
Algebraic models to improve 
ranking and query expansion 

Latent Semantic Indexing, Word 
Embeddings 
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Is there anything more advanced than co-
occurrences to learn word correlations? 

n  Traditional IR uses Term 
matching, → # of times the doc 
says “Albuquerque” – not fully 
appropriate 

n  We can use a different 
approach: compare all-pairs of 
query-document terms, → # of 
terms in the doc that relate to 
Albuquerque 

n  To detect these similarities: 
n  Latent Semantic Indexing 
n  Word embeddings (a.k.o. 

deep method – emerging 
technology) 



The problem 

n  With the standard term-document matrix 
encoding, each term is a vector and dimensions 
are documents 

n  Different terms have no inherent similarity 
search [0 2 0 0 0 0 0 0 0 0 1 0 0 0 0] 
Information retrieval[0 0 0 0 0 0 0 3 0 0 0 0 1 0 0]  

n  If query on search and document has information 
retrieval , then our query and document vectors 
are orthogonal. Dot product is zero. 
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Can we directly learn term 
relations? 

n  Basic IR is scoring on qT.d/K  (dot  product of query 
and document vectors) 

n  No treatment of synonyms; no machine learning 
n  Can we learn a matrix W to rank via qTWd, rather than  

qT.d? 

 
n  Where W is a matrix that captures similarity between 

words (e.g., “search” and “information retrieval”)? 4 
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Latent Semantic Indexing 
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Latent Semantic Indexing 

n  Term-document matrices are very large, 
though most cells are “zeros” 

n  But the number of topics that people talk 
about is small (in some sense) 
n  Clothes, movies, politics, … 
n  Each topic can be represented as a 

cluster of (semantically) related terms, 
e.g.:  clothes=golf, jacket, shoe.. 

n  Can we represent the term-document 
space by a lower dimensional “latent” 
space  (latent space=set of topics)? 
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Searching with latent topics 
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n  Given a collection of documents, LSI learns clusters 
of frequently co-occurring terms (ex: information 
retrieval, ranking and web)!

n  If you query with ranking, information 
retrieval LSI  “automatically”  extends the search 
to documents including also (and even ONLY) web  
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The most relevant words 
associated with golf in these 

docs are: 
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If we consider the co-occurring terms  
with higher tf*idf, 

car e topgear turn out to  
be related to Golf 
more than petrol 
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We now search with all 
the words in the “semantic domain” of Golf . 

The list of retrieved docs now 
is based on  Golf and the other  

related words 
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The co-occurrence based 
ranking improves the performance. 

Note that one of the most relevant doc does  
NOT include the word Golf, and  

a doc with a “spurious” 
sense disappears 



Ranking with  latent Semantic 
Indexing  

n  Previous example just gives the intuition 
n  Latent Semantic Indexing is an algebraic method to 

identify clusters of co-occurring terms, called “latent 
topics”, and to compute query-doc similarity in a 
latent space, in which every coordinate is a latent 
topic. 

n  A “latent” quantity is one which cannot directly 
observed, what is observed is a measurement which 
may include some amount of random errors (topics 
are “latent” in this sense: we observe them, but they 
are an approximation of “true” semantic topics) 

n  Since it is an algebraic method, needs some linear 
algebra background 
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Linear Algebra 
Background 

14 

The LSI method: how to detect “topics” 



Eigenvalues & Eigenvectors 

n  Eigenvectors (for a square m×m matrix S) 

n  Def: A vector v ∈ Rn, v ≠ 0, is an eigenvector of a 
matrix mxm A with corresponding eigenvalue λ, if: 
Av = λv 

eigenvalue (right) eigenvector 

Example 

15 

Av = λv 

Av = λv 



Algebraic method 

n  How many eigenvalues are there at most? 
   Av = λv   

16 

equation has a non-zero solution if  

Where I is the identity matrix  
this is a m-th order equation in λ which can have at 
most m distinct solutions (roots of the characteristic 
polynomial) – can be complex even though A is real. 

