Algebraic models to improve
ranking and query expansion

Latent Semantic Indexing, Word
Embeddings

Is there anything more advanced than co-

occurrences to learn word correlations?
- .

s the most populous city in the US. state of
- T T8 . < $ - ¢ - 1 -~
rhe high serves as the county seat

= Traditional IR uses Term County, and it is situated in the central part of
matChlng, — # of times the doc the state, straddling the |) The

“ ” 557,169 as of the July 1, 2014, poy [estimate from the

SayS Albuquerque - nOt fUIIy United States Census Bureau, and ranks as the 32nd-largest
appropriate ty in the U.S. The Metropolitan Statistical Area (or MSA) has
pp p a |] of 902,797 according to the United States

|

- We can use a different (:fy‘ilb Bureau's most recently available estimate for July |
approach: compare all-pairs of
query-document terms, — # of
terms in the doc that relate to Allen suggested that they could program a BASIC interpreter

for the device; after a call from Gates ;J'(l."’ﬁ'l"\,‘ {0 have @

Albuquerque working interpreter, MITS requested a demonstration, Since

they didn't actually have one, Allen worked on a simulator

s [0 detect these similarities: Gr the Aol while Gates developed the Ierveser ARG

they developed the interpreter on a simulator and not the

» Latent Semantic Indexing actuscl divice. the Dxsnoreter worked sty when thas

demonstrated the interpreter to MITS in

= Word embeddings (a.k.o. in March 1975 MITS oareed to distrib
deep method — emerging RORRRg X 08 ANOY SA
technology)

Passage about Albuguerque

1. #
Uie {(

Passage not about Albuquerque

The problem

= With the standard term-document matrix
encoding, each term is a vector and dimensions
are documents

= Different terms have no inherent similarity

search[020000000010000]
Information retrievall[0 0000003000010 0]
= If query on search and document has information

retrieval , then our query and document vectors
are orthogonal. Dot product is zero.

Can we directly learn term
relations?

Basic IR is scoring on qT-d/K (dot product of query
and document vectors) qed

|
No treatment of synonyms; no machine learning

Can we learn a matrix W to rank via q"Wd, rather than
qT.d? seansh rerking ” “thomdion el ki’

g Y, 4
l
l

(|OOLO) | 07 6.5 O O\ 05%

@ inreraor | ya | g2 0 O 3
s 0% | 6 O] n= 2.2
5 & © | o7 [Jra
6 0 o0 07 | / O [or(denng)

Where W is a matrix that captures similarity between
words (e.g., “search” and “information retrieval”)?

Latent Semantic Indexing

Latent Semantic Indexing

= [erm-document matrices are very large,
though most cells are “zeros”

= But the number of topics that people talk
about is small (in some sense)

= Clothes, movies, politics, ...

= Each topic can be represented as a
cluster of (semantically) related terms,
e.g.. clothes=golf, jacket, shoe..

= Can we represent the term-document
space by a lower dimensional “latent”
space (latent space=set of topics)?

Searching with latent topics

s Given a collection of documents, LSI learns clusters
of frequently co-occurring terms (ex: information
retrieval, ranking and web)

= If you query with ranking,
LS| “automatically” extends the search

to documents including also (and even ONLY) web

~

Document base (20)

With standard VSM
4 documents are selected

Selection based on ‘Golf’

ii

20 documents

Selection based on ‘Golf’

i1

1

Golf
Tiger

Woods
Belfry

Tee

The most relevant words
associated with golf in thes_
docs are:

Car, Topgear and Petrol

N /

20 docs

Selezione basata su ‘Golf’

1

Golf
Tiger
Woods
Belfry

If we consider the co-occurring terms
with higher tf*idf,
car e topgear turn out to
be related to Golf
more than petrol

.

We now search with all
the words in the “semantic domain” of Golf .
The list of retrieved docs now
is based on Golf and the other
related words

Selection based on the semantic dom

20 docs
l The co-occurrence based
ranking improves the performance.
Note that one of the most relevant doc does
NOT include the word Golf, and
a doc with a “spurious”
sense disappears

Selection based on semantic

Golf
Rank

Tiger
Woods
Belfry
Tee

/

-7

Ranking with latent Semantic

Indexing

= Previous example just gives the intuition

= Latent Semantic Indexing is an algebraic method to
identify clusters of co-occurring terms, called “latent
topics”, and to compute query-doc similarity in a
latent space, in which every coordinate is a latent
topic.

= A “latent” quantity is one which cannot directly
observed, what is observed is a measurement which
may include some amount of random errors (topics
are “latent” in this sense: we observe them, but they
are an approximation of “true” semantic topics)

= Since it is an algebraic method, needs some linear
algebra background

The LS| method: how to detect “topics”

Linear Algebra
Background

14

Eigenvalues & Eigenvectors

= Eigenvectors (for a square mxm matrix S)

/‘?‘V 7"\"\ Example
(right) eigenvector eigenvalue <6 _2) (‘) () 72 C)
v ER™ £ AER N A\‘/ Ky

= Def: A vectorvE R", v #0, is an eigenvector of a
matrix mxm A with correspondlng eigenvalue A, if:

Av = \v

15

Algebraic method

= How many eigenvalues are there at most?
Av = A\v

equation has a non-zero solution if A — AI| =0

Av=)v < (A-A)v=0

Where | is the identity matrix

this is a m-th order equation in A which can have at

most m distinct solutions (roots of the characteristic
polynomial) - can be complex even though A is real.

