Link Analysis
Web Ranking

• Documents on the web are first ranked according to their relevance vrs the query
• Additional ranking methods are needed to cope with huge amount of information
• Additional ranking methods:
 – Classification (manual, automatic)
 – Link Analysis (today’s lesson)
Why link analysis?

• The web is not just a collection of documents – its hyperlinks are important!

• A link from page A to page B may indicate:
 – A is related to B, or
 – A is recommending, citing, voting for or endorsing B

• Links are either
 – referential – click here and get back home, or
 – Informational – click here to get more detail

• Links affect the ranking of web pages and thus have commercial value.

• The idea of using links is somehow “borrowed” by citation analysis
Citation Analysis

- The **impact factor** of a journal = A/B
 - A is the number of *current year citations* to articles appearing in the journal during previous two years.
 - B is the *number of articles* published in the journal during previous two years.

<table>
<thead>
<tr>
<th>Journal Title (AI)</th>
<th>Impact Factor (2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Mach. Learn. Res.</td>
<td>5.952</td>
</tr>
<tr>
<td>IEEE T. Pattern Anal.</td>
<td>4.352</td>
</tr>
<tr>
<td>IEEE T. Evolut. Comp.</td>
<td>3.688</td>
</tr>
<tr>
<td>Artif. Intell.</td>
<td>3.570</td>
</tr>
<tr>
<td>Mach. Learn.</td>
<td>3.258</td>
</tr>
</tbody>
</table>
Co-Citation

- A and B are co-cited by C, implying that they are related or associated.
- The strength of co-citation between A and B is the number of times they are co-cited.
Clusters from Co-Citation Graph

(Larson 96)
Citations vs. Links

- Web links are a bit different than citations:
 - Many links are navigational.
 - Many pages with high in-degree are portals, not content providers.
 - Not all links are endorsements (e.g. pointers to “fake” conferences).
 - Company websites don’t point to their competitors.

However, the general idea that “many citations = authority” has been borrowed in link analysis
Link Analysis

• HITS (Hyperlink Induced Topic Search) Jon Kleinberg
• Page Rank Larry Page, Sergei Brin
Hyperlink Induced Topic Search (HITS)
Main concept of the algorithm

• HITS stands for Hypertext Induced Topic Search.
• HITS is search query dependent.
• When the user issues a search query,
 – HITS first expands the list of relevant pages returned by a search engine and
 – then produces two rankings of the expanded set of pages, authority ranking and hub ranking.
Main concept of the algorithm-cont.

Authority: A authority is a page with many in-links.
- The idea is that the page may have good or authoritative content on some topic and thus many people trust it and link to it.

Hub: A hub is a page with many out-links.
- The page serves as an organizer of the information on a particular topic and points to many good authority pages on the topic (e.g. a portal).
HITS – Hubs and Authorities –

• A on the left is an authority
• A on the right is a hub
Description of HITS

• A good hub points to many good authorities, and
• A good authority is pointed to by many good hubs.

• Authorities and hubs have a **mutual reinforcement relationship**. The figure shows some densely linked authorities and hubs (a **bipartite sub-graph**).
The HITS algorithm: phase 1

- Given a broad search query, q, HITS collects a set of pages as follows:
 - It sends the query q to a search engine.
 - It then collects t ($t = 200$ is used in the HITS paper) highest ranked pages. This set is called the **root** set W.
 - It then grows W by including any page pointed to by a page in W and any page that points to a page in W. This gives a larger set S, **base set**.
Expanding the Root Set
The link graph G

- HITS works on the pages in S, and assigns every page in S an authority score and a hub score.
- Let the number of pages in S be n.
- We use $G = (V, E)$ to denote the hyperlink graph of S.
- We use L to denote the adjacency matrix of the graph.

\[
L_{ij} = \begin{cases}
1 & \text{if } (i, j) \in E \\
0 & \text{otherwise}
\end{cases}
\]
Adjacency Matrix examples

\[
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\]
The HITS algorithm (cont’d)

• Let the authority score of the page i be $a(i)$, and the hub score of page i be $h(i)$.