A

A A



Example of eigenvector/eigenvalues 
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Example of computation 
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v

Characteristic 
polynomial 

 

Note that we compute only the DIRECTION of eigenvectors  



Geometric interpretation 
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A matrix-vector multiplication Ax 
is a linear transformation over 
the vector 



Matrix vector multiplication 

20 

Matrix multiplication by a vector = a linear transformation of  
the initial vector, that implies rotation and translation 
 



Geometric interpretation 
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Geometric  interpretation 
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Ax=1.34x=λx 

An eigenvector is a special 
vector that is transformed  
into its scalar multiple under  
a given matrix (no rotation!) 



Geometric interpretation 
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Here we found another 
eigenvector for the matrix A 

Note that for any single eigenvalue 
you have infinite eigenvectors, 
but they have the same direction 



Matrix-vector multiplication 

n  Eigenvectors of different eigenvalues are linearly 
independent (i.e. ∀α1.. α n è  α1v1+.. αnvn≠0) 

n  For square normal matrixes eigenvectors of 
different eigenvalues define an orthonormal 
space and they are othogonal. 

n  A square matrix is NORMAL iff it commutes with 
its transpose, i.e. AAT=ATA 

n  Example:  

n                            èAAT=                       =ATA 
24 



Difference between orthonormal 
and orthogonal? 

n  Orthogonal mean that the dot product is null (the 
cosin of the angle is zero).  
Orthonormal mean that the dot product is null 
and the norm of the vectors is equal to 1. 
 What we are actually saying is that eigenvectors 
define a set of DIRECTIONS wich are 
orthogonal.   

n  If two or more vectors are orthonormal they are 
also orthogonal but the inverse is not true. 

25 



Why eigenvectors are orthonormal 
(if A is symmetric square matrix) 

26 



Example: projecting a vector on 2 
orthonormal spaces (or “bases”) 

27 e1,e’1, e2,e’2 are unary vectors and v1,v’1, v2,v’2 are the  
coordinates of v along the directions of e1,e’1, e2,e’2  



The effect of a matrix-vector multiplication is 
governed by eigenvectors and eigenvalues 

n  A matrix-vector multiplication such as Ax  (A normal matrix, x a 
generic vector as in the previous slide) can be rewritten in 
terms of the eigenvalues/vectors of A. Example: 

 
n  Where v1,v2 v3 are the (orthogonal) eigenvectors of A 
n  Note that:  

n  Even though x is an arbitrary vector, the action of A on x 
(transformation) is determined by the eigenvalues/vectors. 

n  Why? 

Ax = A(2v1 + 4v2 +6v 3)
Ax = 2Av1 + 4Av2 +6Av 3= 2λ1v1 + 4λ2v2 +6λ 3v 3
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Geometric explanation 

Multiplying a matrix and a vector has two effects over the 
vector: rotation (the coordinates of the vector change) and 
scaling (the length changes). The max compression and 
rotation  depends on the matrix’s eigenvalues λi 

Ax = x1λ1v1 + x2λ2v2 + x3λ3v 3

x is a generic vector with coordinates xi; λi,vi are the eigenvalues 
and eigenvectors of A 

λ 1>λ2   

λ2  

λ1  



Geometric explanation 

In the distorsion, the max effect is played by the 
biggest eigenvalues  (s1 and s2 in the picture ) 

The eigenvalues describe the distorsion operated by the 
matrix on the original vector 



Summary  so far 
n  A matrix A has eigenvectors v and eigenvalues λ, defined by 

Av=λv 
n  Eigenvalues can be computed as:  

n  We can compute only the the direction of eigenvectors, since 
for any eigenvalue there are infinite eigenvectors lying on the 
same direction 

n  If A is normal (i.e. if AAT=ATA) then the eigenvector form an 
othonormal basis  

n  The product of A by ANY vector x is a linear transformation of x 
where the rotation is determined by eigenvectors and the 
translation is determined by the eigenvalues. The biggest role 
in this transformation is played by the biggest (principal) 
eigenvalues. 
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n  Let  A  be a square matrix with m orthogonal 
eigenvectors  (hence, A is normal) 

n  Theorem: Exists an eigen decomposition                       
n  A=UΛU-1 

n  Λ  is a diagonal matrix (all zero except the diagonal 
cells) 

n  Columns of U are eigenvectors of A 

n  Diagonal elements of  Λ   are eigenvalues of A 

 

Eigen/diagonal Decomposition 
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Diagonal decomposition: why/how 
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Then, AU can be written 

And A=UΛU–1. 