16

Example of eigenvector/eigenvalues

- @0 0@ 0 —
A3 2)e{3)
3 5 -3
Av=Ay
1 -1 oyl 1
3 5 -3 -3
1+-3(-1) | 4
3+5(-3) -12

e P

Example of comniitation

remember
- [TR
a b
det M =| M |= — ad - begD(A=5)+3=0
A=(l '1) ¢ 4 L 6A+5+3=0
3 5
A -6A+8=0
det(A-AN =0
2 and 4 are the (A -4 2)=(-) -
-)_ll eigenvalues of S 7 Characteristic
S) — polynomial
1 -1 | (A O _0 (=(0 (_7”-5‘}0
3 5 0 A) _1 O) ;
(I—A -1)—o (o Lg)M\ o
- 0
I (-1 —1 o 0)
{ -3a-=0 B —3a 0
3a+ =0 a-f=0
5
3a+3p=0

Note that we compute only the DIRECTION of eigenvectors

Geometric interpretation
e R iEEECECm—

3.00| [-2.00 1.28
Ax = .
1.00| [0.00 3.14

w
l

T L L L L L L L L L L] L] L] L] L] L L
-6 -4 . 2 4
1

I A matrix-vector multiplication Ax
.+ is a linear transformation over
the vector

19

Matrix vector multiplication

aii a2 .o Ain I a11T1 +a12&2 +*** + A1n Ty
@y QG ... Q3,) 91 &1 + ATy + *** T A2, T
AX - pr—
| Qi Q2 een Qun] LTqh | Q1 . Q29 oo Qrnnln

Matrix multiplication by a vector = a linear transformation of
the initial vector, that implies rotation and translation

20

Geometric interpretation

3.00| [-2.00 1.84
Ax = .
1.00| [0.00 2.48

/
111111111111111111111111

IIIIIIIIIIIIIIIIIIIIIIII

Geometric interpretation

e |

xxxxx

] [o] 1

0.76

11111111

YYYYY

rrrrrrrr

A=134 44

det(A-AT) = -0.22

0.97 |51
A-ADx=1 g4 | T
6+

rrrrrrrrrrr

Ax=1.34x=AXx

An eigenvector is a special
vector that is transformed
Into its scalar multiple under

'a given matrix (no rotation!)
' 22

Geometric interpretation

[3.00| [-2. -2.88 T
Ax — ~ 54
142

Here we found another
eigenvector for the matrix A

1111111111111
IIIIIIIIIIIII

. ’Ax ar
o o+ Note that for any single eigenvalue
e r you have infinite eigenvectors,
win--022 L put they have the same direction

-1.94 | 51
(A-ax=| oo 6~- 23

Matrix-vector multiplication

= Eigenvectors of different eigenvalues are linearly
independent (i.e. Va,.a, =2 a,v.+.. a,v,70)

= For square normal matrixes eigenvectors of
different eigenvalues define an orthonormal

space and they are othogonal.

= A square matrix is NORMAL iff it commutes with
its transpose, i.e. AAT=ATA

= Example:

. A= (o 1 1) D AAT- (1 - 1) =ATA
10 1 1 1 2

24

Difference between orthonormal

and orthogonal?

= Orthogonal mean that the dot product is null (the
cosin of the angle is zero).
Orthonormal mean that the dot product is null
and the norm of the vectors is equal to 1.
What we are actually saying is that eigenvectors
define a set of DIRECTIONS wich are

orthogonal.

= If two or more vectors are orthonormal they are
also orthogonal but the inverse is not true.

25

Why eigenvectors are orthonormal
(if A iIs symmetric square matrix)

MWz -vy) = A (vivy) = (WiAvy) = (v Ay, = (ATvy) v,
= (Avy) vy = Av3v; = A;(v; - vy)

= (v, -v1)=0and v, L v4

26

Example: projecting a vector on 2
orthonormal spaces (or “bases”)

The same vector will have different components
with respect to different bases.

!
€,
~

1 2 1l 2
v=ve +ve v=v'e| +v7ie,

V;Cj

Vlel

e,
e,e,, e,e,are unary vectors and v,,v',, v,,v, are the
coordinates of v along the directions of e,,e’,, e,,e’,

27

The effect of a matrix-vector multiplication is
governed by eigenvectors and eigenvalues

= A matrix-vector multiplication such as Ax (A normal matrix, x a
generic vector as in the previous slide) can be rewritten in
terms of the eigenvalues/vectors of A. Example: />

X= 4
Ax=A(2Zv +4v,+6v,)

Ax =2Av +4Av, +6Av =24y +4Ay +6Aw, \O

= Where v,,v, v; are the (orthogonal) eigenvectors of A
= Note that:

x = (x,uy +x,u, +x3U3) = (X, + X,0, + x305) = (x";u'y +xu', + x';u'y)
(original base Xx,y.z) (new base defined by the eigenvectors of A)

m Even though x is an arbitrary vector, the action of A on x
(transformation) is determined by the eigenvalues/vectors.

m Why? 28

Geometric explanation

X is a generic vector with coordinates x;; A,,v; are the eigenvalues
and eigenvectors of A
Ax=xAv +X,Av, + XAy,

Multiplying a matrix and a vector has two effects over the
vector: rotation (the coordinates of the vector change) and
scaling (the length changes). The max compression and
rotation depends on the matrix’s eigenvalues Ai

Geometric explanation

In the distorsion, the max effect is played by the
biggest eigenvalues (s1 and s2 in the picture)

The eigenvalues describe the distorsion operated by the
matrix on the original vector

Summary so far

= A matrix A has eigenvectors v and eigenvalues A, defined by
Av=Av

= Eigenvalues can be computed as:

Av =Av <— (A-A)v=0

= \We can compute only the the direction of eigenvectors, since
for any eigenvalue there are infinite eigenvectors lying on the
same direction

= If Ais normal (i.e. if AAT=ATA) then the eigenvector form an
othonormal basis

= The product of A by ANY vector x is a linear transformation of x
where the rotation is determined by eigenvectors and the
translation is determined by the eigenvalues. The biggest role
in this transformation is played by the biggest (principal)
eigenvalues.

