
Algebraic models to improve 
ranking and query expansion

Latent Semantic Indexing, Word 
Embeddings
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Is there anything more advanced than co-
occurrences to learn word correlations?

n Traditional IR uses Term 
matching, → # of times the doc 
says “Albuquerque” – not fully 
appropriate

n We can use a different 
approach: compare all-pairs of 
query-document terms, → # of 
terms in the doc that relate to 
Albuquerque

n To detect these similarities:
n Latent Semantic Indexing
n Word embeddings (a.k.o. 

deep method – emerging 
technology)



The problem

n With the standard term-document matrix 
encoding, each term is a vector and dimensions 
are documents

n Different terms have no inherent similarity, e.g.:
Search: [0 2 0 0 0 0 0 0 0 0 1 0 0 0 0]
Information retrieval:[0 0 0 0 0 0 0 3 0 0 0 0 1 0 0] 

n If query on search and document has information 
retrieval , then our query and document vectors 
are orthogonal. Dot product is zero.  But these 
two words are very related!
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Can we directly learn term 
relations?

n Basic IR is scoring on qT.d/K (dot  product of query 
and document vectors)

n No treatment of synonyms; no machine learning
n Can we learn a matrix W to rank via qTWd, rather than  

qT.d?

n Where W is a matrix that captures similarity between 
words (e.g., “search” and “information retrieval”)? 4
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Latent Semantic Indexing
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Latent Semantic Indexing

n Term-document matrices are very large, 
though most cells are “zeros”

n But the number of topics that people talk 
about is smaller (in some sense)
n Clothes, movies, politics, …
n Each topic can be represented as a 

cluster of (semantically) related terms, 
e.g.:  clothes=golf, jacket, shoe..

n Can we represent the term-document 
space by a lower dimensional “latent” 
space  (latent space=set of topics)?
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Searching with latent topics
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n Given a collection of documents, LSI learns clusters 
of frequently co-occurring terms (ex: information 
retrieval, ranking and web)

n If you query with ranking, information 
retrieval LSI  “automatically”  extends the search 
to documents including also (and even ONLY) web
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If we consider the co-occurring terms 
with higher tf*idf,

car e topgear turn out to 
be related to Golf

more than petrol, wood,…
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is based on  Golf and the other 

related words
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The co-occurrence based
ranking improves the performance.

Note that one of the most relevant doc does 
NOT include the word Golf, and 

a doc with a “spurious”
sense disappears



Ranking with  latent Semantic
Indexing
n Previous example just gives the intuition
n Latent Semantic Indexing is an algebraic method to 

identify clusters of co-occurring terms, called “latent
topics”, and to compute query-doc similarity in a latent
space, in which every coordinate is a latent topic.

n A “latent” quantity is one which cannot directly
observed, what is observed is a measurement which may
include some amount of random errors (topics are “latent” 
in this sense: we observe them, but they are an 
approximation of “true” semantic topics)

n Since it is an algebraic method, needs some linear 
algebra background
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Linear Algebra 
Background

14

The LSI method: how to detect “topics”



Eigenvalues & Eigenvectors

n Eigenvectors (for a square m´m matrix S)

n Def: A vector v Î Rn, v ≠ 0, is an eigenvector of a 
matrix mxm A with corresponding eigenvalue l, if:
Av = lv

eigenvalue(right) eigenvector

Example

15

Av = lv

Av = lv



Algebraic method

n How many eigenvalues are there at most?
Av = lv

16

equation has a non-zero solution if

Where I is the identity matrix, and A is mxm
this is a m-th order equation in λ which can have at 
most m distinct solutions (roots of the characteristic 
polynomial) – can be complex even though A is real.

|A

A A



Example of eigenvector/eigenvalues
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Example of computation
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v

Characteristic
polynomial

Note that we compute only the DIRECTION of eigenvectors



Geometric interpretation

19

A matrix-vector multiplication Ax
is a linear transformation over
the vector



Matrix vector multiplication

20

Matrix multiplication by a vector = a linear transformation of 
the initial vector, that implies rotation and translation
of the original vector



Geometric interpretation
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Geometric interpretation
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Ax=1.34x=λx

An eigenvector is a special
vector that is transformed
into its scalar multiple under 
a given matrix (no rotation!)



