Design and development of
embedded systems for the
Internet of Things (loT)

Fabio Angeletti
Fabrizio Gattuso

NV

=2 SAPIENZA (fe)) W-seEnseE
wAL £ UNIVERS]TA DI ROMA EEEEEEEEEEEEEEEEEEEEEEEEEEEE

N

FreeRTOS in detalils

In this lesson we will review some topics we studied during last
lesson and we will explore the following FreeRTOS routines and

topics:

Datatypes and Coding Style

Dynamic memory management (Heap System)
Task

Queue

Interrupt

 Task notifications

At the end of the class we will talk about the final project
in details and the deadlines.

W SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) ‘.’ WesSENSE
QUZ/ UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 2 QN AY/ NTEemaTE castetess souTions

Datatypes and coding styles

- It’s better to specify if a variable is signed or unsigned.

- Variables are prefixed with their type: '¢’ for char, 's’for int16t
(short), I"int32t (long), and x’ for BaseType_t and any other non-
standard types (structures, task handles, queue handles, etc.).

- If a variable is unsigned, it is also prefixed with a 'u’. If a variable is
a pointer, it is also prefixed with a ‘p’.

- Functions are prefixed with both the type they return, and the file
they are defined within

xQueueReceive() returns a variable BaseType _t and is defined in queue.c

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE
3 EEEEEEEEEEEEEEEEEEEEEEEEEEEE

’*;,,. UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso

Datatypes and coding styles (2)

- BaseType_t

The most efficient, natural, type for the architecture. For example, on
a 32-bit architecture BaseType_t will be defined to be a 32-bit type. On a
16-bit architecture BaseType_t will be defined to be a 16-bit type.

+ TickleType_t

If configUSE_16_BIT_TICKS is set to 1, then TickType_t is defined to be

an unsigned 16-bit type. If configUSE_16_BIT_TICKS is set to 0, then
TickType_t is defined to be an unsigned 32-bit type.

pdTRUE 1
pdFALSE 0
pdPASS 1
pdFAIL 0

: fi SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) ‘.‘ WeSENSE
Q&I UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 4 QNN eemee casteLess sowuTions

Task

Tasks are implemented as C functions. Return void and take a void pointer
parameter, as shown here.

void ATaskFunction(void const *pvParameters) {

/* Variables can be declared just as per a normal function. Each instance of
a task created will have its own copy of the variable. This would not be true
if the variable was declared static. */

int32_t IVariableExample = 0;

/* A task will normally be implemented as an infinite loop. */
for(;;) or while(1) {
/* The code to implement the task functionality will go here. */

}

W SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) ‘.’ WeSENSE
QUZ/ UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 5 QN NTEemTEs casteess sowuTions

Memory management

RAM configTOTAL_HEAP_SIZE
[J

Heap Area Static Area

/

Stack Semaphore Arrays
Queue Static Variables
TCB Mutex Global Variables

Static version of Tasks etc
xTaskCreate() xTaskCreate()

(% SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) ‘.) WeSENSE
‘\w 5 UNIVERSITA DI ROMA Fabio Angelettl — Fabrizio Gattuso 6 QOVA// NTEGRATED CABLELESS SOLUTIONS

Heap System

How we explained on the last lesson you can use
static allocation or dynamic allocation.

FreeRTOS support 5 dynamic allocation systems:

CCCCCCCC

o ™ eap 1 ¢ event_groups.c
> include
c .c
o |- eap 2
4
>
> eWarrior
* Heap 3 - I8 Commnon
4
>
o | e a 4 > [Keil
p v MemMang
C
° - e a 5 c heap_2.c
p ¢ heap_3.c
C

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE

J/‘L/, & UNIVERSITA DI ROMA Fablo Ange'ettl . FabrIZIO Gattuso 7 N QU\J/ INTEGRATED CABLELESS SOLUTIONS

Heap 1

It is the simplest scheme among all. It does not
permit memory to be freed once it has been
allocated.

The algorithm simply subdivides a single array
iInto smaller blocks as requests for RAM are
made. The total size of the array is set by the
definition configTOTAL_HEAP_SIZE - which is
defined in FreeRTOSConfig.h.

