Introduction to Lucene



Overview

 What is Lucene?

* Vector Space Model
* Lucene tutorial

o Summary



Whatis Sl uecenm  ?

* Free-text indexing library

* Implements standard |IR/search functionality

* Query models, ranking, indexing

 Core APl is implemented in Java
* Bindings for C++/C, Ruby, Python, etc.



Inverted Index

aardvark
Little Red Riding Hood
—

hood 0 1
little 0 2

Robin Hood
red 0
riding 0
robin 1

Little Women
women 2
Z0O




Basic Application

Document
name: Peter Parker
superhero_name: Spider-Man Query
category: superhero (powers:agility)
powers: aqgility, spider-sense

7

‘ addDocument() search()

Hits
(Matching Docs)

-

1. Get Lucene jar file

[ IndexWriter ]

[ IndexSearcher }2' Write indexing code

to get data and

Ql

Lucene Index

x/

create Document
objects

3. Write code to create
guery objects

4. Write code to
use/display results



Lucene: Documents

* a Document is the basic unit for indexing and
searching (note: it is different from the notion
of document as file)

* each Document is a list of Field(s)
* each Field has a name and a text value

* |t is up to us to decide what to include in a
Document

JAVA Code
Document d = new Document();
d.add(new Field(nome_campo, valore, storeable, indexable));

R

String Field.Store  Field.Index



Lucene: Field

 a field is the basic unit of Documents are made
 remember: each Document is a list of Field(s)
* For each field, you need to specity

- name

- value

- whether to store it
- whether to index it

JAVA Code
Field f1 = new Field("name”, “my_doc1”, Field.Store.YES, Field.Index.NO);
Field f2 = new Field(“term”, “Lucene”, Field.Store.YES, Field.Index.NOT_ANALYZED);

Field f3 = new Field(“term”, “Oggi ho assistito”, Field.Store.YES, Field.Index. ANALYZED);




Field Options

* Indexed
* Necessary for searching or sorting

* Tokenized
* Text analysis done before indexing

* Stored
* You get these back on a search “hit”

* Compressed
* Binary
* Currently for stored-only fields



Lucene: Directory

o At its core, a list of files
 RAMDirectory

- In-memory volatile dir
- useful for “on-the-fly” indexes

 RAMDirectory dir= new RAMDirectory();

 FSDirectory

- file-based, persistent dir
« FSDirectory dir = FSDirectory.open(new File("tmp"));



Indexing Documents

IndexWriter writer =
new IndexWriter(directory, analyzer, true);

Document doc = new Document();

doc.add(new Field("super_name", “Sandman’”,
Field.Store.YES, Field.Index. TOKENIZED));

doc.add(new Field("name"”, “William Baker",
Field.Store.YES, Field.Index. TOKENIZED));

doc.add(new Field("name”, “Flint Marko",
Field.Store.YES, Field.Index. TOKENIZED));

I]...]

writer.addDocument(doc);

writer.close();



Searching an index

IndexSearcher searcher =
new IndexSearcher(directory);

QueryParser parser =
new QueryParser("defaultField", analyzer);

Query query = parser.parse(“powers:agility");
Hits hits = searcher.search(query);

System.out.printin("matches:" + hits.length());
Document doc = hits.doc(0); // look at first match

System.out.printin(*"name=" + doc.get("name"));

searcher.close();



Searching an index: example 2

—_—

Open index

JAVA Code
IndexSearcher is = new IndexSearcher(indexDir);

2. Create the query

JAVA Code

QueryParser parser = new QueryParser(Version.LUCENE_30, “term”, analizzatore);
Query q = parser.parse(“lezione”);

3. Search

JAVA Code
ScoreDoc][] docs = searcher.search(q, <numHits>).scoreDocs;

4. Read the result

for (ScoreDoc doc:docs)

{

Document d = is.doc(doc.doc);  // ottiene il documento
float score =doc.score;// punteggio del documento
/...




Query Construction: QueryParser

QueryParser

* does text analysis (more later) and constructs
appropriate queries
* not all query types supported

JAVA Code

QueryParser parser = new QueryParser(Version.LUCENE_30, “powers”, analizzatore);
Query q = parser.parse(“agility AND spider-sense”);

TermQuery

* explicit, no escaping necessary
* no text analysis

JAVA Code
BooleanQuery q = new BooleanQuery();

g.add(new TermQuery(new Term(“powers”, “agility”)), BooleanClause.Occur.MUST);
g.add(new TermQuery(new Term(“powers”, “spider-sense”)), BooleanClause.Occur.MUST);




Query

Parser. examples

Query expression

Matches documents that...

java

Contain the term java in the default field

java junit
java or junit

Contain the term java or junit, or both, in the default field®

+java +junit
java AND junit

Contain bath java and junit in the default figld

title:ant

Contain the term ant inthe title field

title:extreme
-subject:sports
title:extreme

END NOT subject:sports

Have extreme in the title field and don't have sports in the
subject field

(agile OR extreme) AND
methodology

Contain methodology and must also contain agile and/or extreme, all
in the default fisld

title:"junit in acticn"

Cantain the exact phrase “junit in action” in the title figld

title:"junit action"-5

Contain the terms junit and action within five positions of one another

java* Contain terms that begin with java, like javaspaces, javaserver, and
Java.net
java~ Caontain terms that are close o the word java, such as fava

lastmodified:
[1/1/04 10 12/31/04]

Have lastmodified field values between the dates January 1,
2004 and December 31, 2004




Scoring documents

* Scoring is performed using the so-called Vector
Space Model (VSM)

* A model to represent text as vectors of terms
* Represents documents as BOWs
* Scoring is typically performed using tf*idf

e Let's review the VSM!