• The **mutual reinforcing relationship** of the two scores is represented as follows:

\[
\begin{align*}
 a(i) &= \sum_{(j,i) \in E} h(j) \\
 h(i) &= \sum_{(i,j) \in E} a(j)
\end{align*}
\]
HITS in matrix form

• We use a to denote the column vector with all the authority scores,
 $$a = (a(1), a(2), \ldots, a(n))^T,$$
 and

• use h to denote the column vector with all the "hub scores",
 $$h = (h(1), h(2), \ldots, h(n))^T,$$

• Then, we can express previous formulas as:
 $$a = L^T h$$
 $$h = La$$

• It is an equivalent formulation since the sum in previous formula is for (i,j) in E, and L has 1 where there is a link between i and j.
Computation of HITS

• The computation of authority scores and hub scores uses power iteration.

• If we use a_k and h_k to denote authority and hub vectors at the kth iteration, the iterations for generating the final solutions are

$$a_k = L^T L a_{k-1}$$

$$h_k = L L^T h_{k-1}$$

starting with

$$a_0 = h_0 = (1, 1, ..., 1)$$
The HITS algorithm

- \(h^{(0)} := (1, 1, \ldots) \)
- \(k := 1 \)
- Until convergence, do:
 - \(a^{(k)} := L^T h^{(k-1)} \) (update \(a \))
 - \(h^{(k)} := L a^{(k)} \) (update \(h \))
 - \(a^{(k)} := a^{(k)}/\|a^{(k)}\| \) and \(h^{(k)} := h^{(k)}/\|h^{(k)}\| \) (normalize)

• Assignments can be re-written as:
 - \(a^{(k)} := L^T h^{(k-1)} = L^T L a^{(k-1)} \)
 - \(h^{(k)} := L a^{(k)} = L L^T h^{(k-1)} \)
Meaning of the $L \ L^T$ and $L^T \ L$ matrixes

L is the adjacency matrix of the graph

$L^T \ L$ is the authority matrix:

\[
A = L^T \ L = \begin{pmatrix} \ldots & A_{ij} & \ldots \\ \ldots & L_{ik} & \ldots \\ \ldots & L_{kj} & \ldots \end{pmatrix} = \begin{pmatrix} \ldots & \ldots & \ldots \\ \ldots & L_{ik} & \ldots \\ \ldots & \ldots & L_{kj} \end{pmatrix}
\]

L_{kj} means that j is pointed by all non-zero k, L_{ik}^T means that i is pointed by all non-zero k.

\[
A_{ij} = \sum_{k=1}^{n} L_{ik}^T L_{kj} = \sum_{k=1}^{n} L_{ki} L_{kj}
\]

..is this something you have already seen??????

A_{ij} is the number of co-citations, the number of nodes pointing to both i and j.

..is this something you have already seen???????
Convergence of HITS (power method)

- \(\lambda_1, \lambda_2, \ldots, \lambda_k \) are then eigenvalues of a matrix \(A (=LL^T) \) and
 \(|\lambda_1| > |\lambda_2| \geq \ldots \geq |\lambda_k| \)
- \(x_1, \ldots, x_k \) are the eigenvectors and they are linearly independent (e.g.):
 \(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_k x_k = 0 \) iff \(\alpha_1 = \ldots = \alpha_k = 0 \)
- A generic vector \(\nu_0^{(h(0))} \) or \(\alpha^{(0)} \) can be re-written as:
 \[\nu_0 = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_k x_k \]
 hence:
 \[-\nu = A \nu = A^m \nu_0 = \alpha_1 A^m x_1 + \alpha_2 A^m x_2 + \ldots + \alpha_k A^m x_k = \alpha_1 \lambda_1^m x_1 + \alpha_2 \lambda_2^m x_2 + \ldots + \alpha_k \lambda_k^m x_k \]

- And in general:
 \(\forall i: x_i, \lambda_i \) eigenvalue,eigenvector of \(A, A = \lambda_i x_i \)
 \[\lim_{m \to \infty} \frac{1}{\lambda_1^m} \nu_m = \lim_{m \to \infty} \frac{1}{\lambda_1^m} A^m \nu_0 = \alpha_1 x_1 \]
HITS: Example (1)

Ex: 3 and 4 are “co-cited” by 5

$LL^T = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 2 & 1 & 1 \\ 4 & 0 & 0 & 1 & 1 & 0 \\ 5 & 0 & 0 & 1 & 0 & 3 \\ 6 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
\[
-a^{(1)} := L^T h^{(0)} \\
-h^{(1)} := L a^{(1)}
\]