31

Eigen/diagonal Decomposition

= Let A be a square matrix with m orthogonal
eigenvectors (hence, A is normal)

= Theorem: Exists an eigen decomposition
m /A\=U/\U'1

= /\ is a diagonal matrix (all zero except the diagonal

cells)
A =diag(A1, ...,), Ai = Aiga

= Columns of U are eigenvectors of A

= Diagonal elements of A are eigenvalues of A

32

Diagonal decomposition: why/how

Let U have the eigenvectors as columns: U=|v, .. v

Then, AU can be written

AU =4 12

Thus AU=UA, or U-TAU=A

And A=UAU-". y

Example

4 = [1 0‘
11 3 AU=UA
V11 ﬂ] 0
= [vqva) ,
V2 V2 Vig V2 0 12 0 4

From this we compute A,=1, A\,=3
[1 0] [VH] _1 [v“] from which we get v,,=-2v,,

Vi2 Vi2

1 0
A[V1V2]=[l 3

l O V21 Va1 .
[1 3‘ [] =3 [] From which we get v,,=0 and v,, any real

V22

34

Diagonal decomposition —
example 2

Recall A=

2
1

L.
2 -

‘ 1 1]
The eigenvectors(l)and () form U = -
| | = |

1/2 —=1/2
Inverting, we have U™ = - Recall
7 1/2 1/2 Uu-' =1.

1 111 O][1/2 -1/2
-1 1|0 3{{1/2 1/2 |

Then, A=UAU =

So what?

= What do these matrices have to do with
Information Retrieval and document ranking?

s Recall M x N term-document matrices ...
= But everytl iormal

matrices — YQUR FUTURE and learn

one last nc

——

S —

Bofo'ro After
learning ALGEBRA

36

Singular Value Decomposition for
non-square matrixes

For a non-square M x N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD) as follows:

A=U2V"
A BN
MxM || MxN Vis NxN

The columns of U are orthogonal eigenvectors of AAT

(left singular vectors).

The columns of V are orthogonal eigenvectors of ATA (right

singular eigenvector). NOTE THAT AATand ATA are square symmetric

(and hence NORMAL)

Eigenvalues A, ... A, of AAT = eigenvalues of ATA and: o, = /A

2 = diag(Ol...0r>< : Singular values of A

An example

Find the SVD of A, ULV’ where A = (g g _22)

5 0 0 1/v2 1/v2 0

A=UZV'=U|(, 4 0)(1/\/1_8 —1/4/18 4/\/E)
2/3 —2/3 —1/3

fewa . . fa_o
= 0 0 1/vV2 1/V/2 0
(0 3 0) 1/V18 —1/V18 4/V18
2/3 —2/3 -—1/3

38

Singular Value Decomposition

= lllustration of SVD dimensions and sparseness

¥ ko ok K ‘l
ere * I'"' - 'ﬁl 1 So these
\Yn R * { J become
* * ¥ * e e *
L | All zerogh— — zeros, too
~ B = ", VT
— \ P J .8 s
L 3
r MxM MxN NxN
N -'R' -~ E E. -
I X * . . A So these
* ¥ * ¥ ¥ = - - ® - be come
* * * t ¥ L *] * Zeros! too

(33 2)- (0 200 (3 38) (i o)

Back to matrix-vector multiplication

= Remember what we said? In a matrix vector
multiplication the biggest role is played by the
biggest eigenvalues

= [he diagonal matrix 2 has the eigenvalues of
ATA (called the singular values of A) in
decreasing order along the diagonal

= \We can therefore apply an approximation by
setting 0,=0 if 0.6 and only consider the first k

singular values

40

Reduced SVD

= If we retain only k highest singular values, and set the
rest to 0, then we don’t need the matrix parts in red

s Then Z is kxk, Uis Mxk, V' is kxN, and A, is MxN
= This is referred to as the reduced SVD, or rank k
approximation

Now all the red and yellow parts are zeros!!

[% * * * *]
* * * *] k * * * *
* * — - * ® * b - - -
* * - - - B - - -
L ~ N 7

1<

41

Let's recap

+ + * + + * * * L]
M < N ok k3 k| = | * =% ™
+ + * + + * * * L] *
L - L o -
v’ ' v =
A U z ~ 4
v
* * * * * L
M > N ¥ ¥ ¥ - - L J -~ -~ -~
¥ ¥ * — * ~ L - - £
* ¥ * -~ -~ - - -~
* * * -~ -~ _‘\/‘_/
N — N- - - —— ‘ g T
A o =

Since the yellow part is zero, an exact representation of A is:
A=cuv +ouv, +.+0uUv.
r =min(M,N)

But “for some” k<r, a good approximation is:

T T T

oo O -

Example of rank approximation

000 9 o001 47 20 000 0 100 07
0300 010 03 0100 Jg_Qgég\/g_g
0010 =]000 X0 0 V5|0 0 X| ¥ puemeppp—
4 0 0 0 100 | 00 0 |1 0] [ottt 2
A
0011 4001 10 100 0
[A]* = 8(1)8 xlo30]x[oo1o 0]
100 00Vl 1¥0.2000v0.8

0.981 0.000 0.000 0.000 1.985

«_ 0.000 0.000 3.000 0.000 0.000
A™= 0.000 0.000 0.000 0.000 0.000
0.000 4.000 0.000 0.000 0.000 43

I
>

Approximation error

= How good (bad) is this approximation?