Thus AU=UΛ, or U–1AU=Λ 
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Example 
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From which we get v21=0 and v22 any real  

from which we get v11=−2v12 

AU=UΛ 

From this we compute λ1=1, λ2=3  



Diagonal decomposition – 
example 2 
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1 2
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So what? 

n  What do these matrices have to do with 
Information Retrieval and document ranking? 

n  Recall M × N term-document matrices …  
n  But everything so far needs square normal 

matrices – so you need to be patient and learn 
one last notion 
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Singular Value Decomposition for 
non-square matrixes 

TVUA Σ=

M×M M×N V is N×N 

For a non-square M × N matrix A of rank r there exists a  
factorization (Singular Value Decomposition = SVD) as follows: 

The columns of U are orthogonal eigenvectors of AAT   

(left singular vectors).   
The columns of V are orthogonal eigenvectors of ATA (right  
singular eigenvector). NOTE THAT AAT and ATA are square symmetric  
(and hence NORMAL) 

ii λσ =

( )rdiag σσ ...1=Σ Singular values of A 

Eigenvalues λ1 … λr of AAT = eigenvalues of ATA  and: 
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An example 
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Singular Value Decomposition 

n  Illustration of SVD dimensions and sparseness 

M 

N 
MxM NxN MxN 

All zeros! 

So these 
become  
zeros, too 

So these 
become  
zeros, too 



Back to matrix-vector multiplication 

n  Remember what we said? In a matrix vector 
multiplication the biggest role is played by the 
biggest eigenvalues 

n  The diagonal matrix Σ has the eigenvalues of 
ATA (called the singular values of A) in 
decreasing order along the diagonal 

n  We can therefore apply an approximation by 
setting σi=0  if σi≤θ  and only consider the first k 
singular values 

40 



n  If we retain only k highest singular values, and set the 
rest to 0, then we don’t need the matrix parts in red 

n  Then Σ is k×k, U is M×k, VT is k×N, and Ak is M×N  
n  This is referred to as the reduced SVD, or rank k 

approximation 

Reduced SVD 

k 

41 

Now all the red and yellow parts are zeros!! 



Let’s recap 
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Since the yellow part is zero, an exact representation of A is: 

€ 

A =σ1u1v1
T +σ2u2v2

T + ...+σrurvr
T

r =min(M,N)
But “for some” k<r, a good approximation is: 

Ak =σ1u1v1
T +σ 2u2v2

T +...+σ kukvk
T

M<N 

M>N 



Example of rank approximation 
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Approximation error 

n  How good (bad) is this approximation? 
n  It’s the best possible, measured by the Frobenius 

norm of the error: 

where the σi are ordered such that σi ≥ σi+1. 
n  Suggests why Frobenius error drops as k increases. 

1
)(:

min +
=

=−=− kFkF
kXrankX

AAXA σ
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ii λσ =



Images gives a better intuition 
(image = matrix of pixels) 
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K=10 

46 



K=20 
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K=30 

48 



K=100 
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K=322 (the original image) 
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We save space!! But this is only 
one issue 

51 



So, finally, back to IR 

n  Our initial problem was:  
n  the term-document (MxN) matrix A is highly 

sparse (has many zeros) 
n  However, since groups of terms tend to co-occur 

together, can we identify the semantic space of 
these clusters of terms, and apply the vector 
space model in the semantic space defined by 
such clusters?  

