Link Analysis

Web Ranking

- Documents on the web are first ranked according to their relevance vrs the query
- Additional ranking methods are needed to cope with huge amount of information
- Additional ranking methods:
 - Classification (manual, automatic)
 - Link Analysis (today's lesson)

Why link analysis?

- The web is **not** just a collection of documents its hyperlinks are important!
- A link from page A to page B may indicate:
 - A is related to B, or
 - -A is recommending, citing, voting for or endorsing B
- Links are either
 - referential click here and get back home, or
 - Informational *click here to get more detail*
- Links affect the ranking of web pages and thus have commercial value.
- The idea of using links is somehow "borrowed" by citation analysis

A is related to B, B is referential

SAPIENZA Università di Roma	Dipartimento					
Cerca	DIPARTIMENTO	STRUTTURE	DIDATTICA	RICERCA	NOTIZIE	
	Home					/
CHI SIAMO	HOME					IN EVIDENZA
GOVERNO UFFICI PERSONE RICONOSCIMENTI DICONO DI NOI	SAPIENZA Università di Roma			SAPIENZA UNIVERSITÀ DI ROMA		 Lectio Magistralis Notizie Riconoscimenti Seminari Dicono di noi Incontri con le aziende
BANDI	BENVENUTI NEL S	ITO DEL DIPARTIN	IENTO DI INFOR	MATICA		SEDVIZI
			V	IR	ED	

A is citing B, B is informational

OUTLINE

UFFICI

PERSONE

RICONOSCIMENTI

DICONO DI NOI...

BANDI

TRASPARENZA

BENVENUTI NEL SITO DEL DIPARTIMENTO DI INFORMATICA

- Riconoscimenti
 - Seminari

- Dicono di noi...
- Incontri con le aziende

SERVIZI

Webmail

- Modulistica
- U-Gov
- Infostud
- Visualizzazione aule

Seguiteci sul nostro gruppo

Informatica@Sapienza

CONGRATULAZIONI!

Dal 1 marzo Chiara Petrioli è diventata professore ordinario nel nostro dipartimento. Chiara ha ottenuto la promozione direttamente dal Ministero...

SHANNON AWARD 2014

PRIMI IN ITALIA!

CDROID VS ANDROID

Il prof. János Körner è stato insignito del

Si è da poco concluso l'esercizio di

WIRED

Wired.it, l'edizione italiana della nota

tecnologica, ha dedicato un articolo...

rivista sull'innovazione digitale e

A is recommending B, B is informational

OOTLINIO

UFFICI

PERSONE

RICONOSCIMENTI

DICONO DI NOI...

BANDI

TRASPARENZA

BENVENUTI NEL SITO DEL DIPARTIMENTO DI INFORMATICA

- Seminari
- Dicono di noi...
- Incontri con le aziende

SERVIZI

- Modulistica
- U-Gov
- Infostud
- Visualizzazione aule

eguiteci sul nostro

opo 📑

tica@Sapienza

CONGRATULAZIONI!

Dal 1 marzo Chiara Petrioli è diventata professore ordinario nel nostro dipartimento. Chiara ha ottenuto la promozione direttamente dal Ministero...

SHANNON AWARD 2014

PRIMI IN ITALIA!

CDROID VS ANDROID

Il prof. János Körner è stato insignito del

Si è da poco concluso l'esercizio di

WIRED

Wired.it, l'edizione italiana della nota

tecnologica, ha dedicato un articolo...

rivista sull'innovazione digitale e

Citation Analysis

- The **impact factor** of a journal = *A*/*B*
 - A is the number of current year citations to articles appearing in the journal during previous two years.
 - B is the number of articles published in the journal during previous two years.

Journal Title (AI)	Impact Factor (2004)				
J. Mach. Learn. Res.	5.952				
IEEE T. Pattern Anal.	4.352				
IEEE T. Evolut. Comp.	3.688				
Artif. Intell.	3.570				
Mach. Learn.	3.258				

- A and B are co-cited by C, implying that they are related or associated.
- The strength of co-citation between A and B is the number of times they are co-cited.