Geometric interpretation
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Here we found another
eigenvector for the matrix A

Note that for any single eigenvalue
you have infinite eigenvectors,
but they have the same direction



Matrix-vector multiplication

n Eigenvectors of different eigenvalues are linearly
independent (i.e. ∀α1.. α n è α1v1+.. αnvn≠0)

n For square normal matrixes eigenvectors of 
different eigenvalues define an orthonormal 
space and they are othogonal.

n A square matrix is NORMAL iff it commutes with 
its transpose, i.e. AAT=ATA

n Example: 

n èAAT=                       =ATA
24



Difference between orthonormal
and orthogonal?

n Orthogonal mean that the dot product is null (the 
cosin of the angle is zero). 
Orthonormal mean that the dot product is null
and the norm of the vectors is equal to 1.
What we are actually saying is that eigenvectors

define a set of DIRECTIONS wich are orthogonal
(=an othonormal space).  

n If two or more vectors are orthonormal they are 
also orthogonal but the inverse is not true.
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Why eigenvectors are orthonormal 
(if A is symmetric square matrix)

26

Let v1, v2 be two eigenvectors, and let !" be the eigenvalue
of v1 , then we have:

Either !"= !# or ($"% $#)=0!



Example: projecting a vector on 2 
orthonormal spaces (or “bases”)

27e1,e’1, e2,e’2 are unary vectors and v1,v’1, v2,v’2 are the 
coordinates of v along the directions of e1,e’1, e2,e’2 



The effect of a matrix-vector multiplication is 
governed by eigenvectors and eigenvalues

Let "⃗ be a generic vector and A a normal matrix
n # $ "⃗ = #("'(' + "*(*+ "+(+)  where ", are the 

vector coordinates in the base defined by unary
vectors (,

n Let’s now project the very same vector "⃗ on the
base defined by 3 eigenvectors of matrix A:

"⃗ = "′'(′' + "′*(′*+ "′+(′+= ./0
|20|

3' + ./4
|24|

3*+ ./5|25|
3+

n We then have: "'= ./0
|20|

, "*= ./4|24|
, "+= ./5|25|

n #("'(' + "*(*+ "+(+) = #("'3' + "*3*+ "+3+) 
n #("'3' + "*3*+ "+3+)="'6'3' + "*6*3*+"+6+3+ 28



The effect of a matrix-vector multiplication is 
governed by eigenvectors and eigenvalues  (2)

! " $⃗ = $&'&(& + $*'*(*+$+'+(+

29

Even though x is an 
arbitrary vector, the 
action of A on x
(transformation) is 
determined by the 
eigenvalues/vectors.



Geometric explanation: largest eigenvalues play the 
largest role in the “distortion” of the original vector

Multiplying a matrix and a vector has two effects over the 
vector: rotation (the coordinates of the vector change) and 
scaling (the length changes). The max compression and 
rotation  depends on the largest matrix’s eigenvalues λi

Ax = x1λ1v1 + x2λ2v2 + x3λ3v 3

x is a generic vector with coordinates xi; λi,vi are the eigenvalues
and eigenvectors of A

λ 1>λ2

λ2

λ1



Geometric explanation

In the distorsion, the max effect is played by the
biggest eigenvalues (s1 and s2 in the picture )

The eigenvalues describe the distorsion operated by the 
matrix on the original vector

Ax = x1λ1v1 + x2λ2v2 + x3λ3v 3
λ 1>λ2

λ2

λ1



Summary so far
n A matrix A has eigenvectors v and eigenvalues λ, defined by 

Av=λv
n Eigenvalues can be computed as: 

n We can compute only the the direction of eigenvectors, since
for any eigenvalue there are infinite eigenvectors lying on the 
same direction

n If A is normal (i.e. if AAT=ATA) then the eigenvector form an 
othonormal basis 

n The product of A by ANY vector x is a linear transformation of x
where the rotation is determined by eigenvectors and the 
translation is determined by the eigenvalues. The biggest role 
in this transformation is played by the biggest (principal) 
eigenvalues. 32



Bad news.. 

33

More algebra..



n Let  A  be a square matrix with m orthogonal 
eigenvectors  (hence, A is normal)

n Theorem: Exists an eigen decomposition
n A=UΛU-1

n Λ is a diagonal matrix (all zero except the diagonal 
cells)

n Columns of U are eigenvectors of A
n Diagonal elements of  Λ are eigenvalues of A

Eigen/diagonal Decomposition

34



Diagonal decomposition: why/how
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Then, AU can be written

And A=ULU–1.