HITS: Example (2)

Authorities

Hubs

\[
\begin{align*}
\mathbf{a}_1 &= \begin{pmatrix} 0.258 \\
0 \\
0.516 \\
0.258 \\
0.775 \\
0 \end{pmatrix} \\
\mathbf{h}_0 &= \begin{pmatrix} 1 \\
0 \\
1 \\
1 \\
1 \\
1 \end{pmatrix} \\
\mathbf{T} &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 0 & 1 \\
2 & 1 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 1 \\
4 & 0 & 0 & 0 & 0 & 0 \\
5 & 0 & 0 & 1 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}
\end{align*}
\]

\[
\begin{pmatrix} 0.258 \\
0 \\
0.516 \\
0.258 \\
0.775 \\
0 \end{pmatrix} \begin{pmatrix} 1 \\
0 \\
1 \\
0 \\
0 \\
0 \end{pmatrix} = 0.258 \\
\begin{pmatrix} 0.687 \\
0.137 \\
0.412 \\
0.412 \end{pmatrix}
\]

(normalization step is not shown)
HITS: Example (3)

\[-a^{(2)} := L^T h^{(1)} \]
\[-h^{(2)} := L a^{(2)} \]

Authorities

\[\begin{pmatrix}
 1 & 0 & 0 & 1 & 0 & 1 \\
 2 & 1 & 0 & 0 & 0 & 0 \\
 3 & 0 & 0 & 0 & 0 & 1 \\
 4 & 0 & 0 & 0 & 0 & 0 \\
 5 & 0 & 0 & 1 & 1 & 0 \\
 6 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix} h_1 \end{pmatrix}^T = \begin{pmatrix}
 0.687 \\
 0.137 \\
 0.412 \\
 0.412 \\
 0.412 \\
 0.412
\end{pmatrix}
\]

\[a_2 \begin{pmatrix}
 0.072 \\
 0.573 \\
 0.215 \\
 0.788 \\
 0 \\
 0
\end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & 1 & 0 & 1 \\
 2 & 1 & 0 & 0 & 0 & 0 \\
 3 & 0 & 0 & 0 & 0 & 1 \\
 4 & 0 & 0 & 0 & 0 & 0 \\
 5 & 0 & 0 & 1 & 1 & 0 \\
 6 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[-a^{(2)} := L^T h^{(1)} \]
\[-h^{(2)} := L a^{(2)} \]

Hubs

\[\begin{pmatrix}
 1 & 0 & 0 & 1 & 0 & 1 \\
 2 & 1 & 0 & 0 & 0 & 0 \\
 3 & 0 & 0 & 0 & 0 & 1 \\
 4 & 0 & 0 & 0 & 0 & 0 \\
 5 & 0 & 0 & 1 & 1 & 0 \\
 6 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix} h_2 \end{pmatrix}^T = \begin{pmatrix}
 0.706 \\
 0.037 \\
 0.409 \\
 0.409
\end{pmatrix}
\]

\[a_2 \begin{pmatrix}
 0.072 \\
 0.573 \\
 0.215 \\
 0.788 \\
 0 \\
 0
\end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & 1 & 0 & 1 \\
 2 & 1 & 0 & 0 & 0 & 0 \\
 3 & 0 & 0 & 0 & 0 & 1 \\
 4 & 0 & 0 & 0 & 0 & 0 \\
 5 & 0 & 0 & 1 & 1 & 0 \\
 6 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]
HITS: Example (4)

\[-a^{(3)} := L^T \mathbf{h}^{(2)}\]

\[-h^{(3)} := L a^{(3)}\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
0.706 \\
0.037 \\
0.409 \\
0 \\
0.409 \\
0.409
\end{bmatrix}
=
\begin{bmatrix}
0.019 \\
0 \\
0.577 \\
0.212 \\
0.789 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 0 & 1 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
5 & 0 & 0 & 1 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0.019 \\
0 \\
0.577 \\
0.212 \\
0.789 \\
0 \\
0.001
\end{bmatrix}
=
\begin{bmatrix}
0.707 \\
0.001 \\
0.408 \\
0.408 \\
0.408 \\
0.408
\end{bmatrix}
\]

