCreate()

Stack

TCB

xTaskCreate()

Stack

TCB

Semaphore
Queue
Mutex

…

Arrays
Static Variables
Global Variables

Static version of Tasks etc

configTOTAL_HEAP_SIZE

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Heap System

�7

How we explained on the last lesson you can use
static allocation or dynamic allocation.
FreeRTOS support 5 dynamic allocation systems:

FreeRTOS/Source/portable/MemMang

• Heap 1
• Heap 2
• Heap 3
• Heap 4
• Heap 5

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Heap 1

�8

It is the simplest scheme among all. It does not
permit memory to be freed once it has been
allocated.

The algorithm simply subdivides a single array
into smaller blocks as requests for RAM are
made. The total size of the array is set by the
definition configTOTAL_HEAP_SIZE - which is
defined in FreeRTOSConfig.h.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Heap 1 (2)

�9

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Heap 2

�10

This scheme uses a best fit algorithm and,
unlike scheme 1, allows previously allocated
blocks to be freed, however it does not combine
adjacent free blocks into a single large block.
Again the total amount of available RAM is set by
the definition configTOTAL_HEAP_SIZE - which
is defined in FreeRTOSConfig.h.
 

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Heap 2 (2)

�11

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Heap 3

�12

This scheme is just a wrapper for the standard
malloc() and free() functions, making them
thread-safe but still not deterministic.
This system require to increase the memory
allocated to the kernel (OS).
Not suggested for real-time applications.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Heap 4

�13

This scheme uses a first fit algorithm and, unlike
scheme 2, it does combine adjacent free memory
blocks into a single large block.  
The xPortGetFreeHeapSize() API function returns
the total amount of heap space that remains
unallocated (allowing the configTOTAL_HEAP_SIZE
setting to be optimized), but does not provide
information on how the unallocated memory is
fragmented into smaller blocks.  

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Heap 4 (2)

�14

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Dynamic Memory Allocation API

�15

You can use the standard C library mechanism to
allocate the memory but it is:

not deterministic, rarely thread-safe, not always
available on small embedded systems

malloc() -> pvPortMalloc()

free() -> vPortFree() 

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Queue

�16

Queues are use to communicate:

1. Task to task
2. Task to interrupt
3. Interrupt to task 

A queue can hold a finite number of fixed-size
data items. The maximum number of items a
queue can hold is called its length. Both the length
and the size of each data item are set when the
queue is created.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Queue (2)

�17

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Queue (3)

�18

The Queues work by copying an element
into its memory (no references)

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Queue (4)

�19

QueueHandle_t xQueueCreate(UBaseType_t uxQueueLength,
UBaseType_t uxItemSize);

BaseType_t xQueueSendToFront(QueueHandle_t xQueue,
const void * pvItemToQueue, TickType_t xTicksToWait);

BaseType_t xQueueSendToBack(QueueHandle_t xQueue,
const void * pvItemToQueue, TickType_t xTicksToWait);

BaseType_t xQueueReceive(QueueHandle_t xQueue, void * const pvBuffer,
TickType_t xTicksToWait); 

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Queue with pointers

�20

You can also use queue with pointers when the data to
store is large.

• When using a pointer to share memory between tasks, you must make
sure that both tasks do not modify the memory contents
simultaneously, as this could cause the memory contents to be
invalid or inconsistent.

• If the memory was allocated dynamically or obtained from a pool of
preallocated buffers, one task should be responsible for freeing the
memory.

• You should never use a pointer to access data that has been
allocated on a task stack. The data will not be valid after the stack
frame has changed.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Software timers

�21

Software timers are used to schedule in the
future or periodically with a fixed frequency.
The timers are not related to the hardware but
they do not use any processing time.

You have to include the <timer.c> on your project and set
configUSE_TIMERS = 1 in FreeRTOSConfig.h

Don’t use block code inside a timer code

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Software timers (2)

�22

• One shot
a one-shot timer will execute its callback function only once. A one-shot
timer can be restarted manually.

• Auto-reloaded
an auto-reload timer will restart itself each time it expires, resulting in
periodic execution of its callback function.