Clusters from Co-Citation Graph

5

Citations vs. Links

- Web links are a bit different than citations: – Many links are navigational.
 - Many pages with high out-degree are portals, not content providers.
 - Not all links are endorsements (e.g. pointers to "fake" conferences).
 - Company websites don't point to their competitors.
 - However, the general idea that
 - *"many citations = authority"*
 - has been borrowed in link analysis

HITS and Page Rank: algebra that you need

- Eigenvector, eigenvalue and eigendecomposition of normal matrixes
- Iterative methods

Iterative methods

- A mathematical procedure that generates a sequence of improving approximate solutions for a class of problems
- General formulation: **x**^{t+1}=A**x**^t where **x** is a vector and t an iteration
- Iterative methods converge under specific hypotheses for matrix A.
- Condition a: A is square, real and symmetric
 - A real symmetric matrix is also **normal** and it exists a decomposition $U\Delta U^{-1}$ such that Δ =diag($\lambda_1,..\lambda_n$) and λ_1 >..> λ_n
 - Under these conditions, the method converges (as shown later)
- Condition b: A is square, stochastic and irreducible
 - In a stochastic matrix, either $\Sigma_i(a_{ij})=1$ (right stochastic) or $\Sigma_j(a_{ij})=1$ (left stochastics)
 - A *nxn* matrix is **reducible** if indices 1,2..n can be divided into two disjoint nonempty sets $i_1, i_2..i_{\mu}$ and $j_1, j_2..j_{\nu}$ such that $a_{i\alpha j\beta}=0$ for $\alpha=1,2..\mu$ and $\beta=1,2..\nu$ (equivalent to say that subsumed graph has disconnected components)
- Conditions a and b are not the ONLY conditions for convergence of iterative methods, **but those we need here**

Geometric or graph interpretation of matrixes

Geometric interpretation

- a_{ij} are coordinates of column vectors of the matrix on the carthesian axes i=1..n
- Ax is a linear transformation: if A is normal, λ₁>..>λ_n and there exist an othonormal space defined by A's eigenvectors on which x is projected.

Graph representation

- A matrix is a weighted graph,
 a_{ij} represent the weight of an edge between nodes i and j
- Irreducible matrix= the subsumed graph is connected

1	0	0	0	1)	1	0)	1	0	1		0)	1	1	1
	0	0	0	1		1	0	1	0		1	0	1	1
	0	0	0	1		0	1	0	1		1	1	0	1
	1	1	1	0)	ļ	(1	0	1	0)		(1	1	1	0,

Link Analysis

- HITS (Hyperlink Induced Topic Serach) Jon Kleinberg
- Page Rank Larry Page, Sergei Brin

Hyperlink Induced Topic Search (HITS)

- Or Hypertext-Induced Topic Search(HITS) developed by Jon Kleinberg, while visiting IBM Almaden
- IBM expanded HITS into Clever, a web search engine for advertising (no longer an active project)
- However, HITS still used in many graphbased applications (e.g. social networks)

Main concept of the algorithm

- HITS stands for Hypertext Induced Topic Search.
- HITS is search query <u>dependent</u>.
- When the user issues a search query,
 - HITS first expands the list of "relevant" (according to, e.g. vector space model) pages returned by a search engine
 - Next, it produces two rankings of the expanded set of pages, authority ranking and hub ranking.

Main concept of the algorithm-cont.

- **Authority**: A authority is a page with many incoming links (in-links, back-links).
 - The idea is that the page may have good or authoritative content on some topic and thus many people trust it and link to it.
- Hub: A hub is a page with many out-links.
 - The page serves as an organizer of the information on a particular topic and points to many good authority pages on the topic (e.g. a portal).

Example

good Authorities

Query: Top automobile makers

HITS – Hubs and Authorities –

- A on the left is an **authority**
- A on the right is a hub

Description of HITS

- A good hub points to many good authorities, and
- A good authority is pointed to by many good hubs.
- Authorities and hubs have a mutual reinforcement relationship. The figure shows some densely linked authorities and hubs (a bipartite sub-graph).