Thus AU=UL, or U–1AU=L
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Example

36

From which we get v21=0 and v22 any real

from which we get v11=−2v12

AU=UL

From this we compute λ1=1, λ2=3 



Diagonal decomposition –
example 2
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So what?

n What do these matrices have to do with 
Information Retrieval and document ranking?

n Recall M ´ N term-document matrices … 
n But everything so far needs square normal 

matrices – so you need to be patient and learn 
one last notion
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Singular Value Decomposition for 
non-square matrixes

TVUA S=

M´M M´N V is N´N

For a non-square real M ´ N matrix A of rank r there exists a 
factorization (Singular Value Decomposition = SVD) as follows:

The columns of U are the orthogonal eigenvectors of AAT  

(called left singular vectors).  
The columns of V (rows of VT) are the orthogonal eigenvectors of ATA (called 

right singular eigenvector). NOTE THAT AAT and ATA are square symmetric 

(and hence NORMAL)

ii ls =

( )rdiag ss ...1=S Singular values of A

Eigenvalues l1 … lr of AAT = eigenvalues of ATA and:

39



An example

40



Singular Value Decomposition

n Illustration of SVD dimensions and sparseness

M

N
MxM NxNMxN

All zeros!

So when
we muliply
these
become
zeros, too

So these
become
zeros, too



Back to matrix-vector multiplication

n Remember what we said? In a matrix vector
multiplication the biggest role is played by the 
biggest eigenvalues

n The diagonal matrix Σ has the eigenvalues of 
ATA (called the singular values ! of A) in 
decreasing order along the diagonal

n We can therefore apply an approximation by 
setting σi=0  if σi≤θ and only consider only the 
first k singular values

42



n If we retain only k highest singular values, and set the 
rest to 0, then we don’t need the matrix parts in red

n Then Σ is k�k, U is M�k, VT is k�N, and Ak is M�N
n This is referred to as the reduced SVD, or rank k 

approximation

Reduced SVD

k

43

Now all the red and yellow parts are zeros!!



Let’s recap

44

Since the yellow part is zero, an exact representation of A is:

€ 

A =σ1u1v1
T +σ2u2v2

T + ...+σrurvr
T

r =min(M,N)
But “for some” k<r, a good approximation is:

Ak =σ1u1v1
T +σ 2u2v2

T +...+σ kukvk
T

M<N

M>N



Example of rank approximation
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Approximation error

n How good (bad) is this approximation?
n It’s the best possible, measured by the Frobenius

norm of the error:

where the si are ordered such that si ³ si+1.
n Suggests why Frobenius error drops as k increases.

1
)(:

min +
=

=-=- kFkF
kXrankX

AAXA s
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ii ls =



Images gives a better intuition
(image = matrix of pixels)

47



K=10
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K=20
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K=30
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K=100
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K=322 (the original image)
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We save space!! But this is only
one issue

53



So, finally, back to IR!!!
n Our initial problem was: 

n the term-document (MxN) matrix A is highly
sparse (has many zeros)

n However, since groups of terms tend to co-occur
together, can we identify the semantic space of 
these clusters of terms, and apply the vector
space model in the semantic space defined by 
such clusters (rather than the space of terms)? 

n What we learned so far:
n Matrix A can be decomposed, and rank-k 

approximated using SVD
n Does this help solving our initial problems?  54



A is our term document matrix

n Latent Semantic Indexing via the SVD

n If A is a term/document matrix, then AAT and 
AT A are the (square) matrixes of term and
document co-occurrences, repectively

55



Meaning of ATA and AAT

L = A AT    =   

€ 

Lij   = Aik ATkj

€ 

AT

€ 

ALij = AikA
T
kj

k=1

N
∑ = AikAjk

k=1

N
∑

Lij depends on the number of documents dk in which wi and wj
co-occurr (the non-zero products AikAT

kj of the sum)
Similarly, LT

ij depends on the number of common documents 
for two word pairs (or vice-versa if A is a document-term matrix 
rather than term-document)