= It's the best possible, measured by the Frobenius
norm of the error:

min [4-X|, =[4-4], =0 =%

X:rank (X)=k

where the ¢, are ordered such that ¢, = o,,4.
= Suggests why Frobenius error drops as k increases.

44

Images gives a better intuition
image = matrix of pixels

The original image is

K=322 (the original image)

We save space!! But this is only
one issue

51

So, finally, back to IR

= Our initial problem was:

= the term-document (MxN) matrix A is highly
sparse (has many zeros)

= However, since groups of terms tend to co-occur
together, can we identify the semantic space of
these clusters of terms, and apply the vector
space model in the semantic space defined by
such clusters?

= \What we learned so far:

= Matrix A can be decomposed and rank k
approximated using SVD

= Does this help solving our initial problems? 2

A IS our term document matrix

s Latent Semantic Indexing via the SVD

A=U2V"
A BN
MxM || MxN Vis NxN

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.
Eigenvalues A, ... A, of AAT are the eigenvalues of ATA.

= If A is a term/document matrix, then AAT and
AT A are the (square) matrixes of term and
document co-occurrences, repectively

Meaning of ATA and AAT

Word j in doc k

Word i in doc k y
L=AA" = L, = A Ay
N . N h e 7N Y g
Lij = E AikAkj = E AikAjk AT A
k=1 k=1

L; depends on the number of documents d, in which wi and wj

co-occurr (non-zero products of the sum)
Similarly, L"; depends on the number of common documents

for two word pairs (or vice-versa if A is a document-term matrix
rather than term-document)

Example

J " B — _— ¥
Example of text data: Titles of Some Technical Memos

cl: Human machine interface for ABC computer applications

c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system

o4 System and human system engineering testing of EPS

cS: Relation of user perceived response time to error measurement
ml: The generation of random, binary, ordered trees

m2: The intersection graph of paths in trees

m3: Graph minors IV: Widths of frees and well-quasi-ordering
m&: Graph minors: A survey

Term-document matrix
- .
A =

2 ¢33 ¢4 ¢5 ml m2 m3 m4d

¢
human | 0 0 | 0 0 0 0 0
interface | 0 | 0 0 (0 0 0 0

computer | I 0 0 0 0 0 0 0
user 0 I 1 0 I 0 0 0 0
system 0 l I 2 0 0 0 0 0
response 0 | 0 0 I 0 0 0 0
time 0 I 0 0 I 0 0 0 0
EPS 0 0 I I 0 0 0 0 0
survey 0 I 0 0 0 0 0 0 I

-~

trees 0 0 0 0 0 I I
raph 0 0 0 () 0 () I

0
I
minors 0 0 0 0 0 1

—
L—
p—
(—
et B et et

Term co-occurrences example

¢l ¢2 ¢3 ¢4 ¢S5 ml m2 m3 md
human I 0 0 1 0 0 0 0 0
interface | 0 | 0 0 0 0 0 (0
computer l I 0 0 0 0 0 0 0
user 0 1 | 0 | 0 0 0 0
system 0 l I 2 0 0 0 0 0
response 0 l 0 0 I 0 0 0 0
time 0 I 0 I (0 0 0 0
EPS 0 0 I I 0 (0 0 (0 0
survey 0 l 0 0 0 0 ' I
trees o 0 0 0 0 | n 0
sraph 0 0 0 0 0 (0 I
minors 0 | | ' ‘ | I

L

trees,graph —

(000001110) +(000000111)™=2

So the matrix L=AAT is the matrix
of term co-occurrences

= Remember: eigenvectors of a matrix define an orthonormal
space

= Remember: bigger eigenvalues define the "main” directions
of this space

= But: Matrixes L and LT are SIMILARITY matrixes
(respectively, of terms and of documents). They define a
SIMILARITY SPACE (the orthonormal space of their
eigenvectors)

= If the matrix elements are word co-occurrences, bigger
eigenvalues are associated to bigger groups of similar
words

= Similarly, bigger eigenvalues of L'=ATA are associated
with bigger groups of similar documents (those in which

co-occur the same terms)

LSI: the intuition

The blue segments give the
intuition of eigenvalues of 4
LT=ATA t1
Bigger eigenvalues are
those for

which the projection of all
vectors on the direction of
correspondent eigenvectors
IS higher

t2

Projecting A in the term
space: green, yellow and
red vectors are documents.
If they form small angles,
they have common words
(remember cosin-sim)

The black vector

are the unary eigenvector
of LT: they represent the
main “directions” of the
document vectors

59

LS| intuition

If we multiply all
document vectors

by LT= ATA, their
“distorsion” is mostly
determined by the
highest eigenvalues

—_—

dj = (djladjzadj)
LT;]- = djl.)tlvl +djz.)L2v2 +a’]3.)L3v3

t2

We now project our document vectors on the reference orthonormal
system represented by the 3 black vectors

LS| intuition

..If we remove the dimension(s)
with lower eigenvalues (i.e. if we
rank-reduce 2) we don’t loose
much information

v

(I

dj= (d},djz-,dj-)
Lng = d]l.itlvl + djz.itzvz

Remember that the two “new” axis represent a combination
of co-occurring words e.g. a latent semantic space

Example

dl1 d2 d3 d4 We project terms

t1 1.000 1.000 0.000 0.000 gnd docs on two
t2 1.000 0.000 0.000 0.000

@ 0.0000.00010001000 d/Mensions, vl and v2
« 0.000 0.000 1.000 1.000 (the principal eigenvectors)

IO.OOO -0.851 P.526 0.000 2.000 0.000 0.000 0.000 -0.707 -0.707
0.000 -0.526 j0.851 0.000 0.000 1.618 -0.851 -0.526 0.000 0.000
-0.707 0.000 |0.000 -0.707 X X 0.526 -0.851 0.000 0.000
-0.707 0.000 J0.000 0.707 0.000 0.000-0.707 0.707

Note that the direction of each eigenvector is determined by
the direction of just two terms: (t1,t2) or (t3,t4) tic

matrix U.000 0.000 T.000 T.000 Touurumnmmates. ST1.(LT,lz) aru
0.000 0.000 1.000 1.000 | g2:(t3,t4)

Even if t2 does not occur in d2, now if we query o
with t2 the system will return also d2!!