Fig. 8. A densely linked set of authorities and hubs

Hubs and Authorities: two steps

- First Step:
 - Constructing a **focused subgr**aph of the WWW, based on a user's query
- Second step:
 - Iteratively calculate authority weight and hub weight for each page in the subgraph

The HITS algorithm: focused graph

- Given a broad search query, q, HITS collects a set of pages as follows:
 - It sends the query *q* to a search engine.
 - It then collects t (t = 200 is used in the HITS paper) highest ranked pages. This set is called the root set W.
 - It then grows W by including any page
 pointed to by a page in W and any page that
 points to a page in W. This gives a larger set
 S, base set.

Expanding the Root Set

The link graph G

- HITS works on the pages in S= B U R, and assigns every page in S an authority score and a hub score.
- Let the number of pages in S be n.
- We use G = (V, E) to denote the hyperlink graph of S. (V nodes, E edges). (NOTE: by construction, this is a CONNECTED graph)
- We use *L* to denote the adjacency matrix of the graph. $(1 \quad if(i \quad i) \subseteq F)$

$$L_{ij} = \begin{cases} 1 & if (i, j) \in E \\ 0 & otherwise \end{cases}$$

Adjacency matrix (directed graph)

	1	2	3	4	5
1	0	1	1	1	0
2	0	0	1	0	0
3	0	1	0	0	0
4	0	0	0	1	0
5	0	1	0	0	0

The HITS algorithm (cont'd)

- Let the authority score of the page *i* be a(*i*), and the hub score of page *i* be h(*i*).
- The **mutual reinforcing relationship** of the two scores is represented as follows:

$$a(i) = \sum_{(j,i)\in E} h(j)$$

$$h(i) = \sum_{(i,j)\in E} a(j)$$

Remember: E is the set of edges of the derived hyperlink graph 2

HITS in matrix form

• We use *a* to denote the column **vector** with all the authority scores,

 $a = (a(1), a(2), ..., a(n))^{T}$, and

use *h* to denote the column vector with all the "hub scores",

 $h = (h(1), h(2), ..., h(n))^{T},$

 Then, we can express previous formulas in <u>matrix form</u> as:

> $a = L^{T}h$ (I step) h = La (O step) normalize: a=a/||a|| h=h/||h||

• It is an equivalent formulation wrt $a(i) = \sum_{\substack{j,i \in E \\ 27}} h(j)$ since the sum in previous formula is for all *j* linked to *i* in E and L has 1 where there is a link between i and j

	a	b	С	d	е
a	0	1	0	1	0
b	0	0	0	1	0
с	1	0	0	0	0
d	1	0	0	0	1
e	0	0	0	0	0

Computation of HITS

- The computation of authority scores and hub scores uses power iteration iterative method.
- If we use *a^k* and *h^k* to denote authority and hub vectors at the *k_{th}* iteration, the iterations for generating the final (stationary) solutions are:

Example (simple algorithm)

- 2nd Iteration
- I Step
- O Step

The HITS algorithm (with normalization)

• Until convergence, do: $-\underline{a}^{(k)} := L^T \underline{h}^{(k-1)} = L^T L \underline{a}^{(k-1)} (update \underline{a})$ $-\underline{h}^{(k)} := L \underline{a}^{(k)} = L L^T \underline{h}^{(k-1)} (update \underline{h})$ $-\underline{a}^{(k)} := \underline{a}^{(k)}/||\underline{a}^{(k)}|| and \underline{h}^{(k)} := \underline{h}^{(k)}/||\underline{h}^{(k)}|| (normalize)$

Does it converge to a stationary solution?

Digression: many vector notations, don't be confused!