Word i in doc k Word j in doc k

T



Example



Term-document matrix
A



Term co-occurrences example

L trees,graph = (000001110) •(000000111)T=2



So the matrix L=AAT is the matrix
of term co-occurrences in docs
n Remember: eigenvectors of a matrix define an orthonormal

space
n Remember: bigger eigenvalues define the “main” directions

of this space
n But: Matrixes L and LT are SIMILARITY (co-occurrence) 

matrixes (respectively, of terms and of documents). They
define a SIMILARITY SPACE (the orthonormal space of their
eigenvectors)

n If the matrix elements are word co-occurrences, bigger
eigenvalues are associated to bigger groups of similar
words

n Similarly, bigger eigenvalues of LT=ATA are associated
with bigger groups of similar documents (those in which
co-occur the same terms)



LSI: the intuition

61

t1

t3t2

Projecting A in the term
space: green, yellow and
red vectors are documents.
If they form small angles,
they have common words
(remember cosin-sim)
The black vector
are the unary eigenvector
of LT: they represent the 
main “directions” of the
document vectors

The blue segments give the
intuition of eigenvalues of 
LT=ATA
Bigger eigenvalues are 
those for
which the projection of all
vectors on the direction of
correspondent eigenvectors
is higher



LSI intuition
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t1

t3t2
We now project our document vectors on the reference orthonormal
system represented by the 3 black vectors

If we multiply all
document vectors
by LT= ATA, their
“distorsion” is mostly
determined by the
highest eigenvalues

d
!"
j = (d j

1,d j
2 ,d j

3)

LT d
!"
j = d j

1λ1v1 + d j
2λ2v2 + d j

3λ 3v 3



LSI intuition
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..If we remove the dimension(s)
with lower eigenvalues (i.e. if we
rank-reduce Σ) we don’t loose
much information

Remember that the two “new” axis represent a combination
of co-occurring words e.g. a latent semantic space

d
!"
j = (d j

1,d j
2 ,d j

3)

LT d
!"
j ≅ d j

1λ1v1 + d j
2λ2v2



Example
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1.000 1.000 0.000 0.000
1.000 0.000 0.000 0.000
0.000 0.000 1.000 1.000
0.000 0.000 1.000 1.000

t1

t2

t3

t4

d1    d2   d3    d4

0.000 -0.851 -0.526  0.000
0.000 -0.526  0.851  0.000

-0.707  0.000  0.000 -0.707
-0.707  0.000  0.000  0.707

2.000 0.000 0.000 0.000
0.000 1.618 0.000 0.000
0.000 0.000 0.618 0.000
0.000 0.000 0.000 0.000

0.000  0.000 -0.707 -0.707
-0.851 -0.526  0.000  0.000
0.526 -0.851  0.000  0.000
0.000  0.000 -0.707  0.707

x x

1.172 0.724 0.000 0.000
0.724 0.448 0.000 0.000
0.000 0.000 1.000 1.000
0.000 0.000 1.000 1.000

We project terms
and docs on two
dimensions, v1 and v2
(the principal eigenvectors) 

We have two latent semantic
coordinates: s1:(t1,t2) and
s2:(t3,t4)

Approximated
new term-doc
matrix

Even if t2 does not occur in d2, now if we query
with t2 the system will return also d2!!

Note that the direction of each eigenvector is determined by
the direction of just two terms: (t1,t2) or (t3,t4)



Co-occurrence space

n In principle, the space of document or 
term co-occurrences is much (much!) 
higher than the original space of terms!!

n But with SVD we consider only the most
relevant ones, trough rank reduction
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A =U VT ≅Uk∑ ΣkVk
T = Ak



Summary so-far

n We compute the SVD rank-k approximation for 
the term-document matrix A

n This approximation is based on considering only
the principal eigenvalues of the term co-
occurrence and document similarity matrixes
(L=AAT and LT=ATA)

n The eigenvectors of the eigenvalues of L=AAT

and LT=ATA represent the main
“directions”(principal components) identified by 
term vectors and document vectors, respectively. 
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Principal components
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LSI: what are the steps

n From term-doc matrix A, compute the rank-k 
approximation Ak. with SVD

n Project  docs and queries in a reduced 
space of k<<r dimensions (the k “survived” 
eigenvectors) and compute cos-similarity as 
usual

n These dimensions are not the original axes 
(terms), but those defined by the orthonormal 
space of the reduced matrix Ak
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Aq
!
≅ Ak q
!