Co-occurrence space

= In principle, the space of document or
term co-occurrences is much (much!)
higher than the original space of terms!!

= But with SVD we consider only the most
relevant ones, trough rank reduction

A=UNV'=UZV' =A,

63

Summary so-far

= \We compute the SVD rank-k approximation for
the term-document matrix A

= This approximation is based on considering only

the principal eigenvalues of the term co-
occurrence and document similarity matrixes
(L=AAT and LT=ATA)

= The eigenvectors of the eigenvalues of L=AAT
and L™=ATA represent the main “directions”

identified by term vectors and document vectors,
respectively.

64

LSI: what are the steps

= From term-doc matrix A, compute the
approximation A, with SVD

= Project docs and queries in a space of k<<r
dimensions (the k “survived” eigenvectors)
and compute cos-similarity as usual

= These dimensions are not the original axes
(terms), but those defined by the
orthonormal space of the reduced matrix A,

AZ] = AkZ] = Ulqlle +0,9, V24 O, Vi
Where o,q; (i=1,2..k<<r) are the new coordinates of q in the
orthonormal space of Ak 65

Projecting terms documents and
queries in the LS space

11 4-- T1in

(tﬁf)—>| : . : |: (‘E;Tr)—>| w | ... | I

Tm.1 Tmn

If A=UZVT we also After rank k-

have that: approximation :
V = ATUS- A=Ak=U,x VT
t=t VT d,=d'U.z"
d=d TUs- q. = q'U, 3z,
q=q TUX" sim(q, d) =
sim(q'U, 2,7, o

dTU, s, ")

Consider a term-doc matrix MxN
(M=11, N=3) and a query @

(wh
N
N
(wh
(R

Terms

|

a

arrived
damaged
delivery
fire

gold A
In

of
shipment
silver
truck

q=

= NI O = = OO0 =0 = - %Q_
_— = e w2 OO0 = - é
|

Il
OO0 = = a0 =>0 -

O
0
0
0
O
1
0
O
O
1
1

-0.4201
-0.2935
-0.1206
-0.1576
-0.1206
-0.2626
-0.4201
-0.4201
-0.2626
-0.3151
-0.2935

0.0748

-0.2001

0.2749

-0.3046

0.2749
0.3794
0.0748
0.0748
0.3794

-0.6033
-0.2001

-0.0460
0.4073
-0.4538
-0.2006
-0.4538
0.1547
-0.0460
-0.0460
0.1547
-0.4013
0.4078

-0.4945 0.6492 -0.5780
-0.6458 -0.7194 -0.2556
-0.5817 0.2468 0.7750

vl =

[4.0989
0.0000
0.0000

-0.4345
0.6492
-0.5780

-0.6458
-0.7194
-0.2556

1. Compute SVD: A= UXVT

0.0000 0.0000 |

23616 0.
0.0000 (1.2737

-0.5817
0.2469
0.7750

2. Obtain a low rank approximation
(k=2) A= U V',

“latent” 2-dimensional

DA OrdE term- similarity space

-0.2995 -0.2001
-0.1206 0.2749

-0.1576 -0.3046 40989 0.0000
U - | 01206 0.2743 s — |0oooo 23816
02626 0.3794 ' '

-0.4201 0.0748
-0.4201 0.0748
-0.2626 0.3794
-0.3151 -0.6093
-0.2895 -0.2001 | “latent” document-
similarity space

VvV = | -0.6455 -0.7194 0.6492 -0.7194 02469
-0.5817 0.2469

[.0.4945 0.6492 [0_4945 -0.6458 -0.581?:|
v J—

3a. Compute doc/query similarity

= For N documents, A, has N columns, each
representing the coordinates of a document d.
projected in the k LS| dimensions

= A query is considered like a document, and is
projected in the LSI space

3c. Compute the query vector

q =[00000100011

q = Eo.2140 -D.182I|

2 0 4201
-0.2995
-0.1206
-0.1576
-0.1206
-0.2626
-0.4201
-0.4201
-0.2626
-0.3151
-0.2995

0.0748

-0.2001

0.2749

-0.3046

0.2749
0.3794
0.0748
0.0748
0.3794

-0.6093
-0.2001_

4.0989 0.0000
1
0.0000 2.3616

g is projected in the 2-dimension LS| space!

Documents and queries projected
In the LS| space

0.8 4

dy _ (-0.4945 0.6492)
06 4
4. (05817, 0.2489) 0.4 -
: 0.2 4

LSl Dim 2

a7 086 05 .04 0.3 9
(-0.214, -0.1821)-0.4 -
0.6 4
02 & 7.0.6458, -0.7194) .

