Algebraic models to improve
ranking and query expansion

Latent Semantic Indexing, Word
Embeddings



|s there anything more advanced than co-

occurrences to learn word correlations?
I ]

s the most populous city tn the US, state of
T dt I |R T rhe high-aititude city serves as the county seat
. raditiona USes erm of ‘ County, and it s situated in the cent part of
matching, — # of times the doc  the state. straddiing the Rio Grande. The tion s
J
0 7 557,169 as of the July 1, 2014, population estimate from the
says “Albuquerque” — not fully United States Census Bureau, and ranks as the 32nd-largest
i t ty in the U.S. The Metropolitan Statistical Area (or MSA) has
approprla c a ' of 902,797 according to the United States

= \We can use a different ;:;/;i“s Bureau's most recently available estimate for July 1
approach: compare all-pairs of
query-document terms, — # of
terms in the doc that relate to Allen suggested that they could program a BASIC interpreter

for the device: after g call from Gates claiming to have @
/ \Ibuquerque working interpreter, MITS requested a demonstration, Since

they didn't actually have one. Allen worked on a simulator

s [0 detect these similarities: Sir the Aliair while Gotes develoned the intersreter. ARDOLOh

they developed the interpreter on a simulator and not the

» Latent Semantic Indexing ;.10 device, the interpreter worked flawlessly when t

Iney

Passage about Albuguergue

demonstrated the interpreter to MITS in

= Word embeddings (a.k.o. ‘ e s g
deep method — emerging marketing it as Altair BASH
technology)

y ogreed to distribute it

Passage not about Albuquerque



The problem

= With the standard term-document matrix
encoding, each term is a vector and dimensions

are documents

= Different terms have no inherent similarity, e.g.:
Search:[020000000010000]
Information retrieval.[0 0000003000010 0]

= If query on search and document has information
retrieval , then our query and document vectors
are orthogonal. Dot product is zero. But these
two words are very related!



Can we directly learn term
relations”?

Basic IR is scoring on q"-d/K (dot product of query
and document vectors) qgeod

ld
No treatment of synonyms; no machine learning

Can we learn a matrix W to rank via qTWd rather than
q’d? ol

Where W is a matrix that captures similarity between
words (e.g., “search” and “information retrieval™)?



Latent Semantic Indexing




Latent Semantic Indexing

= Term-document matrices are very large,
though most cells are “zeros”

= But the number of topics that people talk
about is smaller (in some sense)

= Clothes, movies, politics, ...

= Each topic can be represented as a
cluster of (semantically) related terms,
e.g.. clothes=golf, jacket, shoe..

= Can we represent the term-document
space by a lower dimensional “latent’
space (latent space=set of topics)?



Searching with latent topics

s Given a collection of documents, LSI learns clusters
of frequently co-occurring terms (ex: information

retrieval, ranking and web)
= If you query with ranking,
LS| “automatically” extends the search
to documents including also (and even ONLY) web



~

Document base (20)

With standard VSM
4 documents are selected

/

Selection based on ‘Golf’

ii :

Golf




20 documents

Selection based on ‘Golf’

L U e U

Golf
Tiger

Woods
Belfry

Tee

The most relevant words
associated with golf in theseh
docs are:
Car, Topgear and Petrol




20 docs

Selezione basata su ‘Golf’

1L Ao Il

Golf
Tiger

Woods
Belfry

If we consider the co-occurring terms
with higher tf*idf,
car e topgear turn out to -
be related to Golf
more than petrol, wood,...

.~ )




20 docs

Selection based on‘Golf’

li

Selection based on the semantic domg

We now search with all
the words in the “semantic domain” of Golf .
The list of retrieved docs now
is based on Golf and the other
related words

of Golf

(=




20 docs

The co-occurrence based
1 ranking improves the performance.

Note that one of the most relevant doc does
Sele: NOT include the word Golf, and

l a doc with a “spurious”
sense disappears

Selection based on semantic

Golf
Rank

Tiger
Woods
Belfry
Tee

/

A%




Ranking with latent Semantic

Indexing

= Previous example just gives the intuition

= Latent Semantic Indexing is an algebraic method to
identify clusters of co-occurring terms, called “latent
topics”, and to compute query-doc similarity in a latent
space, in which every coordinate is a latent topic.

= A “latent” quantity is one which cannot directly
observed, what is observed is a measurement which may
include some amount of random errors (topics are “latent”
In this sense: we observe them, but they are an
approximation of “true” semantic topics)

= Since it is an algebraic method, needs some linear
algebra background

13



The LS| method: how to detect “topics”

Linear Algebra
Background

14



Eigenvalues & Eigenvectors

= Eigenvectors (for a square mxm matrix S)

Av = v Example

(right) eigenvector e;g\envalue (461 :02) G) - (‘21> Vi Q)

|

veR™#£0 A€ER \A\‘LM{/

= Def: A vectorv € R", v # 0, is an eigenvector of a
matrix mxm A with corresponding eigenvalue A, if:

Av = \v

15



Algebraic method

= How many eigenvalues are there at most?
Av = \v

equation has a non-zero solution if |A - AI| =0

Av=JAv < (A-)v=0

Where | is the identity matrix, and A is mxm
this is a m-th order equation in A which can have at

most m distinct solutions (roots of the characteristic
polynomial) - can be complex even though A is real.

