

Introduction to Lucene

Overview

● What is Lucene?
● Vector Space Model
● Lucene tutorial
● Summary

What is ?

● Free-text indexing library

● Implements standard IR/search functionality
● Query models, ranking, indexing

● Core API is implemented in Java
● Bindings for C++/C, Ruby, Python, etc.

Inverted Index

aardvark

hood

red

little

riding

robin

women

zoo

Little Red Riding Hood

Robin Hood

Little Women

0 1

0 2

0

0

2

1

0

1

2

Basic Application

IndexWriter IndexSearcher

Lucene Index

 Document
name: Peter Parker
superhero_name: Spider-Man
category: superhero
powers: agility, spider-sense

Hits
(Matching Docs)

Query
(powers:agility)

addDocument()
search()

1. Get Lucene jar file

2. Write indexing code
to get data and
create Document
objects

3. Write code to create
query objects

4. Write code to
use/display results

Lucene: Documents
● a Document is the basic unit for indexing and

searching (note: it is different from the notion
of document as file)

● each Document is a list of Field(s)
● each Field has a name and a text value
● It is up to us to decide what to include in a

Document

Document d = new Document();
d.add(new Field(nome_campo, valore, storeable, indexable));

JAVA Code

String Field.Store Field.Index

Lucene: Field

● a field is the basic unit of Documents are made
● remember: each Document is a list of Field(s)

● For each field, you need to specify
– name
– value
– whether to store it
– whether to index it

Field f1 = new Field(“name”, “my_doc1”, Field.Store.YES, Field.Index.NO);
Field f2 = new Field(“term”, “Lucene”, Field.Store.YES, Field.Index.NOT_ANALYZED);
Field f3 = new Field(“term”, “Oggi ho assistito”, Field.Store.YES, Field.Index.ANALYZED);

JAVA Code

Field Options
● Indexed

● Necessary for searching or sorting
● Tokenized

● Text analysis done before indexing
● Stored

● You get these back on a search “hit”
● Compressed
● Binary

● Currently for stored-only fields

Lucene: Directory

● At its core, a list of files
● RAMDirectory

– in-memory volatile dir
– useful for “on-the-fly” indexes

● RAMDirectory dir= new RAMDirectory();

● FSDirectory
– file-based, persistent dir

● FSDirectory dir = FSDirectory.open(new File("tmp"));

Indexing Documents
IndexWriter writer =

new IndexWriter(directory, analyzer, true);

Document doc = new Document();
doc.add(new Field(“super_name", “Sandman",

 Field.Store.YES, Field.Index.TOKENIZED));
doc.add(new Field(“name", “William Baker",

 Field.Store.YES, Field.Index.TOKENIZED));
doc.add(new Field(“name", “Flint Marko",

 Field.Store.YES, Field.Index.TOKENIZED));
// [...]
writer.addDocument(doc);
writer.close();

Searching an index

IndexSearcher searcher =
new IndexSearcher(directory);

QueryParser parser =
new QueryParser("defaultField", analyzer);

Query query = parser.parse(“powers:agility");
Hits hits = searcher.search(query);

System.out.println(“matches:" + hits.length());
Document doc = hits.doc(0); // look at first match
System.out.println(“name=" + doc.get(“name"));

searcher.close();

Searching an index: example 2
1. Open index

2. Create the query

3. Search

4. Read the result

IndexSearcher is = new IndexSearcher(indexDir);
JAVA Code

ScoreDoc[] docs = searcher.search(q, <numHits>).scoreDocs;
JAVA Code

QueryParser parser = new QueryParser(Version.LUCENE_30, “term”, analizzatore);
Query q = parser.parse(“lezione”);

JAVA Code

for (ScoreDoc doc:docs)
{

Document d = is.doc(doc.doc); // ottiene il documento
float score =doc.score; // punteggio del documento
// ...