Boolean search

* Based on Boolean queries
* documents either match or don'’t

* good for expert users with precise
understanding of their needs and the collection
(e.g. library search)

* not good for the majority of users
- most users incapable of writing Boolean queries



Boolean search: feast or famine

* Boolean queries often result in either too
few (=0) or too many (1000s) results.
* “standard user dlink 650° — 200,000 hits
* “standard user dlink 650 no card found’: 0 hits

* |t takes skill to come up with a query that
produces a manageable number of hits.

* With a ranked list of documents, it does not
matter how large the retrieved set is.



Scoring as the basis of ranked retrieval

* We wish to return in order the documents
most likely to be useful to the searcher

* How can we rank-order the documents in
the collection with respect to a query?

* Assign a score —say in [0, 1] — to each
document

* This score measures how well document
and query “match”.



Query-document matching scores

* We need a way of assigning a score to a
query/document pair

* Let's start with a one-term query

* If the query term does not occur in the
document: score should be 0

* The more frequent the query term in the
document, the higher the score (should be)



Take 1: Jaccard coefficient

* a commonly used measure of overlap of
two sets A and B

jaccard(A,B) =|ANB|/|A U B]
jaccard(A,A) = 1
jaccard(A,B) =0ifANB=0

* A and B don't have to be the same size.
* always assigns a number between 0 and 7.



Jaccard coefficient: example

* What is the query-document match score
that the Jaccard coefficient computes for
each of the two documents below?

* Query: ides of march
* Document 1: caesar died in march
* Document 2: the long march




Issues with Jaccard for scoring

* |t doesn’t consider term frequency (how
many times a term occurs in a document)

* |t doesn’t consider document/collection
frequency (rare terms in a collection are
more informative than frequent terms)




Binary term-document incidence matrix

Antony and Cleopatra  Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector & {0,1}IV



Term-document count matrices

 Consider the number of occurrences of a
term in a document:

e Each document is a count vector in NVv: a
column below

Antony and Cleopatra Julius €Caesar—The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 3 5 5 1
worser 2 0 1 1 1 0




Bag of words model

* Vector representation doesn’t consider the
ordering of words in a document

* John is quicker than Mary and Mary is quicker
than John have the same vectors

* This is called the bag of words model.




Term frequency ff

» The term frequency tf, , of term tin

document d is defined as the number of
times that f occurs in d.

* Raw term frequency is not what we want:

- A document with 10 occurrences of the term may be

more relevant than a document with one occurrence
of the term.

- But not 10 times more relevant.

* Relevance does not increase proportionally
with term frequency.



Log-frequency weighting

* The log frequency weight of termtind is

0 +log, tf,,, 1ftf,, >0
w, , = ’ ’
2 0, otherwise

*0-0,1—-1,2—-513, 10— 2, 1000 — 4,
etc.

* Score for a document-query pair. sum over
terms tin both g and a@:.

* score = Zﬂqmd(l +logtf, )



Document frequency

* Rare terms are more informative than frequent
terms

= Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

= A document containing this term is very likely to be
relevant to the query arachnocentric

= — We want a higher weight for rare terms like
arachnocentric.



Document frequency, continued

* Consider a query term that is frequent in the collection (e.g., high,
increase, line)

* A document containing such a term is more likely to be relevant
than a document that doesn’t, but it’s not a sure indicator of
relevance.

* — For frequent terms, we want positive weights for words like
high, increase, and line, but lower weights than for rare terms.

* We will use document frequency (df) to
capture this in the score.

* df (< N)is the number of documents that
contain the term




idf weight

o df, is the document frequency of t: the

number of documents that contain ¢
e df is a measure of the informativeness of ¢

* We define the idf (inverse document
frequency) of t by

idf, =log,, N/df,

» We use log N/df, instead of N/df, to “"dampen”
the effect of idf.



tf-idf weighting

* The tf-idf weight of a term is the product of its tf
weight and its idf weight.

w =(I+logtt, ,)xlog N/df,

* Best known weighting scheme in information
retrieval

* Increases with the number of occurrences within a
document

* Increases with the rarity of the term in the collection



Binary — count — weight matrix

Antony and Cleopatra  Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € RV



Documents as vectors

* So we have a |V|-dimensional vector space
* Terms are axes of the space

* Documents are points or vectors in this
space

* Very high-dimensional: hundreds of millions
of dimensions when you apply this to a web
search engine

* This is a very sparse vector - most entries
are zero.