n  What we learned so far: 
n  Matrix A can be decomposed and rank k 

approximated using SVD 
n  Does this help solving our initial problems?   52 



A is our term document matrix 

n  Latent Semantic Indexing via the SVD 

n  If A is a term/document matrix, then AAT and 
AT A are the (square) matrixes of term and 
document co-occurrences, repectively 
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Meaning of ATA and AAT 

L = A AT    =   

€ 

Lij   = Aik ATkj

€ 

AT

€ 

ALij = AikA
T
kj

k=1

N
∑ = AikAjk

k=1

N
∑

Lij depends on the number of documents dk in which wi and wj  
co-occurr (non-zero products of the sum) 
Similarly, LT

ij
 depends on the number of common documents  

for two word pairs (or vice-versa if A is a document-term matrix  
rather than term-document) 

Word i in doc k Word j in doc k 



Example 



Term-document matrix 
A 



Term co-occurrences example 

L trees,graph = (000001110) •(000000111)T=2 



So the matrix L=AAT is the matrix 
of term co-occurrences 

n  Remember: eigenvectors of a matrix define an orthonormal 
space 

n  Remember: bigger eigenvalues define the “main” directions 
of this space 

n  But: Matrixes L and LT are SIMILARITY matrixes 
(respectively, of terms and of documents). They define a 
SIMILARITY SPACE (the orthonormal space of their 
eigenvectors) 

n  If the matrix elements are word co-occurrences, bigger 
eigenvalues are associated to bigger groups of similar 
words  

n  Similarly, bigger eigenvalues of LT=ATA are associated 
with bigger groups of similar documents (those in which 
co-occur the same terms) 



LSI: the intuition 
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t1 

t3 t2 

Projecting A in the term 
space: green, yellow and 
red vectors are documents. 
If they form small angles, 
they have common words 
(remember cosin-sim) 
The black vector 
are the unary eigenvector 
of LT: they represent the  
main “directions” of the 
document vectors 

The blue segments give the 
intuition of eigenvalues of 
LT=ATA 
Bigger eigenvalues are 
those for 
which the projection of all 
vectors on the direction of 
correspondent eigenvectors 
is higher 



LSI intuition 
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t1 

t3 t2 
We now project our document vectors on the reference orthonormal 
system represented  by the 3 black vectors 

If we multiply all 
document vectors 
by LT= ATA, their 
“distorsion” is mostly 
determined by the 
highest eigenvalues 

d
!"
j = (d j

1,d j
2 ,d j

3)

LT d
!"
j = d j

1λ1v1 + d j
2λ2v2 + d j

3λ 3v 3



LSI intuition 
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..If we remove the dimension(s) 
with lower eigenvalues (i.e. if we  
rank-reduce Σ) we don’t loose 
much information 

Remember that the two “new” axis represent a combination  
of co-occurring words e.g. a latent semantic space 

d
!"
j = (d j

1,d j
2 ,d j

3)

LT d
!"
j ≅ d j

1λ1v1 + d j
2λ2v2



Example 
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1.000 1.000 0.000 0.000 
1.000 0.000 0.000 0.000 
0.000 0.000 1.000 1.000 
0.000 0.000 1.000 1.000 

t1 
t2 
t3 
t4 

d1    d2   d3    d4 

0.000 -0.851 -0.526  0.000 
 0.000 -0.526  0.851  0.000 
-0.707  0.000  0.000 -0.707 
-0.707  0.000  0.000  0.707 

2.000 0.000 0.000 0.000 
0.000 1.618 0.000 0.000 
0.000 0.000 0.618 0.000 
0.000 0.000 0.000 0.000 

0.000  0.000 -0.707 -0.707 
-0.851 -0.526  0.000  0.000 
 0.526 -0.851  0.000  0.000 
 0.000  0.000 -0.707  0.707 

x x 

1.172 0.724 0.000 0.000 
0.724 0.448 0.000 0.000 
0.000 0.000 1.000 1.000 
0.000 0.000 1.000 1.000 

We project terms 
and docs on two  
dimensions, v1 and v2 
(the principal eigenvectors)  

We have two latent semantic 
coordinates: s1:(t1,t2) and 
s2:(t3,t4) 

Approximated 
new term-doc 
matrix 

Even if t2 does not occur in d2, now if we query 
with t2 the system will return also d2!! 