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE
8 EEEEEEEEEEEEEEEEEEEEEEEEEEEE

”L,,. UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso

Heap 1 (2)

>
|oo

TCB

—configTOTAL_HEAP_SIZE—

TCB

N SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) o)) WeSENSE
Q&I UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 9 QA nrEemaeD chsieess sotuTions

Heap 2

This scheme uses a best fit algorithm and,
unlike scheme 1, allows previously allocated
blocks to be freed, however it does not combine
adjacent free blocks into a single large block.

Again the total amount of available RAM is set by
the definition configTOTAL_HEAP_SIZE - which
is defined in FreeRTOSConfig.h.

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE

Q&I UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 10 \\QAY/ [EEmIED s Seumee

Heap 2 (2)

[[a | B] c
al al .l
® ®)
o) o) o)

L 2] 2] (7))

N © O g}

—)))

N 0 0 0

n.l ® o) o)

<]]]

I| Stack Stack

3

— TCB TCB

O ®

4 Stack pdl Stack

£ o

| TcB o TCB

(@)

Stack Stack

N 7cs TCB TCB

N SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) o)) WeSENSE
Q&I UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 1 QRQA/ reemre creecess sowrions

Heap 3

This scheme is just a wrapper for the standard
malloc() and free() functions, making them
thread-safe but still not deterministic.

This system require to increase the memory
allocated to the kernel (OS).

Not suggested for real-time applications.

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE

J/‘L/ \ﬁ"é UNIVERSITA DI ROMA Fablo Angelettl . FabrIZIO Gattuso 12 QW QU\J/ INTEGRATED CABLELESS SOLUTIONS

Heap 4

This scheme uses a first fit algorithm and, unlike
scheme 2, it does combine adjacent free memory
blocks into a single large block.

The xPortGetFreeHeapSize() API function returns
the total amount of heap space that remains
unallocated (allowing the configTOTAL_HEAP_SIZE
setting to be optimized), but does not provide
information on how the unallocated memory is
fragmented into smaller blocks.

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE

J/‘L/ \ﬁ"é UNIVERSITA DI ROMA Fablo Angelettl . FabrIZIO Gattuso 13 W QU/\J/ INTEGRATED CABLELESS SOLUTIONS

Heap 4 (2)

|oo
(@)

E

-1
>

L—soeds sai4

L—ooeds aa14—l
L oaoeds sai{—
L ooeds sai{—
L—ooeds sai4{ -
L—ooeds sai4—l

HEAP_SIZE

Stack

Stack

TCB TCB TCB

Free Space

Free Space User

TCB

Free Space

User
Queue Free Space

TCB

Free Space

Free Space

Queue

configTOTAL

Stack

Stack

Stack

TCB

TCB

—

TCB

UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 14 INTEGRATED CABLELESS SOLUTIONS

SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) (‘.’i) WeSENSE

Dynamic Memory Allocation AP|

You can use the standard C library mechanism to
allocate the memory but it is:

not deterministic, rarely thread-safe, not always
available on small embedded systems

malloc() -> pvPortMalloc()

free() -> vPortFree()

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE

QUL UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 18 \\QAY/ [HEEmiED s Seumee

Queue

Queues are use to communicate:

1. Task to task
2. Task to interrupt
3. Interrupt to task

A queue can hold a finite number of fixed-size
data items. The maximum number of items a
gueue can hold is called its length. Both the length
and the size of each data item are set when the
queue is created.

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE

J/‘L/, 8 UNIVERSITA DI ROMA Fablo Angelettl . FabrIZIO Gattuso 16 W QU\// NTEGRATED CABLELESS SOLUTIONS

Queue (2

Task A Task B
Rueue
int x; j L J J JJt int y;

A queue is created to allow Task A and Task B to communicate. The queue can hold a maximum of 5
integers. When the queue is created it does not contain any values so is empty.

Task A Task B
Queue

int %;) (] | | | | | J[10] int y;

x = 10; — Send T

Task A writes (sends) the value of a local variable to the back of the queue. As the queue was previously
empty the value written is now the only item in the queue, and is therefore both the value at the back of the
queue and the value at the front of the queue.

Task A \ Task B
Rueue

int x; I | |] | [[20 || 10] int y;

x = 20; — Send T

Task A changes the value of its local variable before writing it to the queue again. The queue now
contains copies of both values written to the queue. The first value written remains at the front of the
queue, the new value is inserted at the end of the queue. The queue has three empty spaces remaining.