- X , X and X (underline, arrow and bold) are all valid *intensional* notations for vectors!!
- X: $(x_1, x_2, ..., x_n)$ is an *extensional* notation (shows all coordinates of the vector) and is either column or row: $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

 Finally, we have the graphic notation

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}$$

Back to HITS: meaning of the $L L^T$ and $L^T L$ matrixes

) (

- L is the adjacency matrix of the graph
- *L^TL* is the authority matrix:

$$A = L^{T}L = \begin{vmatrix} A_{ij} \\ A_{ij} \end{vmatrix} = \begin{vmatrix} L_{ik}^{T} \\ L_{ik} \end{vmatrix}$$

L_{kj} column "means" that j is pointed by all non-zero k;

 L^{T}_{ik} "means" that i is pointed by all non-zero k

$$A_{ij} = \sum_{k=1}^{n} L_{ik}^{T} L_{kj} = \sum_{k=1}^{n} L_{ki} L_{kj}$$

 L^{T} L A_{ij} is the number of **co-citations**, the Number of nodes pointing to both i and j

.. is this something you have already seen??????

Aij is the number of nodes pointing both i and j. For example, A_{ae}=1 since only node **d** points to both **a** and **e**

Proof of convergence of HITS (power method)

- Since matrix $A (=LL^T)$ is square and symmetric, it has an eigen-decomposition UAU^{-1} where $\lambda_1, \lambda_2, ..., \lambda_k$ are then eigenvalues and $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_k|$ (note: they are eigenvalues of A and singular values of L!!)
- $\underline{x}_1, \dots, \underline{x}_k$ are the **eigenvectors** of A and they form an orthonormal basis (**e.g.**: $\alpha_1 \underline{x}_1 + \alpha_2 \underline{x}_2 + \dots + \alpha_k \underline{x}_k = 0$ iff $\alpha_1 = \dots = \alpha_k = 0$, sinc $a^{(k)} := L^T L a^{(k-1)} = A a^{(k-1)}$
- A generic vector \underline{v}_0 (in our case, either $\underline{h}^{(0)}$ $\overline{o} \underline{a}^{(0)}$) can be re-written as: $-\underline{v}^0 = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n$ (its projection on the orthonormal space of A)
- Hence (let $\forall i: x_i, \lambda_i$ eigenvalue, eigenvector of $A, A = \lambda_i x_i$ $- \underline{h^1} = A \underline{h^o} = \alpha_1 A \underline{x_1} + \alpha_2 A \underline{x_2} + \ldots + \alpha_k A \underline{x_k} = \alpha_1 \lambda_1 \underline{x_1} + \alpha_2 \lambda_2 \underline{x_2} + \ldots + \alpha_k \lambda_k \underline{x_k} =$ $- \lambda_1 [\alpha_1 \underline{x_1} + \alpha_2 (\lambda_2 / \lambda_1) \underline{x_2} + \ldots + \alpha_k (\lambda_k / \lambda_1) \underline{x_k}]$
- And in general:
 - $\underline{h}^{m} = A \underline{h}^{m-1} = A^{m} \underline{h}^{0} = \alpha_{1} A^{m} \underline{x}_{1} + \alpha_{2} A^{m} \underline{x}_{2} + \ldots + \alpha_{k} A^{m} \underline{x}_{k} = \alpha_{1} \lambda_{1}^{m} \underline{x}_{1} + \alpha_{2} \lambda_{2}^{m} \underline{x}_{2} + \ldots + \alpha_{k} \lambda_{k}^{m} \underline{x}_{k} = \lambda_{1}^{m} [\alpha_{1} \underline{x}_{1} + \alpha_{2} (\lambda_{2}/\lambda_{1})^{m} \underline{x}_{2} + \ldots + \alpha_{k} (\lambda_{k}/\lambda_{1})^{m} \underline{x}_{k}]$
- Since $|\lambda_i/\lambda_1| < 1$, i = 2, 3, ..., n, we get:

$$\underline{\lim \underline{h}_m = \lim \underline{h}_m = \lim \underline{h}_m = \lim \underline{h}_m = \alpha_1 \underline{x}_1}$$

Speed of convergence depends on λ_2/λ_1 and on initial choice of h^0

HITS: Example (1)

Ex: 3 and 4 are "co-cited" by 5

3 and 1 co-cite 5"