16



Example of eigenvector/eigenvalues

B

We show that v is an 1+-3(-1) (
eigenvector for A 3+5(-3) -12

P




Example of comnutation

remember
—— T
a b
det M =| M |= — ad - begD(A=5)+3=0
A=(l '1) ¢ 4 6A+5+3=0
3 5
M -6A+8=0
det(A- AN =0
2 and 4 are the (A —-4) 2)=(-) -
- )_ll eigenvalues of S 77 Characteristic
o R —  polynomial
1_1—/1():0( =( (—7LI-5VO
3 5 0 A O) ;
-2 -1 |_g g 0
B ( -1 —1 o 0)
{—30:—/3—0 P 0
3a+ =0 { 08D
a=-pf
3a+3p=0

Note that we compute only the DIRECTION of eigenvectors



Geometric interpretation
o S p—— .

3.00| [-2.00 1.28
Ax = .
1.00 [0.00 3.14

w
d

2
£
2 - ///
1/
/
/f X
h /
\\ 1 " /
™~ /
- <3 /
Ax: > _If
4 ) ' 1 1 4 1 \
L 14 L | L L] L L L L] L L L L T L L] L] L] L L]
-6 -4 2 2 4

T | Amatrix-vector multiplication Ax
.1 |is a linear transformation over
the vector

19




Matrix vector multiplication

- - r~ - - -

a a2 ... Qn T Q111 + Q1282 ++** T+ A1nlp
sy Q9 ... Qg, To 21T, + A& T *** T A3, Ty
Ax = =
| Qm Qm2 o Qiind LTn | Qin1 i Qoo o el o Qrmnsn |

Matrix multiplication by a vector = a linear transformation of
the initial vector, that implies rotation and translation
of the original vector

20



Geometric interpretation

3.00| [-2.00 1.84
Ax = .
1.00| [0.00 2.48

111111111111111111111111

rrrrrrrrrrrrrrrrrrrrrrrr




Geometric interpretation

Lo

fone [ ][so] I
0.76
. -_y Ax i e
:§6¢%%ed‘L%%ezé%#«eﬁé%;%;%i%%% AX:134X:AX
o T4l An eigenvector is a special
1=134 1] vector that is transformed
det(A-AT) =-0.22 1 . . .
- Into its scalar multiple under
‘“‘”“[048] i a given matrix (no rotation!)
i ‘ yifd



Geometric interpretation

Ax = =00 :
-1.42

Here we found another
eigenvector for the matrix A

xxxxxxxxxxxxx
1111111111111

el — 11 Note that for any single eigenvalue
_ I you have infinite eigenvectors,
wa-in=-022 1 put they have the same direction

6 +

-1.94 | 5T
(-amp=| oaa| T 23



Matrix-vector multiplication

= Eigenvectors of different eigenvalues are linearly
independent (i.e. va,..a, 2 a,v,+.. a,v,70)

= For square normal matrixes eigenvectors of
different eigenvalues define an orthonormal
space and they are othogonal.

= A square matrix is NORMAL iff it commutes with
its transpose, i.e. AAT=ATA

= Example:

. A—(o 1 1) SAAT= (1 2 1) =pTA
10 1 1 1 2

24



Difference between orthonormal

and orthogonal?

= Orthogonal mean that the dot product is null (the
cosin of the angle is zero).
Orthonormal mean that the dot product is null
and the norm of the vectors is equal to 1.
What we are actually saying is that eigenvectors
define a set of DIRECTIONS wich are orthogonal
(=an othonormal space).

= If two or more vectors are orthonormal they are
also orthogonal but the inverse is not true.

25



Why eigenvectors are orthonormal
(iIf A Is symmetric square matrix)

Let v,, v, be two eigenvectors, and let 1; be the eigenvalue
of v, , then we have:

A (vy-vy) = A4, (vivy) = WiAvy) = (WIA)v, = (ATvy) 1y
= (Avy)"v; = /1217;171 = Az(v; - vy)

= (v, -v1)=0and v, L v,

Either Al AZ or (vl vz) O!

26



Example: projecting a vector on 2
orthonormal spaces (or "bases”)

The same vector will have different components
with respect to different bases.

!
€,
-

o sust 2 . | P 72
Vv=ve +ve Vv=v e, +ve:

Ve

Vlel

e,e’, e,,e,are unary vectors and v,v'4, V,,V, are the
coordinates of v along the directions of e,,e’;, e,,e’,

27



The effect of a matrix-vector multiplication is

governed by eigenvectors and eigenvalues
- 0

Let x be a generic vector and A a normal matrix

m A-xX =A(x,e; + x,e,+ x3e3) where x; are the
vector coordinates in the base defined by unary
vectors e;

= Let's now project the very same vector x on the
base defined by 3 eigenvectors of matrix A:
> - 7 7 XI{— | XIp —  XI3 —s
X = x’1€'1 + x,23,2+ x’38,3= :1>Ul + :2>U2+ :3> %!
V1] V2| V3]

X1 X/ X/
s We then have: x;= =, x,= =, x3= =
1z |v2 | |v3]

n A(xie1 + x,6,+ x3e3) = A(x1v1 + x,0,+ xX3V3)

n A(X1V1 + XU+ X3V3)=X1 A1 V1 + XA, 05+ x343V3 5



The effect of a matrix-vector multiplication is

governed by eigenvectors and eigenvalues (2)
- 0

A . .7? — xl)llv_1> -+ XZ}{zv_z)+x3)13v_3)

Even though x is an
arbitrary vector, the
action of A on x
(transformation) is
determined by the
eigenvalues/vectors.