LSI Dim 1

g/d similarity

qed
lqlld]
(-0.2140) (-0.4945) + (-0.1821) (0.6492)

sim{q, d) =

sim(q, d1)= = -0.0541
V (021402 + (0.1820)2 / (0.4945) %+ (06492)2
(-0.2140) (-0.6458) + (-0.1821) (-0.7194)
sim{q, d,) = = 0.9910
\/ (-0.2140)2+ (-0.182”2 \/ (-0.6458)2+ (0.7194)°
-0.2140) (-0.5817) + {-0.1821) { D.2469
sim{q, d3) = (A) + & it) = 0.4478

J (0.2140)2 + (0.1821)° V(05817124 (0.2469)2

Ranking documents in descending order

(I2 > <I3 > d1

An overview of a semantic network of terms
based on the top 100 most significant latent

semantic dimensions (Zhu&Chen)
- —

Semantic Netwrork View of Themes in Latent Concept Dimensions

L) s TR '3 -

.,,Mn. e g B i e
)
= >

’“Aﬂnuvw ®, 8,0 en * I S

e e 1 IS g e g o

;-‘" v W re AN g v gl e i
et ’
-
.

g, o 0 S,

S s Ll S

o,
ey Poe R) n
§ TR0 wh. 9. el
o‘g:,.: ...

.M"H. rd .,';.

..._ ‘;(::‘ '’"‘"

L R "".‘\‘D:‘“.M mmy =
® .;‘ul.‘h.&‘w""’ﬂ‘m—a
e, ’g cyl;n r“"”';'r::'- Ly P
:'.8% .y"‘“:'“ win o

'w vz“" “ ® o [PR

v 'M',“".lu.. t%’m:f'. el vwerd

L ’“:“ v f
-t T By srmqapayet casca
fRATOL .. wﬁ"“ » e W
" L

74

Conclusion
- .

s LS| performs a low-rank approximation of
document-term matrix (typical rank 100-300)

s General idea

= Map documents (and terms) to a low-
dimensional representation.

= Design a mapping such that the low-dimensional
space reflects semantic associations between
words (latent semantic space).

s Compute document similarity based on the cos-
sim in this latent semantic space

Another LS| Example

Input matrix A:

d1 d2 d3
t1 1.000 1.000 0.000
1.000 1.000 0.000
_t2| 0.000 1.000 0.000 [TR
t3 0.000 0.000 1.000
t4

Input matrix B:

1.000 1.000 0.000 0.000
AT 1.000 1.000 1.000 0.000
0.000 0.000 0.000 1.000

AAT Matrix product A*B
Term co-occurrences

Il 2.000 2.000 1.000 0.000
{9 2-000 2.000 1.000 0.000

1.000 1.000 1.000 0.000
83 0.000 0.000 0.000 1.000

L A

Input matrix:

1.000 1.000 O
1.000 1.000 O
0.000 1.000 O
0.000 0.000 1

.000
.000
.000
.000

AUZV =~A
K —

B (5631 _36 0. :m
0.863 1.106 0.000
CT.7850.621 0.000

Singular Value Decomposition:

uU:

-0.657 0.000
-0.657 0.000

-0.369 0.000 ¢

0.000 -1.000

oo N

-0.615 -0.788
0.000 0.000
0.788 -0.8615

.136 0.000| 0.
L000 1.000]0,
.000 0.000] 0.

oo o o

000
000
662

0.

0.

.261
.261
.929
.000

000

.000

000

0.000 0.000 1.000

Now it is like if t3 belongs to d1!

Problems with SVD

= Computational cost scales quadratically for
n x m matrix: O(mn?) flops (when n<m)

= Hard to incorporate new words or documents

= Does not consider order of words

= Anything better?

79

Is there anything more advanced than co-

occurrences to learn correlations?
- .

s the most populous city in the US. state of
). The high-altitude city serves as the county seat

= Traditional IR uses Term e L e b S :

part of

matChlng, — # Of t|mes the dOC the state, straddling the |) ie. The 1 (s

« ” 557,169 as of the July 1, 2014, populat estimate from the

SayS Albuquerque _ nOt fU”y United States Census Bureau, and ranks as the 32nd-largest
o ty in the US. The Metropolitan Statistical Area (or MSA) has
approprlate a |] of 902,797 according to the United States

= \We can use a different ;{;f}’-‘;zls Bureau's most recently available estimate for July 1
approach: compare all-pairs of
query-document terms, — # of
terms in the doc that relate to Allen suggested that they could program a BASIC interpreter

E for the device after a call from Gates claiming to have ¢
Ibuquerque working interpreter, MITS requested a demonstration, Since

they didn't actually have one. Allen worked on g simulator

= To detect these similarities (Next 1, e Ao white Gates developed the interpreter Althouah
Iessons)- they devel)]H'u‘ the interpreter on a simulator and not the

actual device, the interpreter worked flawlessly when they

= Latent Semantic Indexing demonstrated the interpreter to MITS in

in March 1975, MITS oagreed to distribute it
= Word embeddings (a.k.o. marketing it as Altair BASK
deep method)

Passage about Albuguerque

Passage not about Albuquerque

IR with word embeddings

81

Word Embedding approach: main
ideas

= Represent each word with a low-dimensional vector (like
for LSI)

= Word similarity = vector similarity

= Key idea: learn to predict surrounding words in the
context of every word, or, learn to predict a word from its
surrounding context

= Faster and can easily incorporate a new sentence/
document or add a new word to the vocabulary

a I

0.286
0.792
-0.177
-0.107
0.109
-0.542
0.349

- /

linguistics =

Example

P(Nt"'lwf') @ f.n‘wt)

‘h‘rmuj ah'“ ban WIJ crisSes 4s ...

cen'}c\f
wWovrd

mw d .."n‘ou fosal.ﬂh * M uon& Wl.ﬂaovv

Co-occurrences are considered in a left-right context,
Word ordering DOES matter

83

Let’s consider the following
example...