(NOTE: normalization step is not shown, however results are normalized)

	T	_	5	-	5	0	<u></u>]	<u>u</u> _		T	_	5	-	5	0	<u>u</u> _		<u></u> 2
1	0	0	1	0	1	$0 \rangle^2$	(0.687)	(0.072)	1	(0	0	1	0	1	0)	(0.072)		(0.706)
2	1	0	0	0	0	0	0.137	0	2	1	0	0	0	0	0	0	0	0.037
3	0	0	0	0	1	0	0.412	0.573	3	0	0	0	0	1	0	0.573		0.409
4	0	0	0	0	0	0	0	0.215	4	0	0	0	0	0	0	0.215		0
5	0	0	1	1	0	0	0.412	0.788	5	0	0	1	1	0	0	0.788		0.409
6	0	0	0	0	1	0	(0.412)		6	0	0	0	0	1	0)	(0))	(0.409)

$-\underline{a}^{(3)} := L^{T} \underline{h}^{(2)}$ HITS: Example (4) $-\underline{h}^{(3)} := L \underline{a}^{(3)}$

	1	2	3	4	5	6	<u>h</u> 2		<u>a</u> _3		1	2	3	4	5	6	<u>a</u> 3		<u>h</u> 3							
1	(0	0	1	0	1	0	(0.706)		(0.019)	1	$\left(\begin{array}{c} 0 \end{array} \right)$	0	1	0	1	0)	(0.019))	(0.707)							
2	1	0	0	0	0	0	0.037	=	=	=	=					0	2	1	0	0	0	0	0	0		0.001
3	0	0	0	0	1	0	0.409						0.577	3	0	0	0	0	1	0	0.577	_	0.408			
4	0	0	0	0	0	0	0					0.212	4	0	0	0	0	0	0	0.212		0				
5	0	0	1	1	0	0	0.409		0.789	5	0	0	1	1	0	0	0.789		0.408							
6	0	0	0	0	1	0)	(0.409)		0	6	0)	0	0	0	1	0)	(0))	(0.408)							

	1	2	3	4	5	6	<u>h</u> 3		<u>a</u> 4		1	2	3	4	5	6	<u>a</u> 4		<u>h</u> 4					
1	(0	0	1	0	1	0	(0.707)		$\begin{pmatrix} 0 \end{pmatrix}$	1	$\left(\begin{array}{c} 0 \end{array} \right)$	0	1	0	1	0)	$\begin{pmatrix} 0 \end{pmatrix}$		(0.707)					
2	1	0	0	0	0	0	0.001			0	2	1	0	0	0	0	0	0		0				
3	0	0	0	0	1	0	0.408			_				0.577	3	0	0	0	0	1	0	0.577	_	0.408
4	0	0	0	0	0	0	0				0.211	4	0	0	0	0	0	0	0.211		0			
5	0	0	1	1	0	0	0.408		0.789	5	0	0	1	1	0	0	0.789		0.408					
6	0	0	0	0	1	0	$\left(0.408\right)$		0)	6	0	0	0	0	1	0)	(0))	0.408					

Strengths and weaknesses of HITS

- Strength: its ability to rank pages according to the query topic, which may be able to provide more relevant authority and hub pages.
- Weaknesses:
 - It is easily spammed. It is in fact quite easy to influence HITS since <u>adding out-links in one's own</u> page is so easy.
 - Topic drift. Many pages in the expanded set may not be on topic.
 - Inefficiency at query time: The query time evaluation is slow. Collecting the root set, expanding it and performing eigenvector computation are all expensive operations

Applications of HITS

- Search engine querying (speed is an issue)
- Finding web communities.
- Finding related pages.
- Populating categories in web directories.
- Citation analysis
- Social network analysis

Link Analysis

- HITS (Hyperlink Induced Topic Serach) Jon Kleinberg
- Page Rank Larry Page, Sergei Brin

Page Rank

- Ranks pages by authority.
- Applied to the **entire web** rather than a local neighborhood of pages surrounding the results of a query.
- Not query-dependent
- It is the Google algorithm for ranking pages

PageRank----Idea

Every page has some number of outlinks and in-links

PageRank----Idea

Two cases PageRank is interesting:

 Web pages vary greatly in terms of the number of backlinks (in-links) they have. For example, the Netscape home page has 62,804 backlinks compared to most pages which have just a few backlinks. Generally, highly linked pages are more "important" than pages with few links.