=σ1q1v
!
1 +σ 2q2v

!
2 + ...σ kqk v

!
k

Where σiqi (i=1,2..k<<r) are the new coordinates of q in the 
orthonormal space of Ak 



Projecting terms documents and 
queries in the LS space
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A

If A=USVT we also 
have that:

V = ATUS-1

t = t�TSVT

d = d�TUS-1

q = q�TUS-1

After rank k-
approximation :

A�Ak=UkSkVk
T

dk � dTUkSk
-1

qk � qTUkSk
-1

sim(q, d) = 
sim(qTUkSk

-1, 
dTUkSk

-1)



Consider a term-doc matrix MxN
(M=11, N=3) and a query q

query

A



1. Compute SVD:  A= USVT



2. Obtain a low rank approximation 
(k=2) Ak= UkSkVT

k

“latent” 2-dimensional 
term- similarity space 

“latent” document-
similarity space 



3a. Compute doc/query similarity

n For N documents, Ak has N columns, each 
representing the coordinates of a document di
projected in the k LSI dimensions

n A query is considered like a document, and is 
projected in the LSI space



3c. Compute the query vector
qk = qTUkSk

-1

q is projected in the 2-dimension LSI space!



Documents and queries projected 
in the LSI space



q/d similarity



An overview of a semantic network of terms
based on the top 100 most significant latent
semantic dimensions (Zhu&Chen)
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Conclusion

n LSI performs a low-rank approximation of 
document-term matrix (typical rank 100–300)

n General idea
n Map documents (and terms) to a low-

dimensional representation.
n Design a mapping such that the low-dimensional 

space reflects semantic associations between 
words (latent semantic space).

n Compute document similarity based on the cos-
sim in this latent semantic space



Another LSI Example



t1
t2
t3
t4

d1           d2         d3

AT

t1
t2
t3
t4

Term co-occurrencesAAT



Ak=UkΣkVk
T≈A

Now it is like if t3 belongs to d1!



Problems with SVD

n Computational cost scales quadratically for
n x m matrix: O(mn2) flops (when n<m)

n Hard to incorporate new words or documents

n Does not consider order of words

n Anything better?

n (note that there are a variety of methods similar

to SVD, see “principal component analysis”, 

based on same principles  - finding the “main 

directions” of a set of vectors in a multi-

dimensional space)
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Is there anything more advanced than co-
occurrences to learn correlations?

n Traditional IR uses Term 
matching, → # of times the doc 
says “Albuquerque” – not fully 
appropriate

n We can use a different 
approach: compare all-pairs of 
query-document terms, → # of 
terms in the doc that relate to 
Albuquerque

n To detect these similarities (next 
lessons):
n Latent Semantic Indexing
n Word embeddings (a.k.o. 

deep method)



IR with word embeddings
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Word Embedding approach: main 
ideas

n Represent each word with a low-dimensional vector (like 
for LSI)

n Word similarity = vector similarity  (two words with 
similar vectors, are similar)

n Key idea: learn to predict surrounding words in the 
context of every word, or,  learn to predict a word from its 
surrounding context

n Faster and, wrt SVD,  can easily incorporate a new 
sentence/document or add a new word to the vocabulary
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Key idea: semantic similarity among words 
depends on similarity among word contexts in 
documents

86
Co-occurrences are considered in a left-right context,
Word ordering DOES matter



Let’s consider the following 
example…

n We have four (tiny) documents:

Document 1 : “seattle seahawks jerseys”
Document 2 : “seattle seahawks highlights”
Document 3 : “denver broncos jerseys”
Document 4 : “denver broncos highlights”
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Basic difference with previous 
methods  (e.g. LSI with SVD)

88SVD would group words based on co-occurrences in documents



If we use context vectors:

89

Every position in the vector is a tuple <word, distance from “center”
word> an tells us how many times we see that word in the left(right)
context of  a word (e.g. seahawks is found 2 times in position +1 
to the right of seattle) è p(wt�i/wt)



Embeddings
n These “context  vectors” are very high dimensional

(thousands, or even millions) and sparse.
n But there are techniques to learn lower-dimensional 

dense vectors for words using the same intuitions.
n These dense vectors are called embeddings.
n Rather than using matrix factorization techniques 