= We have four (tiny) documents:

Document 1 : “seattle seahawks jerseys”
Document 2 : “seattle seahawks highlights”
Document 3 : “denver broncos jerseys”
Document 4 : “denver broncos highlights”

84

Basic difference with previous
methods (e.g. LS| with SVD)

\ Documen t2 \ Documen t4
seattle 1 1 0 0
seahawks 1 1 0 0

e [0 0 @ @
similar
broncos 0 0 ‘ ‘

85

If we use context vectors:

(seattle, -1) (denver, -1) (jerseys, + 1) (highlights, +1)
\ (seahawks, +1) (broncos, +1) (Jerseys, + 2) (highlights, +2)
| | l |
seattle 0 2 0 0 0 1 0 1
seahawks ‘ 0 0 0 ‘ 0 ‘ 0
denver 0 0 0 2 0 1 0 1 similar

oncos [0 0 @ 0 @ 0 @ o

Every position in the vector is a tuple <word, distance from “center”
word> an tells us how many times we see that word precisely

in that position w.r.t. center word (e.g. seahawks is found 2 times
in position +1 to the right of seattle) = p(w,,/w;)

Embeddings

|
= These “context vectors” are very high dimensional

(thousands, or even millions) and sparse.

= But there are technigues to learn lower-dimensional
dense vectors for words using the same intuitions.

= [hese dense vectors are called embeddings.

= Rather than using matrix factorization techniques
(such as SVD) we use deep neural methods.

= [he objective is to represent each word with a dense
vector, such that similar words have similar
vectors

= We can, as for LSI, consider the dimensions of
this dense space as “concepts” or “semantic

domains” 57

Word Embeddings — Skip Grams
Model

= Objective: Given a specific word in
the middle of a sentence (the input
word w;), look at the words

nearby and pick one at random. Loyor i
The neural network should tell us L)utee=,
the probability for every word in yau
our vocabulary of being the s

“nearby word” that we chose.
= "nearby” means that there is a

wt)=:] () »

"window size" parameter to the \ 0=l
algorithm. A typical window size \

might be 5, meaning 5 words L)vt-2=[.
behind and 5 words ahead (10 in

total).

s Our examples hereafter will be

with smaller m (1 or 2) 88

The neural embedding model

One-hot vector for . Outputiayes
. oftmax Classifier
an In pUt WO rd (e) g ") Hldden Layer /-__\ Probability that the word at a
“ants”) input Vector near eurons \ &) 7
0 —
o) N\
0 { Z : - “ability”
0 N
0 —
0 Z 4 .
A ‘1" in the posit '0' l:. Z : - “able”
e N
wer - B
0
o]
10000 4 "\
position 300 neurons :: E :| ... "zone"
There is no activation function on the hidden \;;;—/
layer neurons (only sum), but the output 89

neurons use softmax, to output probabilities.

Very same model in terms of
matrixes (=the neural weights)

|V| is the vocabulary size, d is the
dimension of the dense encoding, Output layer

| | i o
and we must learn matrixes W and W e’

context words

. 4 @ Y
Input layer Projection layer / oy
i ¢ _ _ ol %
1-hot input vector v, =Wx, = w, ' '
X, ;\-\t . ?yk -1
X, |0 - Waxv, [} .
- b ® : :
: oy,
Wi x \"\ @Yy
t X o
18 VIxd : oY,
o : ®y,
o = ’ o :
e _——— Wi ,
® Yi “t+l
1X|V| Ixd =
®
o
@y

Note we use a contextof only £1 here

for simplicity. Commonly it is £2

Training examples (e.g., fora +-2
window around center)

= The network is trained by feeding it word pairs
found in all training documents.

Training
Samples

Source Text

Phe | quick|brown [fox jumps over the lazy dog. = (the, quick)
(the, brown)

The |guiek| brown |fox |jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The| quick|[BEOwWnY fox [jumps|over the lazy dog. == (brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

The| quick|brown [[f0X] jumps| over |the lazy dog. = (fox, quick)
(fox, brown)
1 . . . (fox, jumps)
The network is going to learn the statistics (fox, over)

from the number of times each “pairing”
sShows up p(Wi.i/W;).

91

Training steps (1)

= Consider the simple sentence "The cat over the puddle”.
Suppose “over’ is the current center.

= For this example, the input word w, to the learner is over, and
the 4 “ground truth” output are “the,,” cat,_," “the,,,” “puddle,,,”,
if the window size is m= %2

= We start by generating a “one-hot” vector x, for the input, that is,
a boolean |V|-dimensional vector with all zeros and a 1 in
position t, corresponding to the word “over” in the vocabulary V.

= \We obtain the embedded vector by multiplication: v=Wxx,

= If mis the window size, we generate 2m output vectors using
W': Ve Yets Yest--Yiem Such that y=W’xv,

= These vectors are turned into probability vectors o; using
softmax (Z, (0/)=1)

92

Training step (2)
- —
= Each argument k of any of the 2m softmax output vectors o
(1x|V|) represents the probability that the context word at
distance ttj from our center word w; is w;

= We now generate the 2m one-hot vectors x; corresponding to
the current example: for example, in the sentence "The cat
over the puddle” , the one-hot vector x,, representing the
“ground truth” has all zeros and a 1 in the position
corresponding to the word “paddle”

= The one-hot vectors are compared with the generated 2m
output vectors o;, and a loss (error) function is used to update
the weights of all matrixes W and W’ (with back-propagation)

= The process is repeated for all sentences and center words
until convergence — matrix W and the 2m matrixes W’ no

longer change.
93

Additional detalls

= Suggested reading for embedding algorithms (Skip-grams and
CBOW): https://cs224d.stanford.edu/lecture _notes/notes1.pdf

= As is, summations and weight updating over |V| dimensional
matrixes is very time-consuming (the vocabulary is huge, order
of millions!)