EUGENE GARFIELD, FRANCIS NARIN, PAGERANK: THE THEORETICAL BASES OF THE GOOGLE SEARCH ENGINE

PageRank----Idea

2. In-links coming from important pages convey more importance to a page. For example, if a web page has a link off the Yahoo home page, it may be just one link but it is a very important one.

A page has high rank if the sum of the ranks of its incoming links is high. This covers both the case when a page has many in-links and when a page has a few highly ranked in-links.

PageRank----Definition

u,v: a web page

 F_u : set of pages that u points to

 B_u : set of pages that point to u (backlinks or inlinks)

 $N_u = |F_u|$: the number of links outgoing from *u* (outlinks) c: a factor used for normalization

$$r(u) = c \sum_{v \in B_u} \frac{r(v)}{N_v}$$

The equation is recursive, but it may be computed by starting with any set of ranks and iterating the computation until it converges.

A probabilistic interpretation of PageRank

- The definition corresponds to the probability distribution of a *random walk* on the web graphs.
- First note: we can write $r(u) = c \sum_{v \in B_u} \frac{r(v)}{N_v}$ in matrix iterative form as $r^t = Pr^{t-1}$
- *P* (transition matrix) is left stochastic since $\Sigma_{j}p_{ij}=1$ (column *j* in *P* corresponds to the outlinks of node *j*, and for *k* outlinks, each weights 1/k)

An example

0	1	0
0	0	1
1/2	1/2	0

Adjacency matrix A

What is a Random Walk?

- Given a graph and a starting point (node), we select a neighbor (= a pointed node) of it at random, and move to this neighbor;
- Then we select (at random) a neighbor of this node and move to it, and so on;
- The (random) sequence of nodes selected this way is a random walk on the graph
- In our case, if the walker is on node j at time t, it has 1/k probability of jumping on any of its hyperlinked nodes at time t+1

An example

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview 57

Probabilistic interpretation

- N total number of web pages
- k outgoing links from page j
- P Transition matrix with elements: $Pij = \begin{cases} 1/k & \text{if } i \rightarrow j \\ 0 & \sum_{i} p_{ii} = 1 \\ Pii > 0 & \forall i \end{cases}$
 - The PageRank formulation can be written as: $r^{(k)} = P \cdot r$ P is a left stochastic matrix, as we anticipated

Example

Suppose page j links to 3 pages, including i

Ρ

r^{(k})

r(k+1)

The new value of r_i (the page rank of node i) at iteration k is obtained by summing the r_j of all pages pointing to i, multiplied by their p_{ij} value: $r_i^{(k+1)} = \sum_j p_{ij} r_j^{(k)}$ where p_{ij} is the (uniform)probability of jumping from j to i. How to compute the vector **r** of page ranks?

 The random surfer (or random walks) model can be represented using Markov Chains

Markov Chains (1)

- A Markov Chain consists in N states (let S the set of possible states), and a matrix of transition probabilities *N*×*N*, **P**.
- At each step, the system is precisely in one state (states are web pages, in our case).
- For $1 \le i, j \le N$, $P(s_i \rightarrow s_j) = P_{ij}$ is the probability of jumping to s_j , given we are in s_i .
- Furthermore, if X_k is the random variable indicating the state **s** reached at time t_k (X gets values in S), then:

 $P(X_k | X_1, X_2, \dots, X_{k-1}) = P(X_k | X_{k-1})$

- The value of X_k at time *k* depends only on the value of the random variable at time k-1! (This is the basic property of Markov Chains: 1 state memory!)
- Which means: the probability of being on page s_j at time k only depends on the page s_i on which the surfer was at time k-1

Markov chains (2)

- We also have that: $\sum_{j=1}^{n} P_{ij} = 1.$
- Markov Chains are a model of random walks!