29




Geometric explanation: largest eigenvalues play the
largest role in the “distortion” of the original vector

X Is a generic vector with coordinates x;; A,,v; are the eigenvalues
and eigenvectors of A
Ax=xAv +X,Av, + XAV,

A )\%,,,A . /’/

Multiplying a matrix and a vector has two effects over the
vector: rotation (the coordinates of the vector change) and
scaling (the length changes). The max compression and
rotation depends on the largest matrix’s eigenvalues Ai



Geometric explanation

Ax = xl)le1 + xZ)sz2 + x_,,)L3v3

In the distorsion, the max effect is played by the
biggest eigenvalues (s1 and s2 in the picture )
The eigenvalues describe the distorsion operated by the
matrix on the original vector



Summary so far

= A matrix A has eigenvectors v and eigenvalues A, defined by
Av=Av

= Eigenvalues can be computed as:
Av=Av < (A-A)v=0

= We can compute only the the direction of eigenvectors, since
for any eigenvalue there are infinite eigenvectors lying on the
same direction

= If Ais normal (i.e. if AAT=ATA) then the eigenvector form an
othonormal basis

= The product of A by ANY vector x is a linear transformation of x
where the rotation is determined by eigenvectors and the
translation is determined by the eigenvalues. The biggest role
in this transformation is played by the biggest (principal)
eigenvalues. 32




Bad news..

More algebra..

33



Eigen/diagonal Decomposition

= Let A be a square matrix with m orthogonal
eigenvectors (hence, A is normal)

s Theorem: Exists an eigen decomposition
n A=U/\U_1

= /A is a diagonal matrix (all zero except the diagonal
cells)

A = diag(A1,..., Am), Ai = A1
s Columns of U are eigenvectors of A

= Diagonal elements of A are eigenvalues of A

34



Diagonal decomposition: why/how

Let U have the eigenvectors as columns: U =|v,

Then, AU can be written

AU =4 12

Thus AU=UA, or UTAU=A

And A=UAU-". y




Example

L[t o
_’1 3] AU=UA

A[VVJ— 1- i) Vil V7l Vi1 V7 }»1 0
o 1 3 Vi VW Vio V2 0 ).2 0 /{2

From this we compute A=1, A,=3
[1 0] [Vu] _1 [Vu] from which we get v;;=—2v,,

Vi2 Vi2

1 O V21 V21 -
[1 3‘ [ ‘ =3 [ ] From which we get v,,=0 and v,, any real

V22 V22

36



Diagonal decomposition —
example 2

Recall A=

The eigenvectors(

Inverting, we have U™ =

2
1

Then, A=UAU-1 =

L.
2 -

(1/2
1/2

1 1

=1 1

I and I
—1 1

1/2

1/2

1 0
0 3

j form U =

1

1

<=

Recall

Uu-! =1.

1/2

1/2

~1/2

1/2

37



So what?

= What do these matrices have to do with
Information Retrieval and document ranking?

s Recall M x N term-document matrices ...
= But everytl iormal

matrices — YQUR FUTURE and learn

one last nc

—_——

‘-\—

Before After
learaing ALGEBRA

38



Singular Value Decomposition for
non-square matrixes

For a non-square real M x N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD) as follows:

A=UzV"
il BN
MxM || MxN Vis NxN

The columns of U are the orthogonal eigenvectors of AAT
(called left singular vectors).

The columns of V (rows of VT) are the orthogonal eigenvectors of A’A (called
right singular eigenvector). NOTE THAT AAT and ATA are square symmetric

(and hence NORMAL)
Eigenvalues 1, ... A, of AAT = eigenvalues of ATA and: o, =.,/4

2= diag(al...a,,)< : Singular values of A




An example

I
g 2 2
2 3 -2

| N RYN RN, 0
A=UZV'=U|( 4 4 0)(1/@ —1/4/18 4/\/1—8)

Find the SVD of A, ULV?, where A = (

2/3 -2/3 —1/3
_.-_'-’_0:_:.‘“,]..__/‘(_\_:/;‘ \/-
_gsyr— ((UV2 1/v2 5 0 0 1/v2  1/v2 0
A= (1/\/5 —1/\/5)(0 3 o) (1/\52 —l/_\2/}_§ 4/:{}_3

40



Singular Value Decomposition

= lllustration of SVD dimensions and sparseness

— EE T EEE .
ok ok X * * [k * [ . ] [-a- X n-] 1 So when
kg D }L ‘“ N
+‘ + ‘+ : : : : : Il zerog : ‘:r‘ i) these
L \ —_— ‘,’ - - BN VT become
s “MxM MXN NxN zeros, too
Kk kK k  * % % So these
¥ % * * *| =]x x x become
|: x k  k k3 :| |:a *x X zeros, too
) Y I

9l  —2/3 —1/8




Back to matrix-vector multiplication

= Remember what we said? In a matrix vector
multiplication the biggest role is played by the
biggest eigenvalues

= The diagonal matrix Z has the eigenvalues of
ATA (called the singular values o of A) in
decreasing order along the diagonal

= We can therefore apply an approximation by
setting 0;=0 if ;<0 and only consider only the
first k singular values

42



Reduced SVD

= If we retain only k highest singular values, and set the
rest to 0, then we don’t need the matrix parts in red
s ThenXZiskXxk, Uis Mxk, VTis kxN,and A,is MXN

= Thisis referred to as the reduced SVD, or rank k
approximation

Now all the red and yellow parts are zeros!!

™ % * * * * ]
® k » - - ~ »~
. * Kk ok k|
-~ ~ - ~ ~
= "

F * =

- N o N

1<

N —_

43



Let's recap

+ + * + + * * * L
M < N ok ok ok k| = |x x =% .
+ + * + + * * * L] *
L - L o -
v’ N v =
A U z ~ »
v
* * * * * L
M > N ¥ ¥ ¥ - - L J -~ -~ -~
¥ ¥ * — * ~ L - - £
* ¥ * -~ -~ - - -~
* * * -~ -~ \_‘\/‘_/
N —— N- - - —— ‘ g T
A o =

Since the yellow part is zero, an exact representation of Ais:
A=cuv +ouy, +.+0uUv.
r =min(M,N)

But “for some” k<r, a good approximation is:

T T T



oo O -

Example of rank approximation

00 0 2] 001 d71 40 ofjoo] [0 to0 0°F
0300 010 03 0100 «3—2338%—8
00 10 (000 X[0 0 VB[00 0 X| 7 peempp——
4 0 0 0 100 | 0 0 0 |1 0] |/ ottt 2
A
0011 4007 10 100 0
[A]" = 8(1)8 x[o3o x[OOlO 0]
o0l 100Vl 1v0:2000v0.8

0.981 0.000 0.000 0.000 1.985
A*= 0.000 0.000 3.000 0.000 0.000 A
~0.000 0.000 0.000 0.000 0.000
0.000 4.000 0.000 0.000 0.000 45
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Approximation error

= How good (bad) is this approximation?