One Shot Auto-reloaded

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Software timers (3)

�23

TimerHandle_t xTimerCreate(const char * const pcTimerName,
TickleType_t xTimerPeriodInTicks,

UBaseType_t uxAutoreload, void * pvTimerID,
TimerCallBackFunction_t pxCallbackFunction);

TimerHandle_t xTimerStart(TimerHandle_t xTimer, TickType_t xTicksToWait);

TimerHandle_t xTimerReset(TimerHandle_t xTimer, TickType_t xTicksToWait);

TimerHandle_t xTimerStop(TimerHandle_t xTimer, TickType_t xTicksToWait);
 

TimerHandle_t xTimerChangePeriod(TimerHandle_t xTimer,
TickType_t xNewTimerPeriodInTicks, TickType_t xTicksToWait);

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Interrupt

�24

An interrupt service routine (ISR) is a hardware
feature because the hardware controls which interrupt
service routine will run and when. FreeRTOS provides
two versions of some API functions (FROM_ISR).

• From ISR you have to do non trivial operations.
• The interrupt processing is not deterministic.
• You have to delegate the main job to a correlated task.

A semaphore or a mutex is used as a
synchronization method

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Interrupt (2)

�25

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Interrupt (3)

�26

What’s the problem here? Can we do better?

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Interrupt (4)

�27

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Interrupt (5)

�28

We studied at least one other system
we can use here…

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Interrupt (6)

�29

We can synchronize an ISR with a task with
different methods:

• Binary Semaphore
• Counting Semaphore
• Mutex
• Queue

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Task notifications

�30

Two tasks can talk to each other between
intermediary objects.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Task notifications (2)

�31

Task notifications allow tasks to interact with
other tasks and to synchronize with ISRs without

the need for a separate communication object

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Task notifications (3)

�32

You have to set configUSE_TASK_NOTIFICATIONS = 1 in
FreeRTOSConfig.h
When you active the task notification each task has a notification
state, which can be pending or not pending. When a task receives a
notification, its notification state is set to pending.
Using a task notification to send an event or data to a task is
significantly faster than using a queue or semaphore.

• Task notifications can be used to send events and data from an
ISR to a task or task to task.

• Task notifications are sent directly to the receiving task, so can be
processed only by the task to which the notification is sent.

• A task's notification value can hold only one value at a time.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Task notifications (4)

�33

BaseType_t xTaskNotifyGive(TaskHandle_t xTaskToNotify);

BaseType_t xTaskNotifyGiveFromISR(TaskHandle_t xTaskToNotify,
BaseType_t *pxHigherPriorityTaskWoken);

uint32_t ulTaskNotifyTake(BaseType_t xClearCountOnExit,
TickType_t xTicksToWait);

There are also xTaskNotify, xTaskNotifyFromISR, xTaskNotifyWait
advanced version of the previous functions. 

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

The final project

�34

You have to present a final project to pass the
class.
The requirements:

• Work on FreeRTOS on your board
• Use at least one external sensor
• Interact with at least one external system

(serial bus, bluetooth)
• Visualize data or statistics with Thingsboard or

Grafana

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

The final project (2)

�35

Board

Sensors

Laptop

Web

Serial

MQTT

REST

Bluetooth

Mobile
Phone

Bluetooth

MQTT

REST

ThingsBoard
Grafana

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

The final project (3)

�36

You can also work on networks problems like indoor
localization or time synchronization but that can be
trivial.
It’s highly suggested to work on group but it’s accepted
to work alone.

DEADLINES
By the 21st April you have to submit your group
details and the hardware you need.
By the 1st May you have to choose your final project.
By the 8th June you have to upload your project on
GitHub. The presentation will be on the 12th June.

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso

Next lessons

�37

We have six lessons more. These are the next
topics:

• IoT Network Technologies and protocols
• How to read and understand a data-sheet
• Low power techniques
• IoT Security
• IoT on Cloud and web data visualization
• WSense IoT Real Examples

Design and development of embedded systems for the Internet of Things (IoT)
Fabio Angeletti – Fabrizio Gattuso �38