- authorities
- hubs
HITS: Esempio (5)

\[-a^{(4)} := L^T h^{(3)}
\]

\[-h^{(4)} := L a^{(4)}\]

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 0 & 1 \\
2 & 1 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 1 \\
4 & 0 & 0 & 0 & 0 & 0 \\
5 & 0 & 0 & 1 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}^T
\begin{pmatrix}
0.707 \\
0.001 \\
0.408 \\
0 \\
0.408 \\
0 \\
\end{pmatrix} =
\begin{pmatrix}
0 \\
0.577 \\
0.211 \\
0.789 \\
0 \\
0 \end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 0 & 1 \\
2 & 1 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 1 \\
4 & 0 & 0 & 0 & 0 & 0 \\
5 & 0 & 0 & 1 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix} a^{(4)}
\begin{pmatrix}
0 \\
0 \\
0.577 \\
0.211 \\
0.789 \\
0 \\
\end{pmatrix} =
\begin{pmatrix}
0.408 \\
0 \\
0.408 \\
0.408 \end{pmatrix}
\]

authorities

hubs
Strengths and weaknesses of HITS

• **Strength**: its ability to rank pages according to the query topic, which may be able to provide more relevant authority and hub pages.

• **Weaknesses**:
 - **It is easily spammed**: It is in fact quite easy to influence HITS since adding out-links in one’s own page is so easy.
 - **Topic drift**: Many pages in the expanded set may not be on topic.
 - **Inefficiency at query time**: The query time evaluation is slow. Collecting the root set, expanding it and performing eigenvector computation are all expensive operations.
Applications of HITS

• Search engine querying (speed an issue)
• Finding web communities.
• Finding related pages.
• Populating categories in web directories.
• Citation analysis.
Link Analysis

• HITS (Hyperlink Induced Topic Serach) Jon Kleinberg

• Page Rank Larry Page, Sergei Brin
Page Rank

• Ranks pages by authority.

• Applied to the entire web rather than a local neighborhood of pages surrounding the results of a query.

• Not query-dependent

• It is the Google algorithm for ranking pages
PageRank----Idea

Every page has some number of out-links and in-links
PageRank----Idea

Two cases PageRank is interesting:

1. Web pages vary greatly in terms of the number of backlinks (in-links) they have. For example, the Netscape home page has 62,804 backlinks compared to most pages which have just a few backlinks. Generally, highly linked pages are more “important” than pages with few links.
PageRank----Idea

2. Backlinks coming from important pages convey more importance to a page. For example, if a web page has a link off the Yahoo home page, it may be just one link but it is a very important one.

A page has high rank if the sum of the ranks of its incoming links is high. This covers both the case when a page has many in-links and when a page has a few highly ranked in-links.
PageRank---Definition

\[R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v} \]

The equation is recursive, but it may be computed by starting with any set of ranks and iterating the computation until it converges.

\[u: \text{a web page} \]
\[F_u: \text{set of pages } u \text{ points to} \]
\[B_u: \text{set of pages that point to } u \]
\[N_u = |F_u|: \text{the number of links from } u \]
\[c: \text{a factor used for normalization} \]
Parto da pesi casuali
After several iterations...

Why stops here?
A probabilistic interpretation of PageRank

- The definition corresponds to the probability distribution of a **random walk** on the web graphs.
What is a Random Walk?

• Given a graph and a starting point (node), we select a neighbor of it at random, and move to this neighbor;

• Then we select a neighbor of this node and move to it, and so on;

• The (random) sequence of nodes selected this way is a random walk on the graph
An example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency matrix A

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

Transition matrix P

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview
An example

$t=0, \ A$

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview
An example

$t=0$, A

A

B

C

$t=1$, AB

A

B

C

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview
An example

$t=0, A$

$t=1, AB$

$t=2, ABC$

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview
An example

$t=0$, A

$t=1$, AB

$t=2$, ABC

$t=3$, ABCA ABCB

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview
Probabilistic interpretation

- S total number of web pages
- k outgoing links from page j
- P Transition matrix with elements:
 \[P_{ij} = \begin{cases}
 \frac{1}{k} & \text{if } i \to j \\
 0 & \text{otherwise}
 \end{cases} \]
 \[P_{ii} > 0 \quad \forall i \]

- The PageRank formulation can be written as:
 \[\vec{r} = \vec{r} \cdot P \]
How to compute the vector r of page ranks?