}

JAVA Code

Query Construction: QueryParser
● QueryParser

• does text analysis (more later) and constructs
appropriate queries

• not all query types supported

• TermQuery
• explicit, no escaping necessary

• no text analysis

QueryParser parser = new QueryParser(Version.LUCENE_30, “powers”, analizzatore);
Query q = parser.parse(“agility AND spider-sense”);

JAVA Code

BooleanQuery q = new BooleanQuery();
q.add(new TermQuery(new Term(“powers”, “agility”)), BooleanClause.Occur.MUST);
q.add(new TermQuery(new Term(“powers”, “spider-sense”)), BooleanClause.Occur.MUST);

JAVA Code

QueryParser: examples

Scoring documents

● Scoring is performed using the so-called Vector
Space Model (VSM)

● A model to represent text as vectors of terms
● Represents documents as BOWs
● Scoring is typically performed using tf*idf

● Let's review the VSM!

Boolean search
● Based on Boolean queries

● documents either match or don’t

● good for expert users with precise
understanding of their needs and the collection
(e.g. library search)

● not good for the majority of users
– most users incapable of writing Boolean queries

Boolean search: feast or famine

● Boolean queries often result in either too
few (=0) or too many (1000s) results.
● “standard user dlink 650” → 200,000 hits
● “standard user dlink 650 no card found”: 0 hits

● It takes skill to come up with a query that
produces a manageable number of hits.

● With a ranked list of documents, it does not
matter how large the retrieved set is.

Scoring as the basis of ranked retrieval

● We wish to return in order the documents
most likely to be useful to the searcher

● How can we rank-order the documents in
the collection with respect to a query?

● Assign a score – say in [0, 1] – to each
document

● This score measures how well document
and query “match”.

Query-document matching scores

● We need a way of assigning a score to a
query/document pair

● Let’s start with a one-term query
● If the query term does not occur in the

document: score should be 0
● The more frequent the query term in the

document, the higher the score (should be)

Take 1: Jaccard coefficient

● a commonly used measure of overlap of
two sets A and B

jaccard(A,B) = |A ∩ B| / |A ∪ B|

jaccard(A,A) = 1

jaccard(A,B) = 0 if A ∩ B = 0

● A and B don’t have to be the same size.
● always assigns a number between 0 and 1.

Jaccard coefficient: example

● What is the query-document match score
that the Jaccard coefficient computes for
each of the two documents below?

● Query: ides of march
● Document 1: caesar died in march
● Document 2: the long march

Issues with Jaccard for scoring

● It doesn’t consider term frequency (how
many times a term occurs in a document)

● It doesn’t consider document/collection
frequency (rare terms in a collection are
more informative than frequent terms)

Binary term-document incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector {0,1}∈ |V|

Term-document count matrices

● Consider the number of occurrences of a
term in a document:
● Each document is a count vector in ℕv: a

column below
Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Bag of words model

● Vector representation doesn’t consider the
ordering of words in a document
● John is quicker than Mary and Mary is quicker

than John have the same vectors

● This is called the bag of words model.

Term frequency tf

● The term frequency tft,d of term t in
document d is defined as the number of
times that t occurs in d.

● Raw term frequency is not what we want:
– A document with 10 occurrences of the term may be

more relevant than a document with one occurrence
of the term.

– But not 10 times more relevant.

● Relevance does not increase proportionally
with term frequency.

Log-frequency weighting

● The log frequency weight of term t in d is

● 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4,
etc.

● Score for a document-query pair: sum over
terms t in both q and d:

● score



 >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

∑ ∩∈
+=

dqt dt) tflog (1 ,

Document frequency

● Rare terms are more informative than frequent
terms

 Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

 A document containing this term is very likely to be
relevant to the query arachnocentric

 → We want a higher weight for rare terms like
arachnocentric.

Document frequency, continued

● Consider a query term that is frequent in the collection (e.g., high,
increase, line)

● A document containing such a term is more likely to be relevant
than a document that doesn’t, but it’s not a sure indicator of
relevance.

● → For frequent terms, we want positive weights for words like
high, increase, and line, but lower weights than for rare terms.

● We will use document frequency (df) to
capture this in the score.

● df (≤ N) is the number of documents that
contain the term

idf weight

● dft is the document frequency of t: the
number of documents that contain t
● df is a measure of the informativeness of t

● We define the idf (inverse document
frequency) of t by

● We use log N/dft instead of N/dft to “dampen”
the effect of idf.

tt N/df log idf 10=

tf-idf weighting

● The tf-idf weight of a term is the product of its tf
weight and its idf weight.