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’i) WeSENSE

UNIVERSITA DI ROMA Fabio Angelettl - FabriZiO Gattuso 17 [NTEGRATED CABLELESS SOLUTIONS

Queue (3)

Task A Task B
Queue
int x; []I]I II 20][10 I int y;
| Receive A
X = 20; \ Y now equals 1

Task B reads (receives) from the queue into a different variable. The value received by Task B is the
value from the head of the queue, which is the first value Task A wrote to the queue (10 in this illustration).

Queue

now equals 10

Task B has removed one item, leaving only the second value written by Task A remaining in the queue
This is the value Task B would receive next if it read from the queue again. The queue now has four
emply spaces remaining

The Queues work by copying an element
into its memory (no references)

SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) (‘.‘i) WeSENSE

UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 18 INTEGRATED CABLELESS SOLUTIONS

Queue (4)

QueueHandle_t xQueueCreate(UBaseType_t uxQueueLength,
UBaseType_t uxltemSize);

BaseType_t xQueueSendToFront(QueueHandle_t xQueue,
const void * pvlitemToQueue, TickType_t xTicksToWait);

BaseType_t xQueueSendToBack(QueueHandle_t xQueue,
const void * pvltemToQueue, TickType_t xTicksToWait);

BaseType_t xQueueReceive(QueueHandle_t xQueue, void * const pvBuffer,
TickType_t xTicksToWait);

W SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) ‘.’ WeSENSE
QUZ/ UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 19 QO NrEemrep chsieiess sowmions

Queue with pointers

You can also use queue with pointers when the data to
store is large.

- When using a pointer to share memory between tasks, you must make
sure that both tasks do not modify the memory contents
simultaneously, as this could cause the memory contents to be
invalid or inconsistent.

- If the memory was allocated dynamically or obtained from a pool of
preallocated buffers, one task should be responsible for freeing the
memory.

* You should never use a pointer to access data that has been
allocated on a task stack. The data will not be valid after the stack
frame has changed.

W SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) ‘.’ WesSENSE
QUZ/ UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 20 QO NTEematED casiLess souToNs

Software timers

Software timers are used to schedule in the
future or periodically with a fixed frequency.

The timers are not related to the hardware but
they do not use any processing time.

You have to include the <timer.c> on your project and set
configUSE_TIMERS =1 in FreeRTOSConfig.h

Don’t use block code inside a timer code

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE
21 EEEEEEEEEEEEEEEEEEEEEEEEEEEE

”L,,. UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso

Software timers (2)

* One shot

a one-shot timer will execute its callback function only once. A one-shot
timer can be restarted manually.

* Auto-reloaded

an auto-reload timer will restart itself each time it expires, resulting in
periodic execution of its callback function.
xTimerStop()

Timer expired / called

Execute Callback xTimerStart(),

! TimerCreate()
TimerCreat X
‘ lm:':";;a : <_ o o

xTimerStop()
called

xTimerStart(),
xTimerReset() or

xTimerReset() or xTimerChangePeriod()
xTimerChangePeriod() called
called
Timer expired /
Execute Callback
One Shot Auto-reloaded

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.‘E) WeSENSE

UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 22 QW QVA// INTecRaTeD casLeless soLuTions

Software timers (3)

TimerHandle_t xTimerCreate(const char * const pcTimerName,
TickleType_t xTimerPeriodInTicks,
UBaseType_t uxAutoreload, void * pvTimerID,
TimerCallBackFunction_t pxCallbackFunction);

TimerHandle_t xTimerStart(TimerHandle_t xTimer, TickType_t xTicksToWait);

TimerHandle_t xTimerReset(TimerHandle_t xTimer, TickType_t xTicksToWait);

TimerHandle_t xTimerStop(TimerHandle_t xTimer, TickType_t xTicksToWait);

TimerHandle_t xTimerChangePeriod(TimerHandle_t xTimer,
TickType_t xNewTimerPeriodInTicks, TickType_t xTicksToWait);

W SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) ‘.’ WeSENSE
J)L/, \S’ UN]VERS]TA D] ROMA Fabio Angeletti . Fabrizio Gattuso 23 EEEEEEEEEEEEEEEEEEEEEEEEEEEE

Interrupt

An interrupt service routine (ISR) is a hardware
feature because the hardware controls which interrupt
service routine will run and when. FreeRTOS provides
two versions of some API functions (FROM_ISR).