= It's the best possible, measured by the Frobenius
norm of the error:

min [4-X|, =[4-4], =0 =14

X:rank (X )=k

where the o; are ordered such that ¢, > o,,4.
= Suggests why Frobenius error drops as k increases.

46



Images gives a better intuition
image = matrix of pixels)










-~ AT

50



+... + C 1o ddm V
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100




K=322 (the original image




We save space!! But this is only
one issue
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S0, finally, back to IR!!!

S
= Our initial problem was:

» the term-document (MxN) matrix A is highly
sparse (has many zeros)

= However, since groups of terms tend to co-occur
together, can we identify the semantic space of
these clusters of terms, and apply the vector
space model in the semantic space defined by
such clusters (rather than the space of terms)?

» \What we learned so far:

= Matrix A can be decomposed, and rank-k
approximated using SVD

» Does this help solving our initial problems? 5



A Is our term document matrix

= Latent Semantic Indexing via the SVD

A=UzV"
2 1
MxM || MxN Vis NxN

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.
Eigenvalues A, ... A, of AAT are the eigenvalues of ATA.

= If Ais a term/document matrix, then AAT and
AT A are the (square) matrixes of term and
document co-occurrences, repectively

55



Meaning of ATA and AAT

Word iindock| |/Vordjindock

L=AA" = Lij - Aik Akj
\ J
N ;N ' \ N . J
Ly = X Ahy = 2 Axy A A
k=1 k=1

L; depends on the number of documents d, in which wi and wj
co-occurr (the non-zero products A A',; of the sum)

Similarly, L";; depends on the humber of common documents

for two word pairs (or vice-versa if A is a document-term matrix
rather than term-document)



Example

Example of text data: Titles of Some Technical Memos
¢l Human machine interface for ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
ok System and human system engineering testing of EPS
¢S Relation of user perceived response time to error measurement
ml:  The generation of random. binary. ordered trees
m2:  The intersection graph of paths in trees
m3:  Graph minors IV: Widths of trees and well-quasi-ordering
md: Graph minors: A survey




Term-document matrix

I
A =

¢cl ¢2 ¢3 ¢4 ¢5 ml m2 m3 m4d
| 0 () 0 0 ()
0 l 0 0 0 0 0 0
computer I 0 0 0 0 0 0 0
user 0 I I 0 l 0 0 0 0
Ssystem 0 l I 2 0 0 0 0 0

l

l

human
interface

p—
—
—_
S
—

)

response 0 0 6 l 0 0 0 0

time 0 0 0 l 0 0 0 0
EPS 0 0 l ] 0 0 0 0 0
survey 0 ] 0 0 0 0 0 0 I
trees 0 0 0 0 0 l l l 0

sraph () () () 0 () 0 | l |
minors 0 (0 () (0 (0 (0 (0 | |



Term co-occurrences example

¢l ¢2 ¢3 ¢4 ¢5 ml m2 m3 md
| 0 0 (
() l (0 0 () 0 (0 (0
computer I 0 0 0 0 0 0 0
user 0 | | (0 | 0 0 0 0
system 0 | l 2 0 () 0 () (0

I

I

human
interface

—
S—
—_
S
—
S
o~
S—
—
—

response 0 0 0 l 0 0 0 0

time 0 0 0 l 0 0 0 0
EPS 0 0 l ] 0 0 0 0 0
survey 0 ] 0 0 0 0 I
trees 0 0 0 0 0 l 0
sraph 0 0 0 0 0 0 l

minors

L rees grapn = (000001110) #(000000111)T=2




So the matrix L=AAT is the matrix
of term co-occurrences in docs

= Remember: eigenvectors of a matrix define an orthonormal
space

= Remember: bigger eigenvalues define the “main” directions
of this space

= But: Matrixes L and LT are SIMILARITY (co-occurrence)
matrixes (respectively, of terms and of documents). They
define a SIMILARITY SPACE (the orthonormal space of their
eigenvectors)

= If the matrix elements are word co-occurrences, bigger
eigenvalues are associated to bigger groups of similar
words

= Similarly, bigger eigenvalues of L™=ATA are associated
with bigger groups of similar documents (those in which
co-occur the same terms)




LSI: the intuition

The blue segments give the
intuition of eigenvalues of
LT=ATA t1
Bigger eigenvalues are
those for

which the projection of all
vectors on the direction of
correspondent eigenvectors
is higher

t2

Projecting A in the term
space: green, yellow and
red vectors are documents.
If they form small angles,
they have common words
(remember cosin-sim)

The black vector

are the unary eigenvector
of L': they represent the
main “directions” of the
document vectors
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LS| intuition

If we multiply all
document vectors
by L= ATA, their
“distorsion” is mostly
determined by the
highest eigenvalues

t1

—

dj = (djladjzadj)
LT;]- = djl.)tlvl +djz.)L2v2 +a’]3.)L3v3

t2

We now project our document vectors on the reference orthonormal
system represented by the 3 black vectors