Probability Vectors

- Let $\mathbf{x}^{(t)} = (x_1, \dots, x_N)$ be an S-dimensional vector indicating the state reached at time t
- Ex: (000...1...000) means we are in state s_i . s_1 s_i s_N

Example:

 $X^{(3)}=(0,1,0)$ since the walker in t=3 jumps to state B

Probability Vectors

Since we are modeling a stochastic process, we can define a vector of probabilities $\mathbf{r}^{(t)}=(P(t,s_1), \ldots P(t,s_N))=(r^t_1, \ldots r^t_N)$, indicating that at step **t** the random walk will bring to state \mathbf{s}_i with probability \mathbf{r}^t_i ,

 $\sum_{i=1}^{N} P(t, s_i) = \sum_{i=1}^{N} r_i^t = 1.$

 $X^{(3)}$ =(0.5,0.5,0) since the walker in t=2 has a 0.5 probability of jumping To B and 0.5 of jumping to A in t=3

Difference between Pij and P(t,s)

- Pij is the probability of jumping in state (page) j when we are in state (page) i : those probabilities are known and uniform (all equal to 1/k for k outlinks) for any starting node i
- P(t,s_i)=r^t_i is the probability of being in state i when starting in some initial state and after t jumps 8(=at time t).
- We wish to compute stationary values r_i for r^t_i !! These are the Page Ranks: the asinthotic probabilities of being in a given page for a walker who start in a page at random and travels the web graph at random.

Ergodic Markov Chains

- The Random Walk is modeled with Markov Chains. Stationary probabilities can be computed if the process is ERGODIC
- A Markov Chain is **ergodic** if:
 - There is a path between any pair of states (= adjacency matrix is irreducible,→the graph is connected)
 - Starting from any state, after a finite transition time T_0 , the probability to reach any other state in a finite time $T>T_0$ is always different from zero.
 - <u>Note</u>: not true for the web graph! Since not connected.
 Will see how to cope with this

Ergodic Chains

- If a Markov Chain is ergodic, every state has a **stationary probability** of being visited, regardless of the initial state of the random walker .
 - -The vector $\mathbf{r}^{(t)}$ of state probabilities converges to a **stationary vector r** as

Computing State Probability Vector

- If $\mathbf{r}^{(t)} = (r_1, \dots, r_N)$ is the probability vector in step t, how would it change after the next jump?
- The adjacency matrix **P** tells us where we are likely to jump from any state (*since it has all transition probabilities from s_i to the other <u>linked</u> states):*
- Therefore, from $\mathbf{r}^{(t)}$, the probability of next state $\mathbf{r}^{(t+1)}$ is computed according to: $(\mathbf{r}^{(t+1)} = \mathbf{P}\mathbf{r}^t)$
- Even under the random walk model, we obtain again our iterative formulation!

$$(001) \times \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

$$\uparrow_{r^{(2)}} \qquad \uparrow_{r^{(3)}}$$

Computing Stationary Probability Vector

- If the process is ergodic, **r**^t will eventually converge to a vector *r* such that *r=Pr*
- Since P is a matrix and r is a vector, what kind of vector is r?? In other terms, if r=Pr holds, what vector is r??

Again: the Power method!

- $\underline{\mathbf{r}}^{(k+1)} = P\underline{\mathbf{r}}^{(k)}$
- The sequence of vectors r^k converge to the stationary vector r if P is stochastic and irreducible
- To compute **r** we use the same method as for HITS

•
$$\underline{\mathbf{X}}^{(k+1)} = \underline{\mathbf{P}}\underline{\mathbf{X}}^{(k)} = \underline{\mathbf{P}}^{k}\underline{\mathbf{X}}^{(0)} = \lambda_{1}^{k} \left[\alpha_{1}r_{1} + \alpha_{2}(\frac{\lambda_{2}}{\lambda_{1}})^{k}r_{2} + \dots + \alpha_{n}(\frac{\lambda_{n}}{\lambda_{1}})^{k}r_{n} \right]$$