Note that the direction of each eigenvector is determined by 
the direction of just two terms: (t1,t2) or (t3,t4) 



Co-occurrence space 

n  In principle, the space of document or 
term co-occurrences is much (much!) 
higher than the original space of terms!! 

n  But with SVD we consider only the most 
relevant ones, trough rank reduction 
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A =U VT ≅Uk∑ ΣkVk
T = Ak



Summary so-far 

n  We compute the SVD rank-k approximation for 
the term-document matrix A 

n  This approximation  is based on considering only 
the principal eigenvalues of the term co-
occurrence and document similarity matrixes 
(L=AAT and LT=ATA) 

n  The eigenvectors of the eigenvalues of L=AAT 
and LT=ATA represent the main “directions” 
identified by term vectors and document vectors, 
respectively.  
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LSI: what are the steps 

n  From term-doc matrix A, compute the 
approximation Ak. with SVD 

n  Project  docs and queries in a space of k<<r 
dimensions (the k “survived” eigenvectors) 
and compute cos-similarity as usual 
n  These dimensions are not the original axes 

(terms), but those defined by the 
orthonormal space of the reduced matrix Ak  
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Aq
!
≅ Ak q
!
=σ1q1v

!
1 +σ 2q2v

!
2 + ...σ kqk v

!
k

Where σiqi (i=1,2..k<<r) are the new coordinates of q in the  
orthonormal space of Ak  



Projecting terms documents and 
queries in the LS space 
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A 

If A=UΣVT we also 
have that: 

V = ATUΣ-1 

t = t’TΣVT 

d = d’TUΣ-1 
q = q’TUΣ-1 

 
 
 
 
 

After rank k-
approximation : 

A≅Ak=UkΣkVk
T 

dk ≅ dTUkΣk
-1 

qk ≅ qTUkΣk
-1 

sim(q, d) = 
sim(qTUkΣk

-1, 
dTUkΣk

-1) 
 



Consider a term-doc matrix MxN 
(M=11, N=3) and a query q 

query 

A 



1. Compute SVD:  A= UΣVT 



2. Obtain a low rank approximation 
(k=2) Ak= UkΣkVT

k 

“latent” 2-dimensional 
term- similarity space  

“latent” document- 
similarity space  



3a. Compute doc/query similarity 

n  For N documents, Ak has N columns, each 
representing the coordinates of a document di 
projected in the k LSI dimensions  

n  A query is considered like a document, and is 
projected in the LSI space 



3c. Compute the query vector 

qk = qTUkΣk
-1 

 

q is projected in the 2-dimension LSI space! 



Documents and queries projected 
in the LSI space 



q/d similarity 



 An overview of a semantic network of terms 
based on the top 100 most significant latent 
semantic dimensions  (Zhu&Chen) 
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Conclusion 

n  LSI performs a low-rank approximation of 
document-term matrix (typical rank 100–300) 

n  General idea 
n  Map documents (and terms) to a low-

dimensional representation. 
n  Design a mapping such that the low-dimensional 

space reflects semantic associations between 
words (latent semantic space). 

n  Compute document similarity based on the cos-
sim in this latent semantic space 



Another LSI Example 



t1 
t2 
t3 
t4 

d1           d2         d3 

AT 

t1 
t2 
t3 
t4 

Term co-occurrences AAT 



Ak=UkΣkVk
T≈A 

Now it is like if t3 belongs to d1! 



