FONDAMENTI DI INFORMATICA I - Appello del 17-07-2004 Corso di Laurea in Ingegneria Elettronica, Informatica, delle Telecomunicazioni Università La Sapienza - Consorzio Nettuno

Esercizio 1

Scrivere un programma C che legga da input una sequenza di numeri interi, interrotta da 0 e produca in output, per ogni valore a partire dal 5°, la media degli ultimi 5 valori letti, con una precisione di 2 cifre.

Ad esempio, se in input venisse fornita la sequenza 3 9 18 13 12 6 7 5 0, la sequenza stampata in output sarà: 11.00 11.60 11.20 8.60, che sono ottenuti da:

$$(3+9+18+13+12)/5 = 55/5 = 11.00$$

 $(9+18+13+12+6)/5 = 58/5 = 11.60$
 $(18+13+12+6+7)/5 = 56/5 = 11.20$
 $(13+12+6+7+5)/5 = 43/5 = 8.60$

Esercizio 2

Scrivere una funzione C **eser2** che, ricevendo come argomento una stringa di caratteri testo, calcola quale coppia di caratteri consecutivi della stringa appare più frequentemente, la stampa e stampa il numero di occorrenze della coppia.

Ad esempio se testo fosse: "abcdeab" il risultato sarebbe: ab 2 Mentre se il testo fosse "aaaaa" il risultato sarebbe: aa 4

Esercizio 3

Scrivere una funzione C eser3 che, ricevendo come argomenti:

- due array di n double, a1, a2;
- una matrice di m*m double, M (con m<=n)
- memorizzi
 - negli elementi della cornice della matrice (in grassetto in figura), in senso orario a partire dalle coordinate 0,0 il risultato del prodotto degli elementi di a1 ed a2, partendo da quelli con indice 0
 - una volta terminati i primi n prodotti si ricominci dal primo prodotto
 - Negli elementi della diagonale (i,i) (in corsivo in figura) la somma dell'elemento i-esimo di a1 e del corrispondente di a2
 - Negli elementi dell'altra diagonale la differenza dell'elemento i-esimo di a1 e del corrispondente di a2
 - il resto vale 0
- Casi speciali:
 - si considerino gli angoli solo per la cornice e non per le diagonali

 se m è dispari si consideri il centro della matrice (che apparterrebbe ad entrambe le diagonali) solo nella diagonale somma

Ad esempio, se n=6, m=5, a1=(1 2 3 4 5 6) ed a2=(10 11 12 13 14 15) M sarà la matrice a fianco (nella figura l'elemento 0,0 si trova in alto a sinistra e le coordinate crescono verso destra e verso il basso):

10	22	36	52	70
52	13	0	-9	90
36	0	15	0	10
22	-9	0	17	22
10	90	70	52	36
		M		

Esercizio 4

Scrivere una funzione <u>ricorsiva</u> **eser4**, che ricevendo due interi, n ed m, restituisca la somma dei numeri **pari** che sono contemporaneamente strettamente minori di n e strettamente maggiori di m.

Ad esempio, con n=8 ed m=1 il risultato sarebbe 12, con n=5 ed m=3 il risultato sarebbe 4, con n=5 ed m=4 il risultato sarebbe 0, con n=5 ed m=5 il risultato sarebbe 0, con n=5 ed m=6 il risultato sarebbe 0.

IN ALTERNATIVA ALLA DOMANDA 4: Esercizio 4 bis

Scrivere una funzione <u>ricorsiva</u> **eser4b** che, ricevendo un intero non negativo n, restituisca il prodotto dei primi n numeri interi dispari.

Esercizio 5

Posto che quando la partita è vicina al termine, sul pareggio, e mentre la propria squadra sta per segnare o la squadra avversaria sta per fare autogol, se squilla il telefono o suonano alla porta o il televisore non funziona bene, è facile che parta un'imprecazione, scrivere, usando il linguaggio C, l'espressione logica da associare alla variabile ParteUnaImprecazione, usando tutti gli identificatori definiti qui sotto.

	A = palla alla squadra avversaria	E = il televisore funziona bene
	B = azione da gol	F = autogol in corso
L	C = situazione di parità	G = suonano alla porta
	D = partita sta per finire	H = palla alla propria squadra
	-	L = squilla il telefono