(such as SVD) we use deep neural methods. 
n The objective is to represent each word with a dense 

vector, such that similar words have similar 
vectors

n We can, as for LSI, consider the dimensions of 
this dense space as “concepts” or “semantic 
domains” 90



Word Embeddings – Skip Grams 
Model 
n Objective: Given a specific word in 

the middle of a sentence (the input 
word  wt), look at the words
nearby and pick one at random. 
The neural network should tell us
the probability for every word in 
our vocabulary of being the 
“nearby word” that we chose.

n "nearby” means that there is a 
"window size" parameter m to the 
algorithm. A typical window size
might be 5, meaning 5 words
behind and 5 words ahead (10 in 
total).

n Our examples hereafter will be 
with smaller m (1 or 2) 91



The neural embedding model

92

One-hot vector for 
an input word (e.g., 
“ants”)

There is no activation function on the hidden 
layer neurons (only sum), but the output 
neurons use softmax, to output probabilities.

For every possible word, oj=p(wj)
gives the probability that the word 
is found in the context of the input 
word



Very same model in terms of 
matrixes (=the neural weights)

93

|V| is the vocabulary size, d is the 
dimension of the dense encoding,
and we must learn matrixes W and  W’

Note we use a context of only ±1 in this example 
(one word to the left, one to the right)



Training examples  (e.g., for a  +-2 
window around center)

n The network is trained by  feeding it word pairs
found in all training documents.
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The network is going to learn the statistics 
from the number of times each “pairing” 
shows up  P(wt�i/wt)  (e.g., P(fox+2/quick)



Training steps (1)
n Consider the simple sentence ”red cat over the puddle".  

Suppose  “over” is the current center of the context (our wt). 
n For this example, the input word wt to the learner is over, and 

the 4 “ground truth” output are “redt-2” “catt-1” “thet+1” “puddlet+2”,   
if the window size is m= �2

n We start by generating a “one-hot” vector xt for the input, that is, 
a boolean |V|-dimensional vector with all zeros and a 1 in 
position t, corresponding to the word “over” in the vocabulary V.

n We obtain the embedded vector by multiplication:  vt=W�xt
n If m is the window size, we generate 2m output vectors using 

W’: yt-m.. yt-1, yt+1..yt+m such that  yj=W’j�vt

n These vectors are turned into probability vectors oj using 
softmax (Σk (oj

k)=1). Note that since the matrix W’ is the same, 
all output vectors are equal! But we update one at the time.
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Training step (2)
n Each kth coordinate of any of the 2m softmax output vectors 

oj (1�|V| ) represents the probability that the context word at 
distance t�j from our center word wt is wk

n We now generate the 2m one-hot vectors xj corresponding to 
the current example: for example, in the sentence ”red cat 
over the puddle” , the one-hot vector xt-2representing the 
“ground truth” has all zeros and a 1 in the position 
corresponding to the word  “red”

n The one-hot vectors are (one at the time) compared with the 
generated 2m output vectors oj, and a loss (error) function is 
used to update the weights of all matrixes W and W’ (with 
back-propagation) 

n The process is repeated for all sentences and center words 
until convergence – matrix W and the 2m matrixes W’ no 
longer change. 96
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over

−
"#$
%&'(
)*++,'
('+
$%#-$
.#/

6 words vocabulary 0
0
0
1
0
0

red

Training instance: <w(t)=over, w(t-2)=red)>

We compare ground truth one-hot vector with output 
vector and backpropagate
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over

−
"#$
%&'(
)*++,'
('+
$%#-$
.#/

6 words vocabulary

0
0
0
1
0
0

red

Training instance: <w(t)=over, w(t-2)=red)>

We repeat for the second word (note that W and W’ have
changed after the previous step, although not shown in figure)
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over

−
"#$
%&'(
)*++,'
('+
$%#-$
.#/

6 words vocabulary

We repeat the forward/backword step with the third and 
fourth training contexts (the+1 and puddle +2), and then for
all other words and contexts



Summary of steps

n We begin by collecting from the corpus the tuples 
<w(t),w(t±")> where w(t)∈ % and i=1…m

n The Skip-gram neural net iterates through all words 
one at a time, with input w(t). 