• The random surfer (or random walks) model can be represented using Markov Chains
Markov Chains (1)

• A Markov Chain consists in n states (let S the set of possible states), and a matrix of transition probabilities $n \times n$, P.

• At each step, the system is precisely in one state.

• For $1 \leq i, j \leq n$, $P(s_i \rightarrow s_j) = P_{ij}$ is the probability of jumping to s_j, given we are in s_i.

• Furthermore, if X_k is the random variable indicating the state s reached at time t_k (X gets values in S), then:

$$P(X_k /X_1, X_2, \ldots, X_{k-1}) = P(X_k /X_{k-1})$$

• The value of X at time k depends only from the value of the random variable at time $k-1$! (This is the basic property of Markov Chains)
Markov chains (2)

• Clearly \(\sum_{j=1}^{n} P_{ij} = 1. \)

• Markov Chains are a model of random walks.
Probability Vectors

- Let \(x^{(t)} = (x_1, \ldots x_n) \) be an \(S \)-dimensional vector indicating the state reached at time \(t \).
- Ex: \((000\ldots1\ldots000)\) means we are in \(s_i \).

But **since we are modeling a stochastic process**, we must rather consider a **vector of probabilities** \(x^{(t)} = (P(s_1), \ldots P(s_n)) = (x_1, \ldots x_n) \), indicating that at step \(t \) the walk will bring to state \(s_i \) with probability \(x_i \), and

\[
\sum_{i=1}^{n} x_i = 1.
\]
Ergodic Markov Chains

• A Markov Chain is **ergodic** if:

 – There is a path between any pair of states

 – Starting from any state, after a transition time \(T_0 \), the probability to reach any other state in a finite time \(T > T_0 \) is always different from zero.

 – **Note**: not true for the web graph!
Ergodic Chains

• If a Markov Chain is ergodic, every state has a **stationary probability** of being visited, regardless of the initial state of the random walker.

 – The vector $\mathbf{x}(t)$ of state probabilities converges to a **stationary vector** \mathbf{r} as $t \to \infty$
Computing State Probability Vector

• If \(\mathbf{x}^{(k)} = (x_1, \ldots x_n) \) is the vector \(\mathbf{x}^{(t)} \) in step \(t=k \), how would it change after the next jump?

• The adjacency matrix \(\mathbf{P} \) tells us where we are likely to jump from any state (since it has all transition probabilities from \(s_i \) to the other linked states):

• Therefore, from \(\mathbf{x}^{(k)} \), the probability of next state \(\mathbf{x}^{(k+1)} \) is computed according to: \(\mathbf{x}^{(k+1)} = \mathbf{P}\mathbf{x}^{(k)} \)

• If the process is ergodic, \(\mathbf{x} \) will converge to a vector \(\mathbf{r} \) such that \(\mathbf{r} = \mathbf{P}\mathbf{r} \)

• Since \(\mathbf{P} \) is a matrix and \(\mathbf{r} \) is a vector, which vector is \(\mathbf{r} \)??
Again: the Power method

- \(x^{(k+1)} = P x^{(k)} \)
- The sequence of vectors \(x^k \) converge to the stationary vector \(r \)
- To compute \(r \) we use the same method as for HITS
 \(x^{(k+1)} = x P^k = x^{(k)} P = x^{(k)} \)
- The method converges provided there is a dominant (principal) eigenvector
- Since the stationary condition is: \(r = rP \), \(r \) is the principal eigenvector of \(P \)
- Remember definition of eigenvectors!
Example
The normalized adjacency matrix P

$$
P = \frac{1}{N(u_i)} \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 1/3 & 0 \\
1/2 & 0 & 1/2 & 1/3 & 0 & 0 & 0 & 0 \\
1/2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1/2 & 1/3 & 0 & 0 & 1/3 & 0 \\
0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 1/2 \\
0 & 0 & 0 & 0 & 1/3 & 0 & 0 & 1/2 \\
0 & 0 & 0 & 0 & 1/3 & 1 & 1/3 & 0
\end{bmatrix}
$$
\[x^{(k+1)} = P x^{(k)} \]