LS| intuition

..If we remove the dimension(s)
with lower eigenvalues (i.e. if we
rank-reduce 2) we don’t loose
much information

s ,

dj= (d},djz-,dj-)
Lng = d]l.itlvl + djz.itzvz

Remember that the two “new” axis represent a combination
of co-occurring words e.g. a latent semantic space



Example

dl d2 d3 d4
t11.000 1.000 0.000 0.000

t2 1.000 0.000 0.000 0.000
t3 0.000 0.000 1.000 1.000
t4 0.000 0.000 1.000 1.000

I0.000 -0.851 -p.526 0.000
0.000 -0.526 10.851 0.000
-0.707 0.000 |0.000 -0.707 X
-0.707 0.000 10.000 0.707

2.000 0.000
0.000 1.618

We project terms
and docs on two
dimensions, v1 and v2

(the principal eigenvectors)

0.000 0.000-0.707 -0.707
-0.851 -0.526 0.000 0.000
X 0.526 -0.851 0.000 0.000
0.000 0.000-0.707 0.707

Note that the direction of each eigenvector is determined by
the direction of just two terms: (t1,t2) or (t3,t4) tic

0.000 0.000 71.000 7.000
0.000 0.000 1.000 1.000

matrix

CLUUNUINIalco. ol.\ti,l£ ) artiu

s2:(t3,t4)

Even if {2 does not occur in d2, now if we query

with t2 the system will return also d2!!
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Co-occurrence space

= In principle, the space of document or
term co-occurrences is much (much!)
higher than the original space of terms!!

= But with SVD we consider only the most
relevant ones, trough rank reduction

A=UNV'=UZV' =A,

65



Summary so-far

= We compute the SVD rank-k approximation for
the term-document matrix A

= [his approximation is based on considering only
the principal eigenvalues of the term co-
occurrence and document similarity matrixes
(L=AAT and LT™=ATA)

= The eigenvectors of the eigenvalues of L=AAT
and L™=ATA represent the main
“directions”(principal components) identified by
term vectors and document vectors, respectively.
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Principal components

e 5 . f 2 : : "o IV P . .
T pRD S LTk TRirst prindpal componens

a s \}_' t -_ . !

~ ~ G » & "X P .

° " o - -
25 l
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LSI: what are the steps

= From term-doc matrix A, compute the rank-k
approximation A, with SVD

= Project docs and queries in a reduced
space of k<<r dimensions (the k “survived”
eigenvectors) and compute cos-similarity as
usual

= [hese dimensions are not the original axes
(terms), but those defined by the orthonormal

space of the reduced matrix Ak

Aq Akq qulvl +0,q, V2 +. quka
Where 0q; (i=1,2..k<<r) are the new coordinates of q in the

orthonormal space of Ak o



Projecting terms documents and

queries in the LS space

Tm,1 st L1212

up| ...

uy

If A=U>VT we also After rank k-

have that:
V = ATUX?
t=t TxVT
d=d Tuz?
g=q TUXZ

approximation :
A=zAk=U, 3, V,T
d, =dU, 3,
i = 9'U, 2"
sim(q, d) =
sim(qTU, 2",
dTu,z, ")
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Consider a term-doc matrix MxN
(M=11, N=3) and a query @

B
-

Terms

|

a
arrived

P
o R
(R

damaged
delivery

fire

gold A
In

of

shipment

silver

truck

q=
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1. Compute SVD: A= UxZVT

Vv

-0.4201
-0.2935
-0.1206
-0.1576
-0.1206
-0.2626
-0.4201
-0.4201
-0.2626
-0.3151

| 02995

0.0748
-0.20071
0.2749
-0.3046
0.2749
0.3794
0.0748
0.0748
0.3794
-0.6033
-0.20071

-0.0460

0.4078

-0.4538
-0.2006
-0.4538

0.1547

-0.0460
-0.0460

0.1547

-0.4013

0.4078

-0.4945 06492 -0.5780
-0.6458 -0.71594 -0.2556
-0.5817 0.2463 0.7750

vl =

(40989 0.0000 0.0000

0.0000 23616 0.
1.2737

0.0000  0.0000

-0.4945 -0.6458 -0.5817
06492 -0.7194 02469
05780 -0.2556 0.7750

D



2. Obtain a low rank approximation
(k=2) Ay= U2 V'

“latent” 2-dimensional
= term- similarity space
-0.4201 0.0748

-0.2995 -0.2001

01206 0.2749

01576 -0.3046 [4_[,989 [j_[j[j[][j]

u = | U12068 02743 s - |0.0000 23616

-0.2626 0.3794
-0.4201 0.0748
-0.4201 0.0748
-0.2626 0.3794
-0.3151 -0.6093

-0.2995 -0.2001 “latent” document-
- — similarity space

[ .0.4945 0.6492 04945 -0.6458 -0.5817
v = |-0.6458 -0.7134 vT 06492 -0.7194 0.2469
.0.5817 0.2469




3a. Compute doc/query similarity

= For N documents, A, has N columns, each
representing the coordinates of a document d.
projected in the k LS| dimensions

= A query is considered like a document, and is
projected in the LSI space



3c. Compute the query vector

q =[00000100011

q = [02140 01821

2 0 4201
.0.2995
.0.1206
0.1576
.0.1206
0.2626
-0.4201
-0.4201
0.2626
0.3151
.0.2995

0.0748
-0.2001
0.2749
-0.3046
0.2749
0.3794
0.0748
0.07458
0.3794
-0.60593

-0.2001 |

4.09859 0.0000
1
0.0000 23616

g is projected in the 2-dimension LS| space!