Problems with SVD 

n  Computational cost scales quadratically for 
    n x m matrix: O(mn2) flops (when n<m) 
n  Hard to incorporate new words or documents 
n  Does not consider order of words 
n  Anything better? 
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Is there anything more advanced than co-
occurrences to learn correlations? 

n  Traditional IR uses Term 
matching, → # of times the doc 
says “Albuquerque” – not fully 
appropriate 

n  We can use a different 
approach: compare all-pairs of 
query-document terms, → # of 
terms in the doc that relate to 
Albuquerque 

n  To detect these similarities (next 
lessons): 
n  Latent Semantic Indexing 
n  Word embeddings (a.k.o. 

deep method) 



IR with word embeddings 
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Word Embedding approach: main 
ideas 

n  Represent each word with a low-dimensional vector (like 
for LSI) 

n  Word similarity = vector similarity 
n  Key idea: learn to predict surrounding words in the 

context of every word, or,  learn to predict a word from its 
surrounding context 

n  Faster and can easily incorporate a new sentence/
document or add a new word to the vocabulary 
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Example 

83 
Co-occurrences are considered in a left-right context, 
Word ordering DOES matter 



Let’s consider the following 
example… 

n  We have four (tiny) documents: 
 
Document 1 : “seattle seahawks jerseys” 
Document 2 : “seattle seahawks highlights” 
Document 3 : “denver broncos jerseys” 
Document 4 : “denver broncos highlights” 
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Basic difference with previous 
methods  (e.g. LSI with SVD) 
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If we use context vectors: 

86 

Every position in the vector is a tuple <word, distance from “center” 
 word> an tells us how many times we see that word precisely 
in that position w.r.t. center word (e.g. seahawks is found 2 times  
in position +1 to the right of seattle) è p(wt±i/wt) 



Embeddings 
n  These “context  vectors” are very high dimensional 

(thousands, or even millions) and sparse. 
n  But there are techniques to learn lower-dimensional 

dense vectors for words using the same intuitions. 
n  These dense vectors are called embeddings. 
n  Rather than using matrix factorization techniques 

(such as SVD) we use deep neural methods.  
n  The objective is to represent each word with a dense 

vector, such that similar words have similar 
vectors 

n  We can, as for LSI, consider the dimensions of 
this dense space as “concepts” or “semantic 
domains” 
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Word Embeddings – Skip Grams 
Model  
n  Objective: Given a specific word in 

the middle of a sentence (the input 
word  wt), look at the words 
nearby and pick one at random. 
The neural network should tell us 
the probability for every word in 
our vocabulary of being the 
“nearby word” that we chose. 

n  "nearby” means that there is a 
"window size" parameter to the 
algorithm. A typical window size 
might be 5, meaning 5 words 
behind and 5 words ahead (10 in 
total). 

n  Our examples hereafter will be 
with smaller m (1 or 2) 88 



The neural embedding model 
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One-hot vector for  
an input word (e.g.,  
“ants”) 

There is no activation function on the hidden 
layer neurons (only sum), but the output 
neurons use softmax, to output probabilities. 



Very same model in terms of 
matrixes (=the neural weights) 
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|V| is the vocabulary size, d is the  
dimension of the dense encoding, 
and we must learn matrixes W and W’ 

Note we use a contextof only ±1 here  
for simplicity. Commonly it is ±2 



Training examples  (e.g., for a  +-2 
window around center) 

n  The network is trained by  feeding it word pairs 
found in all training documents. 
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The network is going to learn the statistics 
from the number of times each “pairing” 
shows up  p(wt±i/wt). 



Training steps (1) 
n  Consider the simple sentence "The cat over  the puddle".  

Suppose  “over” is the current center.  
n  For this example, the input word wt to the learner is over, and 

the 4 “ground truth” output are “thet-2” catt-1” “thet+1” “puddlet+2”,   
if the window size is m= ±2 

n  We start by generating a “one-hot” vector xt for the input, that is, 
a boolean |V|-dimensional vector with all zeros and a 1 in 
position t, corresponding to the word “over” in the vocabulary V. 

n  We obtain the embedded vector by multiplication:  vt=W×xt 

n  If m is the window size, we generate 2m output vectors using 
W’: yt-m.. yt-1, yt+1..yt+m such that  yj=W’j×vt 

n  These vectors are turned into probability vectors oj using 
softmax (Σk (oj

k)=1) 
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Training step (2) 
n  Each argument k of any of the 2m softmax output vectors oj 