- From ISR you have to do non trivial operations.
 The interrupt processing is not deterministic.
 You have to delegate the main job to a correlated task.

A semaphore or a mutex is used as a
synchronization method

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE

J}L/ \‘_é UN]VERS]TA DI ROMA Fablo Angelettl . FabI’IZIO Gattuso 24 EEEEEEEEEEEEEEEEEEEEEEEEEEEE

Interrupt (2

The semaphore is not
available

ask

wSemaphore [ake|

.50 the task is blocked
waiting for the semaphore

nterrupt!
xSemaphoreGiveFromISR()

An interrupt occurs.. that
‘gives’ the semaphore...

ask

SemaphoreTake(

nterrupt!

xSemaphoreGiveFromISR()

ask

xSemaphoreTake()

...which unblocks the task

available).

SAPIENZA

UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT)

(the semaphore is now
&)

25

WeS ENSE

INTEGRATED CABLELESS SOLUTIONS

Interrupt (3)

ask

xSemaphore Take()

..that now successfully
‘takes' the semaphore, so it
is unavailable once more,

ask

The task can now perform its action, when complete
it will once again attempt to ‘take’ the semaphore
which will cause it to re-enter the Blocked state.

What’s the problem here? Can we do better?

SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) (‘.‘i) WeSENSE

UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 26 N QV/A// InTecnated casieLess sotuTions

Interrupt (4

[The semaphore count is ©

The task is blocked waiting
for a semaphore

Interrupt

xSemaphoreGiveFrom/SR()

[The semaphore count is 1]

An interrupt occurs._that
‘gives’ the semaphaore.

Interrupt

xSemaphoreGiveFrom/SR()

Task

xSemaphoreTake()

The semaphore count is 1

~which unblocks the task (the
semaphore 1 naw avallable) .

UNIVERSITA DI ROMA

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT)

(Y

Fabio Angeletti — Fabrizio Gattuso 27

WeS ENSE

INTEGRATED CABLELESS SOLUTIONS

Interrupt (5)

Task

vProcessEvent()

[The semaphore count is 0]

.that now successfully takes' the
semaphore, sc 1 is unavailable ance more
The task now starts to process the event

Task

Interrupt Y [The semaphore count is 2]
xSemaphoreGiveFromISR())—m vProcessEvent()

Uy

Ancther two interrupts coour while the task s still

We studied at least one other system
we can use here...

SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) (‘.’é) WeSENSE

UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 28 N\ QVA// InecRated casicLess soLuTioNs

Interrupt (6)

We can synchronize an ISR with a task with
different methods:

* Binary Semaphore

- Counting Semaphore
* Mutex

* Queue

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE
29 EEEEEEEEEEEEEEEEEEEEEEEEEEEE

”L,,. UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso

Task notifications

Two tasks can talk to each other between
iIntermediary objects.

(

vo.

id vTaskl{ veid *pvPavam ;\\

fox(;;)
{

/* Weite function code
heve. */

/* At some point vTaskl
sends an event to
vTask2.
not sent directly to
vTaszk2, but instead to
a cammunication object
*/
ASendFunction() ;

The event i=

The communication
object could be a
queue, event greup,
or one of the many
types of semaphore

T
'
'
'
'
'
'
'
&

~

Communication

(

vo

{

id vTask2(void *pvPavam ;\\

fox{ ;;)

{
/* Weite furction code
hexe. */

/* At zome point vTask2

receives an event from

vTaskl.

received divectly

The event is
nat
from vTaskl, but instead
from the communication
object. */

P AReceiveFunction () ;

UNIVERSITA DI

ROMA

> object

\L

}

/

SAP]ENZA Design and development of embedded systems for the Internet of Things (loT)
Fabio Angeletti — Fabrizio Gattuso 30

(Y

WeS ENSE

INTEGRATED CABLELESS SOLUTIONS

Task notifications (2)

Task notifications allow tasks to interact with
other tasks and to synchronize with ISRs without
the need for a separate communication object