Documents and queries projected
in the LS| space

0.8
d, . (-0.4945 0.6492)
0.6 4
4. (-0.5817, D.2483) 0.4 1
. 0.2
L=l Dim 2
o7 0.6 0.5 -04 0.3

(-0.214, -0.1821)-0.4 -

0.6 -

-------- k.-
LSI Dim 1




g/d similarity

qed
lqlld]
(-0.2140) (-0.4945) + (-0.1821) (0.6492)

sim(q, d) =

sim({q, d4) = = -0.0541
V 021402+ (018212 (0.4945)2+  (0.5492)2
(0.2140) (0.6458) + (-0.1621) (0.7194)
sim(q, (IZ) = = 0.9910
V 0212+ @1en?  essaZe (071982
(0.2140) (0.5817) + (-0.1821) ( 0.2469)
sim{q, d 3) = = 0.4478

2 2

\/(-0.2140) + (01821)2 /(088172 + (0.2489)2

Ranking documents in descending order

d., >d., > d

2 3 1



An overview of a semantic network of terms
based on the top 100 most significant latent

semantic dimensions (Zhu&Chen)
- 0

Semantic Network View of Themes in Latent Concept Dimensions
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Conclusion
I ]

s LS| performs a low-rank approximation of
document-term matrix (typical rank 100-300)

s General idea

= Map documents (and terms) to a low-
dimensional representation.

= Design a mapping such that the low-dimensional
space reflects semantic associations between
words (latent semantic space).

= Compute document similarity based on the cos-
sim in this latent semantic space




Another LS| Example



Input matrix A:

d1 d2 d3
t1 1.000 1.000 0.000
1.000 1.000 0.000
e 2] 000 2000 0.000 e e——
{3 0.000 0.000 1.000
t4
Input matrix B:
1.000 1.000 0.000 0.000
AT 1.000 1.000 1.000 0.000
0.000 0.000 0.000 1.000

AAT  Matrix product A*B
atrix produ Term co-occurrences

£l 2.000 2.000 1.000 0.000
2 2.000 2.000 1.000 0.000

1.000 1.000 1.000 0.000
3 0.000 0.000 0.000 1.000

L A



Input matrix:

1.000 1 0 0.000
5 000 : 000 0.000 Ak=UkaVszA
. 1 , ML
B BN o o6 0,000
0.863 1.106 0.000
CT.7820.621 0.000

0.000 0.000 1.000
Singular Value Decomposition:

u:
-0.657 0.000 J0.261
-0.657 0.000 ]10.261
-0.369 0.000 $0.929
0.000 -1.000 10.000
Now it is like if t3 belongs to d1!
S:
2.136 0.000] 0.000
0,000 1.000]0.,000
0.000 0.000]0.662
vT
-0.615 -0.788 0.000
0.000 0.000 -1.000
0.788 =0.615 0.000



Problems with SVD

= Computational cost scales quadratically for
n x m matrix: O(mn?) flops (when n<m)

= Hard to incorporate new words or documents

= Does not consider order of words

= Anything better?

= (note that there are a variety of methods similar
to SVD, see “principal component analysis”,
based on same principles - finding the “main
directions” of a set of vectors in a multi-
dimensional space)
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|s there anything more advanced than co-

occurrences to learn correlations?
I ]

s the most populous city tn the US, state of
T dt I |R T ~ The high-aititud fy serves as the county seat
. raditiona USes erm of County, and it s situated in the cent part of

matching, — # of times the doc e state. straddling the R Grande. The tion is

0 7 557,169 as of the July 1, 2014, population estimate from the

SayS Albuquerque — nOt fU”y United States Census Bureou, and ranks as the 32nd-largest
a ro riate ty in the US. The Metroy { Statistical { for MSA) has
pp p a ' of 902,797 according to the United States

= \We can use a different ;:;/;i“s Bureau's most recently available estimate for July 1
approach: compare all-pairs of
query-document terms, — # of
terms in the doc that relate to Allen suggested that they could program a BASIC interpreter

for the device: after g call from Gates claiming to have @
/ \Ibuquerque working interpreter, MITS requested a demonstration, Since

they didn't actually have one. Allen worked on a simulator

= To detect these similarities (NeXt 1, e Ao white Gates developed the interpreter Althouah
Iessons)- they developed the interpreter on a simulator and not the

actual device, the interpreter worked flawlessly when tf

= Latent Semantic Indexing demonstrated the interpreter to MITS in

in March 1975, MITS ogreed to distribute it
= Word embeddings (a.k.o. marketing it as Altair BASK
deep method)

Passage about Albuguergue

Passage not about Albuquerque



IR with word embeddings
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Word Embedding approach: main
ideas

= Represent each word with a low-dimensional vector (like
for LSI)

= Word similarity = vector similarity (two words with
similar vectors, are similar)

= Key idea: learn to predict surrounding words in the
context of every word, or, learn to predict a word from its
surrounding context

= Faster and, wrt SVD, can easily incorporate a new
sentence/document or add a new word to the vocabulary

0.286
0.792
-0.177
-0.107
0.109
-0.542
0.349 85
0.271

linguistics =



Key idea: semantic similarity among words
depends on similarity among word contexts in
documents

ple-lwe) m .,.,\We)

'furmhj mfd ban MJ chiSes gy ...

cem"fe\f
wWord

m wevd window fos\"‘\'ﬂ\ t M word Wl.ﬂaovv

Co-occurrences are considered in a left-right context,
Word ordering DOES matter
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Let's consider the following
example...