n Each input word w(t) is fed forward through the 
network m*2 times, once for each output context 
vector (and then again for all retrieved contexts). 

n Each time w(t) is fed through the network, it is linearly 
transformed through two weight matrices W and W’ 
to an output layer that contains nodes representing a 
context location: where m=2, those context locations 
are from w(t-2) to w(t+2). 
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Summary of steps (2)
n The output nodes, each the size of the vocabulary V, contain scores at 

each index estimating the likelihood that a word in the vocabulary 
would appear in that context position.

n For each given training instance, the net will calculate its error between 
the probability generated for each word in each context location and the 
observed reality of the words in the context of the training instance. 

n For example, the net may calculate that “cat” has a 70% chance of 
showing up two words before the word “over”, but we can determine 
from the source corpus that the probability is really 0%. Through the 
process of backpropagation, the net will modify the weight matrices to 
change how it projects the input layer through to the output layer in 
order to minimize its error: for example, to minimize the error between 
the calculated 70% and the observed 0%. 

n Then the next word in the corpus will be sent as an input m*2 times, 
then the next, and so on.
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Additional details
n Suggested reading for embedding algorithms (Skip-grams and CBOW): 

https://cs224d.stanford.edu/lecture_notes/notes1.pdf
n See also details for the loss function
n As is, summations and weight updating over |V| dimensional matrixes is

very time-consuming (the vocabulary is huge, order of millions!  And we
have millions contexts)

n Negative sampling is commonly used: For every training step, instead 
of looping over the entire vocabulary, we can just sample several 
negative examples (random word sequences). We "sample" (2m+1) 
word sequences from a noisy distribution (Pn(w) ) whose word prior 
probabilities match the ordering of the frequency of the vocabulary in 
the corpus. 

n With NS, we build a new objective function that tries to maximize the 
probability of a word and context being in the corpus data if it indeed is, 
and maximize the probability of a word and context not being in the 
corpus data if it indeed is not.

n Details on https://arxiv.org/pdf/1310.4546.pdf 102

https://cs224d.stanford.edu/lecture_notes/notes1.pdf


Negative sampling (more on)
n Training a neural network means taking a training example and 

adjusting all of the neuron weights slightly so that it predicts that
training sample more accurately. In other words, each training 
sample will adjust all of the weights in the neural network.

n Negative sampling addresses this by having each training 
sample only modify a small percentage of the weights, rather
than all of them. 

n With negative sampling, we randomly select just a small number
of “negative” words (let’s say 5) to update the weights for. (here, 
a “negative” word wn is one for which we want the network to 
output a 0 in the correspondent n-th position of output context
vectors oj). We will also still update the weights for our
“positive” words (e.g., “cat” “puddle” in previous example).

n Negative words are randomly selected
103



Word embedding hyperparameters

n V  dimension of vocabulary
n d dimension of embeddibg vectors
n m dimension of context
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Matrixes W and W’
n Several implementations: 

word2vect and Glove 
among the most well 
known

n Google word2vect original 
paper has d=300 and 
|V|=10,000

n The matrix W is what we are 
really interested in: the 
embedding matrix. 

n It has the property that words 
with similar embedding 
vectors are similar. 105
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Applications of Word Embeddings
to IR

n Word embeddings are the “hot new” technology 
for document ranking

n Lots of applications wherever knowing word 
contexts or similarity helps predicting users’ 
interests:
n Synonym handling in search 
n Query expansion
n Document “aboutness”
n Machine translation
n Sentiment analysis
n …. 109



Applications of Word Embeddings
to IR: Google RankBrain

n Google’s RankBrain – almost nothing is publicly 
known
n Bloomberg article by Jack Clark (Oct 26, 2015):
n http://www.bloomberg.com/news/articles/2015-10-

26/google-turning-itslucrative-web-search-over-to-
ai-machines

n A result re-ranking system
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http://www.bloomberg.com/news/articles/2015-10-26/google-turning-itslucrative-web-search-over-to-ai-machines


Weakness of Word Embedding

n Very vulnerable, and not a robust concept

n Can take a long time to train (despite 

negative sampling  and other “tricks”)

n Non-uniform results

n Hard to understand and visualize

n Emerging technique, yet not sufficiently 

robust and well understood

n Yet very cool (Google uses it – with other 

methods)