● Best known weighting scheme in information
retrieval

● Increases with the number of occurrences within a
document

● Increases with the rarity of the term in the collection

tdt N
dt

df/log)tflog1(w ,,
×+=

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights ∈ R|V|

Documents as vectors

● So we have a |V|-dimensional vector space
● Terms are axes of the space
● Documents are points or vectors in this

space

● Very high-dimensional: hundreds of millions
of dimensions when you apply this to a web
search engine

● This is a very sparse vector - most entries
are zero.

Computing cosine scores

∑∑
∑

==

==•=•=
V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos(











Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document
cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Computing cosine scores

Analysis & Search Relevancy

LexCorp BFG-9000

LexCorp BFG-9000

BFG 9000Lex Corp

LexCorp

bfg 9000lex corp

lexcorp

WhitespaceTokenizer

WordDelimiterFilter catenateWords=1

LowercaseFilter

Lex corp bfg9000

Lex bfg9000

bfg 9000Lex corp

bfg 9000lex corp

WhitespaceTokenizer

WordDelimiterFilter catenateWords=0

LowercaseFilter

Query Analysis

A Match!

Document Indexing Analysis

corp

Performing text analisys

● Analyser
● instantiate a tokenizer
● applies a set of filters to the input

Analyzer analyser = new StandardAnalyzer();
IndexWriter writer = new IndexWriter(indexDir, analyser,
 bCrea, MaxFieldLength.UNLIMITED);

JAVA Code

Tokenizers

Tokenizers break field text into tokens

● input: “full-text lucene.apache.org”

● StandardTokenizer
– => “full” “text” “lucene.apache.org”

● WhitespaceTokenizer
– => “full-text” “lucene.apache.org”

● LetterTokenizer
– => “full” “text” “lucene” “apache” “org”

Some analysers

● WhitespaceAnalyzer
– splits on whitespace

● SimpleAnalyzer
– splits on whitespace and special characters; applies

lowercase

● StopAnalyzer
– SimpleAnalyzer + stopword removal (the, an, a, ecc.)

● StandardAnalyzer
– the most complete (Whitespace+Stop+misc)

● SnowballAnalyzer
– performs also stemming

Analysers: examples
● The quick brown fox jumped over the lazy dogs

● XY&Z Corporation – xyz@example.com

Customized analysers
● … or how to create your own analyser:

class MyAnalyzer extends Analyzer
{
 private Set stopWords = StopFilter.makeStopSet(StopAnalyzer.ENGLISH_STOP_WORDS);

 public TokenStream tokenStream(String fieldName, Reader reader)
 {
 TokenStream ts = new StandardTokenizer(reader);
 ts = new StandardFilter(ts);
 ts = new LowerCaseFilter(ts);
 ts = new StopFilter(ts, stopWords);
 return ts;
 }
}

JAVA Code

Luke: a graphical user interface

● In a nutshell, a GUI for Lucene indexes

● Search for ID or term
● Visualizes documents
● Visualizes results
● Index optimization
● etc.

Other useful stuff
● Nutch

● A search engine built on top of Lucene
● Solr

● A high-performance search server built on top of
Lucene

● Mahout
● libraries for large (i.e. Web-) scale learning and

processing

Bringing it all together...

● Let's fire Eclipse …
● … and write some Java code!

	Slide 1
	Slide 2
	Slide 3
	Inverted Index
	Basic Application
	Slide 6
	Slide 7
	Field Options
	Slide 9
	Indexing Documents
	Searching an Index
	Slide 12
	Query Construction
	Slide 14
	Scoring
	Ranked retrieval
	Problem with Boolean search: feast or famine
	Scoring as the basis of ranked retrieval
	Query-document matching scores
	Take 1: Jaccard coefficient
	Jaccard coefficient: Scoring example
	Issues with Jaccard for scoring
	Recall (Lecture 1): Binary term-document incidence matrix
	Term-document count matrices
	Bag of words model
	Term frequency tf
	Log-frequency weighting
	Document frequency
	Document frequency, continued
	idf weight
	tf-idf weighting
	Binary → count → weight matrix
	Documents as vectors
	cosine(query,document)
	Computing cosine scores
	Slide 36
	Slide 37
	Tokenizers
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