= We have four (tiny) documents:

Document 1 : “seattle seahawks jerseys”
Document 2 : “seattle seahawks highlights”
Document 3 : “denver broncos jerseys”
Document 4 : “denver broncos highlights”
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Basic difference with previous
methods (e.g. LS| with SVD)

seattle

seahawks 1 1 0 0

e (00 @ @
similar
broncos 0 0 . o

SVD would group words based on co-occurrences in docunients



If we use context vectors:

(seattle, -1) (denver, -1) (jerseys, + 1) (highlights, +1)

\ (seahawks, +1) (broncos, +1) (Jerseys, + 2) (highlights, +2)
| l | |
seattle 0 2 0 0 0 1 0 1
seahawks ° 0 0 0 . 0 . 0
denver 0 0 0 2 0 1 0 1 similar

oroncos (o) (o) @ (o @ o @ (¢

Every position in the vector is a tuple <word, distance from “center”
word> an tells us how many times we see that word in the left(right
context of a word (e.g. seahawks is found 2 times in position, +1

to the right of seattle) = p(w;.i/w;)



Embeddings
|
= These “context vectors” are very high dimensional

(thousands, or even millions) and sparse.

= But there are techniques to learn lower-dimensional
dense vectors for words using the same intuitions.

= [hese dense vectors are called embeddings.

= Rather than using matrix factorization techniques
(such as SVD) we use deep neural methods.

= [he objective is to represent each word with a dense
vector, such that similar words have similar
vectors

= We can, as for LSI, consider the dimensions of
this dense space as “concepts” or “semantic

domains” %0



Word Embeddings — Skip Grams
Model

= Objective: Given a specific word in
the middle of a sentence (the input
word w,), look at the words
nearby and pick one at random. -
The neural network should tell us L Ywtern=[,
the probability for every word in
our vocabulary of being the
“nearby word” that we chose.

= "nearby” means that there is a

4
£
|
L

"window size" parameter m to the \ )wie-v=[,,
algorithm. A typical window size \

might be 5, meaning 5 words =L
behind and 5 words ahead (10 in

total).

= Our examples hereafter will be

with smaller m (1 or 2) 91



The neural embedding model

One-hot vector for P, Laver
_ Softmax Classifier
a n I n p Ut WO rd (e - g ") H'dden Layer ',/'/—-— —.‘2\\,‘ Probability that the word at a
“a ntS”) Input Vector L e '\\ Z ) by o o
0 P e
e 2 i
0 i Z /: . “ability”
0 PR
g Z A
A 1" in the position 5_‘ f‘:l Z .: . “able”
e "/
0
For every possible word, oj=p(wj)
= & gives the probability that the word
@’ Z is found in the context of the input
10,000 _word
ceti 300 neurons .:T Z t' - "zone”
There is no activation function on the hidden Bzt
10,000
layer neurons (only sum), but the output 92

neurons use softmax, to output probabilities.



Very same model in terms of
matrixes (=the neural weights)

|V| is the vocabulary size, d is the
dimension of the dense encoding, Output layer

_ | Gl
and we must learn matrixes W and W -

context words

. . @ yl
Input layer Projection layer oy,
1-hot input vector el vy =Wx, =w, il g

W
X1 ?\z‘ Ws A Yk t-1
X @ ) dx|[V]| ; ‘
* El . :
e e x ®
Wi X @ W ; @y
e (I @y

o
1 X|V| Ixd -

(xx}
[.. oo
Q-\,
2
/<
@

Note we use a context of only 1 in this example

(one word to the left, one to the right) &



Training examples (e.g., fora +-2
window around center)

= The network is trained by feeding it word pairs
found in all training documents.

Source Text Training
Samples

!Ehe quick|brown |fox jumps over the lazy dog. = (the, quick)
(the, brown)

The |guick| brown |fox|jumps over the lazy dog. == (quick, the)
‘ {quick, brown)
(quick, fox)

The| quick fBEOwWn fox [ jumps [over the lazy dog. = (brown, the)
: (brown, quick)
(brown, fox)
{brown, jumps)

The|quick|brown ‘-;f_(")it: jumps|over |the lazy dog. = (fox, quick)
(fox, brown)
(fox, jumps)

The network is going to learn the statistics (fox,over)
from the number of times each “pairing”
shows up P(w;+/w;) (e.g., P(fox,,/quick)
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Training steps (1)

= Consider the simple sentence "red cat over the puddle”.
Suppose “over” is the current center of the context (our w;).

= For this example, the input word w, to the learner is over, and
the 4 “ground truth” output are “red,,” “cat,,” “the,,” “puddle,,,’,
if the window size is m= =2

= We start by generating a “one-hot” vector x; for the input, that is,
a boolean |V|-dimensional vector with all zeros and a 1 in
position t, corresponding to the word “over” in the vocabulary V.

= \We obtain the embedded vector by multiplication: v=W Xx,
= If mis the window size, we generate 2m output vectors using
W' Yim-- Vi1, Yesr--YeemSuch that =W xv,

= These vectors are turned into probability vectors o; using
softmax (Z, (0;)=1). Note that since the matrix W' is the same,

all output vectors are equal! But we update one at the time. o

LR 1 L1}



Training step (2)
I
= Each k" coordinate of any of the 2m softmax output vectors
o; (1% |V| ) represents the probability that the context word at
distance t=Xj from our center word w; is wj

= We now generate the 2m one-hot vectors x; corresponding to
the current example: for example, in the sentence "red cat
over the puddle” , the one-hot vector x,,representing the
“ground truth” has all zeros and a 1 in the position
corresponding to the word “red”

= The one-hot vectors are (one at the time) compared with the
generated 2m output vectors o, and a loss (error) function is
used to update the weights of all matrixes W and W’ (with
back-propagation)

= The process is repeated for all sentences and center words

until convergence — matrix W and the 2m matrixes W’ no
longer change. 96



cat
over
puddle
red
toast
wax

over

Training instance: <w(t)=over, w(t-2)=red)>

6 words vocabulary

w(t+))
Where jis a
context

W(t-2) rled

oSO R O OO

w(t-1)