= Negative sampling is commonly used: For every training step,
instead of looping over the entire vocabulary, we can just
sample several negative examples (random word sequences).
We "sample" (2m+1) word sequences from a noisy distribution
(P,(w)) whose word prior probabilities match the ordering of the
frequency of the vocabulary in the corpus.

= Details on https://arxiv.org/pdf/1310.4546.pdf

94

Negative sampling (more on)

= [raining a neural network means taking a training example and
adjusting all of the neuron weights slightly so that it predicts that
training sample more accurately. In other words, each training
sample will adjust all of the weights in the neural network.

= Negative sampling addresses this by having each training
sample only modify a small percentage of the weights, rather
than all of them.

= With negative sampling, we are instead going to randomly select
just a small number of “negative” words (let’s say 5) to update
the weights for. (here, a “negative” word w,, is one for which we
want the network to output a O in the correspondent n-th position
of output context vectors oj). We will also still update the

weights for our “positive” words (e.g., “cat” “puddle” in previous

example).

= Negative words are randomly selected »

Word embedding matrix W and
word context matrixes W’

= First, the multiplication of the binary vector x, and the
word embedding matrix W of size |V|xd gives the
embedding vector v, of the input word w;: this is
equal to the t-th row of the matrix W, w;,.

= The multiplication of the hidden layer v, and the 2m
word context matrixes W/’ of size dx|V| produce the
output vectors o; (j=-m..,-1,+1..+m)

= The output context matrixes W' encode the meanings
of words as context, different from the embedding
matrix W.

= V, d and the window size m are model parameters

96

Matrixes W and W’

s Several implementations:
word2vect and Glove
among the most well

300 neurons 300 features known

= Google word2vect original
paper has d=300 and |V|
=10,000

= The matrix W is what we are

really interested in: the
embedding matrix.

= It has the property that words
with similar embedding
vectors are similar. 97

Hidden Layer Word Vector

Weight Matrix = Lookup Table!

10,000 words
10,000 words

GloVe Visualizations

T T T I I |
0.5 1 heiress 7
I
0.4 ,’ -
; niece / * countess
0.3 *aunt | ! ;duchess-
T%ister’l | /
02 I | l, I empress
[/
l | /
01k I | " rmadam . -
. Iy | / E
[heir 7
! nepHew
0Or I P | / / f -
! | / / A
| | /. woman / J I//
-0.1+ ear -~
0.1 | uncle p / rqueer /
/1
Lbrother I d : duke
-0.2 / / I -
/ / | /
i / | Yemperor
-0.3F / 1
[I
/ / [
-04r / / | .
I ! sir [
05+~ {man Tking -
| 1 | | | | | | | | |

-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5

Glove Visualizations: Company - CEO

0.8 T | T T T T T
0.6 1
l Caterpillar.— _
0.4 Chrysler.. _ B e |
United— — _ Tt~ - S
, i T~ — —+ Oberhelman
s ~ ~Marchionne
’ 0.2 Exxon— — — _ _ _ e S i . |
T e TR =~ _—__Smisek
| Tillerson
Wal-Mart — — predeiwialaia st McMillon
1= itigroup,_ .
| BM~- - - - - _ - z-==-_ _
— = =Z=== =, __ Corbat
Rometty
-0.2F 1
- B e i et et S e e e e .Dauman
) Viacom _McAdam
_ _ — — = ~Colao
’ 0.4t T i
Verizon.— - = - -~
) Vodafone
| -0.6 T
_0 8 | | | | | | |

~0.8 -06 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Glove Visualizations: Company - CEO

0.8 T | T T T T T
0.6 .
Caterpillar.— _
0.4 Chrysler.. _ B Sea . |
United— — _ Tt~ - S
i T~ — =+ Oberhelman

s ~ ~Marchionne

0.25 Exxon— — — — _ _ T T _ i
T e - . =~ _—__Smisek
Tillerson

Wal-mMart- - - - - - - - —— - —— —— — — — —* McMillon
oF Citigroup,_ .

BM e = - - — - - - S ZZz===o_ . _ _ Comat

Rometty
-0.2F 1
- B e i et et S e e e e .Dauman
Viacom _McAdam
s T —Colao
~0.4f e e S 1
Verizon. — = - - —
Vodafone
-0.6 7]
_0 8 | | | | | | |

~0.8 -06 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Applications of Word Embeddings
to IR

= Word embeddings are the “hot new” technology
for document ranking

= Lots of applications wherever knowing word
contexts or similarity helps predicting users’
Interests:

= Synonym handling in search
= Query expansion

= Document “aboutness”

= Machine translation

» Sentiment analysis

m 101

Applications of Word Embeddings
to IR: Google RankBrain

= Google’s RankBrain — almost nothing is publicly
Known
» Bloomberg article by Jack Clark (Oct 26, 2015):

= http://www.bloomberg.com/news/articles/
2015-10-26/google-turning-itslucrative-web-
search-over-to-ai-machines

= A result reranking system

102

Weakness of Word Embedding

= Very vulnerable, and not a robust concept

= Can take a long time to train (despite
negative sampling and other “tricks”)

= Non-uniform results
s Hard to understand and visualize

= Emerging technique, yet not sufficiently
robust and well understood

= Yet very cool (Google uses it — with other
methods)