Computing cosine scores

Dot product Unit vectors
- = —»‘ ‘_’
COS(q,d) = q" = 4 ° j=] 111

q; is_the tf-idf weight of term / in the query-
d. is the tf-idf weight of term / in the document- -

cos(q,d) is the cosine similarity of gand d ... or,
equivalently, the cosine of the angle between g and d.



Computing cosine scores

COSINESCORE(q)
1 float Scores|N| =0

float Length[N]

for each query term t

do calculate w; 4 and fetch postings list for ¢
for each pair(d,tf;4) in postings list
do Scores[d]|+ = w; g X W; g

Read the array Length

for each d

do Scores|d| = Scores|d]/Length|d]

return Top K components of Scores|]

O O 0 N OO0 B W N

—t



Analysis & Search Relevancy

Document Indexing Analysis

LexCorp BFG-9000

. .

WhitespaceTokenizer

.

LexCorp BFG-9000

Lex corp bfg9000

B

Query Analysis

WhitespaceTokenizer ]

. B

bfg9000

WordDelimiterFilter catenateWords=1 ]

. N

Lex Corp

BFG

9000

LexCorp

==

LowercaseFilter

. N

lex corp

bfg

9000

lexcorp

Lex corp

WordDelimiterFilter catenateWords=0

]

B
Lex corp bfg || 9000
. B
LowercaseFilter
.
lex corp bfg || 9000

A Match!



Performing text analisys

* Analyser

e |nstantiate a tokenizer
e applies a set of filters to the input

JAVA Code

Analyzer analyser = new StandardAnalyzer();
IndexWriter writer = new IndexWriter(indexDir, analyser,
bCrea, MaxFieldLength.UNLIMITED);




Tokenizers

okenizers break field text into tokens

* input: “full-text lucene.apache.org”

* StandardTokenizer

- =>"ull” “text” “lucene.apache.org”
* WhitespaceTokenizer

- => "“full-text” “lucene.apache.org”
* LetterTokenizer

1] b

- =>“full” “text” “lucene” “apache” “org



Some analysers

* WhitespaceAnalyzer
- splits on whitespace

o SimpleAnalyzer
- splits on whitespace and special characters; applies
lowercase

o StopAnalyzer

- SimpleAnalyzer + stopword removal (the, an, a, ecc.)

» StandardAnalyzer

- the most complete (Whitespace+Stop+misc)

* SnowballAnalyzer
- performs also stemming



Analysers: examples

The quick brown fox jumped over the lazy dogs

WhitespaceAnalyzer:
[The] [quick] [brown] [fox] [Jjumped] [over] [the] [lazy] [dogs]

Simplelfnalyzer:
[the] [quick] [brown] [fox] [Jjumped] [over] [the] [lazy] [dogs]

StopAnalyzer:
[quick] [brown] [fox] [Jjumped] J[over] [lazy] [dogs]

StandardAnalyzer:
[quick] [brown] [fox] [jumped] [over] [lazy] [dogs]

XY&Z Corporation — xyz@example.com

WhitespaceAnalyzer:
[XY&Z] [Corporation] [-] [xyz@example.com]

SimpleAnalyzer:
[xy] [z] [corporation] [xyz] [example] [com]

Stoplnalyzer:
[xy] [z] [corporation] [xyz] [example] [com]

StandardAnalyzer:
[xy&z] [corporation] [xyz@example.com]



Customized analysers

* ... or how to create your own analyser:

JAVA Code

class MyAnalyzer extends Analyzer

{
private Set stopWords = StopFilter.makeStopSet(StopAnalyzer. ENGLISH_STOP_WORDS);

public TokenStream tokenStream(String fieldName, Reader reader)
{

TokenStream ts = new StandardTokenizer(reader);

ts = new StandardFilter(ts);

ts = new LowerCaseFilter(ts);

ts = new StopFilter(ts, stopWords);

return ts;




Luke: a graphical user interface

* In a nutshell, a GUI for Lucene indexes

Search for ID or term

Visualizes documents
Visualizes results

Index optimization
e efc.



Other useful stuff

* Nutch
* A search engine built on top of Lucene

e Solr

* A high-performance search server built on top of
Lucene

* Mahout

* libraries for large (i.e. Web-) scale learning and
processing



Bringing it all together...

» Let's fire Eclipse ...
e ... and write some Java code!



	Slide 1
	Slide 2
	Slide 3
	Inverted Index
	Basic Application
	Slide 6
	Slide 7
	Field Options
	Slide 9
	Indexing Documents
	Searching an Index
	Slide 12
	Query Construction
	Slide 14
	Scoring
	Ranked retrieval
	Problem with Boolean search: feast or famine
	Scoring as the basis of ranked retrieval
	Query-document matching scores
	Take 1: Jaccard coefficient
	Jaccard coefficient: Scoring example
	Issues with Jaccard for scoring
	Recall (Lecture 1): Binary term-document incidence matrix
	Term-document count matrices
	Bag of words model
	Term frequency tf
	Log-frequency weighting
	Document frequency
	Document frequency, continued
	idf weight
	tf-idf weighting
	Binary → count → weight matrix
	Documents as vectors
	cosine(query,document)
	Computing cosine scores
	Slide 36
	Slide 37
	Tokenizers
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