Or. one spot behind
the word “ape”

w(t+1)

Or, one spot ahoad
of the word “ape”

w(t+2)

Or, two spots ahead
of the word “ape”

We compare ground truth one-hot vector with output
vector and backpropagate



cat
over
puddle
red
toast
wax

over

Training instance: <w(t)=over, w(t-2)=red)>

6 words vocabulary

w(t+)

Where jis a
context
w(t-2) u
0
0
0
w(t-‘] ) (1) red
ook ne 0
w(t+1 )
w(t+2)

Or, two spots ahead
of the word “ape”

We repeat for the second word (note that W and W’ have
changed after the previous step, although not shown in figure)



- w(t+))

cat Where jis a
over | | 6 words vocabulary context
puddle ’
red P 2
toast =
wax o W(t-2)
0.4 Or, t'wo spots behing
0.4 the word “ape”
p h =
| o . 7 v
B i ) | | x| w(t-1)
o od .9 - . V x n \ o Or. one s.;.u':'fm--j
over 3 ity : L | e
o \ «0 . d X - e
= S - — - V* /)
v
vl
the word “ape”

We repeat the forward/backword step with the third and
fourth training contexts (the,, and puddle ,,), and then for
all other words and contexts



Summary of steps

= We begin by collecting from the corpus the tuples
<w(t),w(t+i)> where w(t)e V and i=7...m

= The Skip-gram neural net iterates through all words
one at a time, with input w(t).

= Each input word w(i) is fed forward through the
network m*2 times, once for each output context
vector (and then again for all retrieved contexts).

= Each time w(t) is fed through the network, it is linearly
transformed through two weight matrices W and W’
to an output layer that contains nodes representing a

context location: where m=2, those context locations
are from w(t-2) to w(t+2).
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Summary of steps (2)

= The output nodes, each the size of the vocabulary V, contain scores at
each index estimating the likelihood that a word in the vocabulary
would appear in that context position.

= For each given training instance, the net will calculate its error between
the probability generated for each word in each context location and the
observed reality of the words in the context of the training instance.

= For example, the net may calculate that “cat” has a 70% chance of
showing up two words before the word “over”, but we can determine
from the source corpus that the probability is really 0%. Through the
process of backpropagation, the net will modify the weight matrices to
change how it projects the input layer through to the output layer in
order to minimize its error: for example, to minimize the error between
the calculated 70% and the observed 0%.

= Then the next word in the corpus will be sent as an input m*2 times,
then the next, and so on.
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Additional detalls

= Suggested reading for embedding algorithms (Skip-grams and CBOW):
https://cs224d.stanford.edu/lecture notes/notes1.pdf

m See also details for the loss function

= Asis, summations and weight updating over |V| dimensional matrixes is
very time-consuming (the vocabulary is huge, order of millions! And we
have millions contexts)

= Negative sampling is commonly used: For every training step, instead
of looping over the entire vocabulary, we can just sample several
negative examples (random word sequences). We "sample" (2m+1)
word sequences from a noisy distribution (P,(w) ) whose word prior
probabilities match the ordering of the frequency of the vocabulary in
the corpus.

= With NS, we build a new objective function that tries to maximize the
probability of a word and context being in the corpus data if it indeed is,
and maximize the probability of a word and context not being in the
corpus data if it indeed is not.

= Details on https://arxiv.org/pdf/1310.4546.pdf 102



https://cs224d.stanford.edu/lecture_notes/notes1.pdf

Negative sampling (more on)

= Training a neural network means taking a training example and
adjusting all of the neuron weights slightly so that it predicts that
training sample more accurately. In other words, each training
sample will adjust all of the weights in the neural network.

= Negative sampling addresses this by having each training
sample only modify a small percentage of the weights, rather
than all of them.

= With negative sampling, we randomly select just a small number
of “negative” words (let’'s say 5) to update the weights for. (here,
a “negative” word w, is one for which we want the network to
output a 0 in the correspondent n-th position of output context
vectors 0j). We will also still update the weights for our

LRI 1

“positive” words (e.g., “cat” “puddle” in previous example).

= Negative words are randomly selected
103



Word embedding hyperparameters

= /' dimension of vocabulary
= d dimension of embeddibg vectors
= M dimension of context

104



Matrixes W and W’

= Several implementations:
word2vect and Glove
among the most well

300 neurons 300 features known

= Google word2vect original
paper has d=300 and
IV|=10,000

= The matrix W is what we are
really interested in: the
embedding matrix.

= It has the property that words
with similar embedding
vectors are similar. 105

Hidden Layer =) Word Vector
Weight Matrix Lookup Table!

10,000 words
10,000 words




GloVe Visualizations
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Glove Visualizations: Company - CEO
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Glove Visualizations: Company - CEO
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Applications of Word Embeddings
to IR

= Word embeddings are the “hot new” technology
for document ranking

= Lots of applications wherever knowing word
contexts or similarity helps predicting users’
Interests:

= Synonym handling in search
= Query expansion

= Document “aboutness”

= Machine translation

» Sentiment analysis

A .... 109



Applications of Word Embeddings
to IR: Google RankBrain

= Google’s RankBrain — almost nothing is publicly
Known
» Bloomberg article by Jack Clark (Oct 26, 2015):

s http://www.bloomberg.com/news/articles/2015-10-
26/google-turning-itslucrative-web-search-over-to-

al-machines
= A result re-ranking system

110
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Weakness of Word Embedding

= Very vulnerable, and not a robust concept

= Can take a long time to train (despite
negative sampling and other “tricks”)

= Non-uniform results
s Hard to understand and visualize

= Emerging technique, yet not sufficiently
robust and well understood

= Yet very cool (Google uses it — with other
methods)