- ™

void vTaskl({ wveid *pvPavam) void vTask2(void *pvPavam)
{ {
fox(;;) fox{ ;;)
{ {
/* Write function code /* Write function code
hevxe. */ This time there s no hexe. */
=== communication mis .=
object in the middie)
/* At some point vTaskl /* At =ome point vTask2

T
sends an event to ' receives a dirvect

vTask2 using a divect to ' notification from vTaskl

P AReceiveFunction() ;

¢-----

task rotification.*/
ASendFunction() ;
} }

_ Y, __ Y,

W SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) ‘.‘ WeSENSE
Q&I UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 31 QN NTEeraTED casieLess soLuTions

Task notifications (3)

You have to set configUSE_TASK_NOTIFICATIONS =1 in
FreeRTOSConfig.h

When you active the task notification each task has a notification
state, which can be pending or not pending. When a task receives a
notification, its notification state is set to pending.

Using a task notification to send an event or data to a task is
significantly faster than using a queue or semaphore.

« Task notifications can be used to send events and data from an
ISR to a task or task to task.

- Task notifications are sent directly to the receiving task, so can be
processed only by the task to which the notification is sent.

- Atask's notification value can hold only one value at a time.

W SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) ‘.’ WesSENSE
J)‘L/, \‘_é UN]VERS]TA D] ROMA Fabio Angeletti . Fabrizio Gattuso 32 EEEEEEEEEEEEEEEEEEEEEEEEEEEE

Task notifications (4)

BaseType_t xTaskNotifyGive(TaskHandle_t xTaskToNotify);

BaseType_t xTaskNotifyGiveFromISR(TaskHandle_t xTaskToNotify,
BaseType_t *pxHigherPriorityTaskWoken);

uint32_t ulTaskNotifyTake(BaseType_t xClearCountOnEXxit,
TickType_t xTicksToWait);

There are also xTaskNotify, xTaskNotifyFromISR, xTaskNotifyWait
advanced version of the previous functions.

W SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) ‘.’ WeSENSE
J)L/, \S’ UN]VERS]TA D] ROMA Fabio Angeletti . Fabrizio Gattuso 33 EEEEEEEEEEEEEEEEEEEEEEEEEEEE

The final project

You have to present a final project to pass the
class.

The requirements:

- Work on FreeRTOS on your board
- Use at least one external sensor

- Interact with at least one external system
(serial bus, bluetooth)

- Visualize data or statistics with Thingsboard or
Grafana

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE

J/‘L/, \ﬁ"é UNIVERSITA DI ROMA Fablo Angelettl . FabrIZIO Gattuso 34 = N QU/\J// [INTEGRATED CABLELESS SOLUTIONS

The final project (2)

Grafana
ThingsBoard
Mobile MQTT
Phone REST
Bluetooth MQTT
REST
\ Serial
Laptop
Bluetooth

() SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) (‘.’i) WeSENSE

Q& UNIvERsITA DI RoMA Fabio Angeletti — Fabrizio Gattuso 35 QO e crsteess sowions

The final project (3)

You can also work on networks problems like indoor

localization or time synchronization but that can be
trivial.

It’s highly suggested to work on group but it’s accepted
to work alone.

DEADLINES

By the 21st April you have to submit your group
details and the hardware you need.

By the 1st May you have to choose your final project.

By the 8th June you have to upload your project on
GitHub. The presentation will be on the 12th June.

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’E) WeSENSE

J)‘L/, N\\é UNIVERSITA DI ROMA FabIO Ange|ett| . FabI’IZIO Gattuso 36 = QW QUA\// INTEGRATED CABLELESS SOLUTIONS

Next lessons

We have six lessons more. These are the n
topics:

* loT Network Technologies and protocols

* How to read and understand a data-sheet
- Low power techniques

* loT Security

* loT on Cloud and web data visualization

- WSense loT Real Examples

SAP]ENZA Design and development of embedded systems for the Internet of Things (IoT) (‘.’ E)

%,' UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 37

ext

ssssssssssssssssssssssssssss

A

SAP]ENZA Design and development of embedded systems for the Internet of Things (loT) (‘.‘E) WeSENSE

UNIVERSITA DI ROMA Fabio Angeletti — Fabrizio Gattuso 38 INTEGRATED CABLELESS SOLUTIONS