- The method converges provided there is a dominant (principal) eigenvector
- Since the stationary condition is: $\mathbf{r}=\mathbf{Pr}$, \mathbf{r} is the principal eigenvector r_1 of \mathbf{P} and $\lambda_1 = 1$
- The principal eigenvalue is 1 (because P is stochastic)

The normalized adjacency matrix P

Iterations

 $X^{(k+1)} = P \underline{X}^{(k)}$

Problem with our PageRank formulation

- Markov process converges under condition of ergodicity. Iterative computation (power method) converges if matrix P is irreducible. Two ways of saying the same thing!
 - As we said, these conditions are satisfied if the graph is fully connected and not deeply cyclic, which is not the case for the web graph
 - What causes the problem in practice?

Rank synk

If a group of web pages point to each other but to no other page, during the iteration, this loop will accumulate rank but never distribute any rank.

- Problem: Pages in a loop (or in a disconnected component) accumulate rank but do not distribute it to the rest of the graph.
- Solution: Teleportation, i.e. with a certain small probability the surfer can jump to any other web page (to which it is not connected) to get out of the loop.

Definition modified (with teleporting)

$$r(u) = c \sum_{v \in B_{u}} \frac{r(v)}{N_{v}} + (1-c)E(u)$$

- *E(u)* is some vector of probabilities over the set of web pages (for example uniform prob., favorite page etc.) that corresponds to a source of rank.
- c is called the **dumping factor** (also denoted with d)
- E(u) can be thought as if the random surfer "gets bored" periodically to travel from one page to another adjacent page, and "flies" to a different page (even though not connected), so he is not kept in a loop forever.

Figure 5: PageRank convergence as a function of the size of the web graph

Figure 6: PageRank convergence as a function of C

Note: "c" is the dumping factor

Teleporting is a great "trick"

- This solves:
 - Sink problem
 - Disconnectedness of the web graph
 - Converges fast if *set of initial values* r⁽⁰⁾ is chosen appropriately. In algebraic terms, the initial vector must have <u>a non-zero component in the direction of the principal</u> <u>eigenvector (else it will never move in that direction)</u>
- But we still have problems:
 - 1. Computing Page Rank for all web pages is computationally very intensive, plus needs frequent updates (web is dynamic)
 - 2. Does not takes into account the specific query
 - 3. Easy to fool (less than HITS: less easy to be cited than cite!)

The Largest Matrix Computation in the World

- Computing PageRank can be done via matrix multiplication, where the matrix has billions rows and columns.
- The matrix is sparse as average number of outlinks is between 7 and 8.
- Setting c = 0.85 or above requires at most 100 iterations to convergence.
- Researchers still trying to speed-up the computation ("Big Data" problem, but you have a "Big Data" course).

Monte Carlo Methods in Computing PageRank

- Rather than following a single long random walk, the random surfer can follow many "sampled" random walks (threads).
- Each walk starts at a random page and either teleports with probability c or continues choosing a connected link with uniform probability.
- The PageRank of a page is the proportion of times a "sample" random walk ended at that page.

Another variant: Personalised PageRank

$$R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v} + (1 - c)v$$

- Change cE(v) with cv
- Instead of teleporting uniformly to any page we bias the jump to prefer some pages over others.
 - E.g. *v* is 1 for "your home page" and 0 otherwise.
 - E.g. *v* prefers the topics you are interested in.

Weblogs influence on PageRank

- A weblog (or blog) is a frequently updated web site on a particular topic, made up of entries in reverse chronological order.
- Blogs are a rich source of links, and therefore their links influence PageRank.
- Although there might be attempts to influence google rankings by unfair behaviour, ths is severely punished by Google downgrading the page rank of the "bomber" – so that the page will never be shown to users

Summary

- Link analysis one of the main mechanisms to rank web pages (others are contentbased methods and personalization)
- PageRank is the most well know and used, HITS is used but more in social networks (due to query-time computation delay)