<table>
<thead>
<tr>
<th></th>
<th>(x^0)</th>
<th>(x^1)</th>
<th>(x^2)</th>
<th>(x^3)</th>
<th>(x^4)</th>
<th>(x^{60})</th>
<th>(x^{611})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.0278</td>
<td>...</td>
<td>0.06</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
<td>0.25</td>
<td>0.1667</td>
<td>0.0833</td>
<td>...</td>
<td>0.0675</td>
<td>0.0675</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.25</td>
<td>0.1667</td>
<td>...</td>
<td>0.0675</td>
<td>0.0675</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>0.1667</td>
<td>0.1111</td>
<td>...</td>
<td>0.0975</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>0.1806</td>
<td>...</td>
<td>0.2025</td>
<td>0.2025</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0833</td>
<td>0.0972</td>
<td>...</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0833</td>
<td>0.3333</td>
<td>...</td>
<td>0.295</td>
<td>0.295</td>
</tr>
</tbody>
</table>
Recap: Pagerank

• Simulate a random surfer by the power iteration method

• Problems
 1. 0 pagerank if there are no incoming links or if there are sinks
 2. Not unique if the graph is disconnected
 3. Computationally intensive?
 4. Stability & Cost of recomputation (web is dynamic)
 5. Does not take into account the specific query
 6. Easy to fool
Problem 1: Rank Sink

If two web pages point to each other but to no other page, during the iteration, this loop will accumulate rank but never distribute any rank.
Rank Sink

• Problem: Pages in a loop accumulate rank but do not distribute it.

• Solution: Teleportation, i.e. with a certain probability the surfer can jump to any other web page to get out of the loop.
Definition modified (with teleporting)

\[R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v} + cE(u) \]

- \(E(u) \) is some vector of probabilities over the web pages (for example uniform prob., favorite page etc.) that corresponds to a source of rank. \(c \) is the **dumping factor**.
- \(E(u) \) can be thought as the random surfer gets bored periodically and jumps to a different page and is not kept in a loop forever.
Figure 5: PageRank convergence as a function of the size of the web graph
Figure 6: PageRank convergence as a function of C

Note: “c” is the dumping factor
Teleporting

• This solves:
 – Sink problem (problem 1)
 – Disconnectedness (problem 2)
 – Converges fast if w is chosen appropriately (problem 3??)

• We still have problems:
 1. Still computationally intensive?
 2. Stability & Cost of recomputation (web is dynamic)
 3. Does not take into account the specific query
 4. Easy to fool
The Largest Matrix Computation in the World

• Computing PageRank can be done via matrix multiplication, where the matrix has 3 billion rows and columns.
• The matrix is sparse as average number of outlinks is between 7 and 8.
• Setting $c = 0.15$ or above requires at most 100 iterations to convergence.
• Researchers still trying to speed-up the computation.
Monte Carlo Methods in Computing PageRank

• Rather than following a single long random walk, the random surfer can follow many sampled random walks.

• Each walk starts at a random page and either teleports with probability c or continues choosing a link with uniform probability.

• The PR of a page is the proportion of times a sample random walk ended at that page.

• Rather than starting at a random page, start each walk a fixed number of times from each page.
Personalised PageRank

\[R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v} + cv \]

• Change \(cE(v) \) with \(cv \)

• Instead of teleporting uniformly to any page we bias the jump prefer some pages over others.
 – E.g. \(v \) has 1 for your home page and 0 otherwise.
 – E.g. \(v \) prefers the topics you are interested in.
Weblogs influence on PageRank

• A weblog (or blog) is a frequently updated web site on a particular topic, made up of entries in reverse chronological order.

• Blogs are a rich source of links, and therefore their links influence PageRank.

• A “google bomb” is an attempt to influence the ranking of a web page for a given phrase by adding links to the page with the phrase as its anchor text.

• Google bombs date back as far as 1999, when a search for "more evil than Satan himself" resulted in the Microsoft homepage as the top result.
Agoogle bombs
Link Spamming to Improve PageRank

- Spam is the act of trying unfairly to gain a high ranking on a search engine for a web page without improving the user experience.

- Link farms - join the farm by copying a hub page which links to all members.

- Selling links from sites with high PageRank.