(1×|V| ) represents the probability that the context word at 
distance t±j from our center word wt is wk 

n  We now generate the 2m one-hot vectors xj corresponding to 
the current example: for example, in the sentence "The cat 
over  the puddle” , the one-hot vector xt+2 representing the 
“ground truth” has all zeros and a 1 in the position 
corresponding to the word  “paddle” 

n  The one-hot vectors are compared with the generated 2m 
output vectors oj, and a loss (error) function is used to update 
the weights of all matrixes W and W’ (with back-propagation)  

n  The process is repeated for all sentences and center words 
until convergence – matrix W and the 2m matrixes W’ no 
longer change.  
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Additional details 
n  Suggested reading for embedding algorithms (Skip-grams and 

CBOW): https://cs224d.stanford.edu/lecture_notes/notes1.pdf 
n  As is, summations and weight updating over |V| dimensional 

matrixes is very time-consuming (the vocabulary is huge, order 
of millions!) 

n  Negative sampling is commonly used:  For every training step, 
instead of looping over the entire vocabulary, we can just 
sample several negative examples (random word sequences). 
We "sample"  (2m+1) word sequences from a noisy distribution 
(Pn(w) ) whose word prior probabilities match the ordering of the 
frequency of the vocabulary in the corpus.  

n  Details on https://arxiv.org/pdf/1310.4546.pdf 
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Negative sampling (more on) 
n  Training a neural network means taking a training example and 

adjusting all of the neuron weights slightly so that it predicts that 
training sample more accurately. In other words, each training 
sample will adjust all of the weights in the neural network. 

n  Negative sampling addresses this by having each training 
sample only modify a small percentage of the weights, rather 
than all of them.  

n  With negative sampling, we are instead going to randomly select 
just a small number of “negative” words (let’s say 5) to update 
the weights for. (here, a “negative” word wn is one for which we 
want the network to output a 0 in the correspondent n-th position 
of output context vectors  oj). We will also still update the 
weights for our “positive” words (e.g., “cat” “puddle” in previous 
example). 

n  Negative words are randomly selected 95 



Word embedding matrix W and 
word context matrixes W’ 
n  First, the multiplication of the binary vector xt and the 

word embedding matrix W of size |V|×d gives the 
embedding vector vt of the input word wt: this is 
equal to the t-th row of the matrix W, wt.  

n  The multiplication of the hidden layer vt and the 2m 
word context matrixes Wj′ of size d×|V| produce the 
output vectors oj (j=-m..,-1,+1..+m)  

n  The output context matrixes W′ encode the meanings 
of words as context, different from the embedding 
matrix W.  

n  V, d and the window size m are model parameters 
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Matrixes W and W’ 
n  Several implementations: 

word2vect and Glove 
among the most well 
known 

n  Google word2vect original 
paper has d=300 and |V|
=10,000 

n  The matrix W is what we are 
really interested in: the 
embedding matrix.  

n  It has the property that words 
with similar embedding 
vectors are similar. 97 
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Applications of Word Embeddings 
to IR 

n  Word embeddings are the “hot new” technology 
for document ranking 

n  Lots of applications wherever knowing word 
contexts or similarity helps predicting users’ 
interests: 
n  Synonym handling in search 
n  Query expansion 
n  Document “aboutness” 
n  Machine translation 
n  Sentiment analysis 
n  …. 101 



Applications of Word Embeddings 
to IR: Google RankBrain 

n  Google’s RankBrain – almost nothing is publicly 
known 
n  Bloomberg article by Jack Clark (Oct 26, 2015): 
n  http://www.bloomberg.com/news/articles/

2015-10-26/google-turning-itslucrative-web-
search-over-to-ai-machines 

n  A result reranking system 
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Weakness of Word Embedding 

n  Very vulnerable, and not a robust concept 
n  Can take a long time to train (despite 

negative sampling  and other “tricks”) 
n  Non-uniform results 
n  Hard to understand and visualize 
n  Emerging technique, yet not sufficiently 

robust and well understood 
n  Yet very cool (Google uses it – with other 

methods) 


