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Latent Semantic Indexing 

n  Term-document matrices are very large, 
though most cells are “zeros” 

n  But the number of topics that people talk 
about is small (in some sense) 
n  Clothes, movies, politics, … 
n  Each topic can be represented as a 

cluster of (semantically) related terms, 
e.g.:  clothes=golf, jacket, shoe.. 

n  Can we represent the term-document 
space by a lower dimensional “latent” 
space  (latent space=set of topics)? 
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Searching with latent topics 
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n  Given a collection of documents, LSI learns clusters 
of frequently co-occurring terms (ex: information 
retrieval, ranking and web)!

n  If you query with ranking, information 
retrieval LSI  “automatically”  extends the search 
to documents including also (and even ONLY) web  
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The most relevant words 
associated with golf in these 

docs are: 
Car, Topgear and Petrol 

Rank of 
selected 

documents  
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3 *(20/16) = 4 
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If we consider the co-occurring terms  
with higher tf*idf, 

car e topgear turn out to  
be related to Golf 
more than petrol 
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We now search with all 
the words in the “semantic domain” of Golf . 

The list of retrieved docs now 
is based on  Golf and the other  

related words 
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The co-occurrence based 
ranking improves the performance. 

Note that one of the most relevant doc does  
NOT include the word Golf, and  

a doc with a “spurious” 
sense disappears 



Ranking with  latent Semantic 
Indexing  

n  Previous example just gives the intuition 
n  Latent Semantic Indexing is an algebraic method to 

identify clusters of co-occurring terms, called “latent 
topics”, and to compute query-doc similarity in a 
latent space, in which every coordinate is a latent 
topic. 

n  A “latent” quantity is one which cannot directly 
observed, what is observed is a measurement which 
may include some amount of random errors (topics 
are “latent” in this sense: we observe them, but they 
are an approximation of “true” semantic topics) 

n  Since it is an algebraic method, needs some linear 
algebra background 
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Linear Algebra 
Background 
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The LSI method: how to detect “topics” 



Eigenvalues & Eigenvectors 

n  Eigenvectors (for a square m×m matrix S) 

n  Def: A vector v ∈ Rn, v ≠ 0, is an eigenvector of a 
matrix mxm A with corresponding eigenvalue λ, if: 
Av = λv 

eigenvalue (right) eigenvector 

Example 

11 

Av = λv 

Av = λv 



Algebraic method 

n  How many eigenvalues are there at most? 
   Av = λv   

12 

equation has a non-zero solution if  

Where I is the identity matrix  
this is a m-th order equation in λ which can have at 
most m distinct solutions (roots of the characteristic 
polynomial) – can be complex even though A is real. 

A

A A



Example of eigenvector/eigenvalues 
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Example of computation 
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Note that we compute only the DIRECTION of eigenvectors  



Geometric interpretation 
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A matrix-vector multiplication Ax 
is a linear transformation over 
the vector 



Matrix vector multiplication 

16 

Matrix multiplication by a vector = a linear transformation of  
the initial vector, that implies rotation and translation 
 



Geometric interpretation 
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Geometric  interpretation 
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Ax=1.34x=λx 

An eigenvector is a special 
vector that is transformed  
into its scalar multiple under  
a given matrix (no rotation!) 



Geometric interpretation 
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Here we found another 
eigenvector for the matrix A 

Note that for any single eigenvalue 
you have infinite eigenvectors, 
but they have the same direction 



Matrix-vector multiplication 

n  Eigenvectors of different eigenvalues are linearly 
independent (i.e. ∀α1.. α n è  α1v1+.. αnvn≠0) 

n  For square normal matrixes eigenvectors of 
different eigenvalues define an orthonormal 
space and they are othogonal. 

n  A square matrix is NORMAL iff it commutes with 
its transpose, i.e. AAT=ATA 

n  Example:  

n                            èAAT=                       =ATA 
20 



Difference between orthonormal 
and orthogonal? 

n  Orthogonal mean that the dot product is null (the 
cosin of the angle is zero).  
Orthonormal mean that the dot product is null 
and the norm of the vectos is equal to 1. 
 What we are actually saying is that eigenvectors 
define a set of DIRECTIONS wich are 
orthogonal.   

n  If two or more vectors are orthonormal they are 
also orthogonal but the inverse is not true. 

21 



Example: projecting a vector on 2 
orthonormal spaces (or “bases”) 

22 e1,e’1, e2,e’2 are unary vectors and v1,v’1, v2,v’2 are the  
coordinates of v along the directions of e1,e’1, e2,e’2  



The effect of a matrix-vector multiplication is 
governed by eigenvectors and eigenvalues 

n  A matrix-vector multiplication such as Ax  (A normal 
matrix, x a generic vector as in the previous slide) can be 
rewritten in terms of the eigenvalues/vectors of A. 
Example: 

 
n  Where v1,v2 v3 are the (orthogonal) eigenvectors of A 

n  Even though x is an arbitrary vector, the action of 
A on x (transformation) is determined by the 
eigenvalues/vectors. 

n  Why? 

Ax = A(2v1 + 4v2 +6v 3)
Ax = 2Av1 + 4Av2 +6Av 3= 2λ1v1 + 4λ2v2 +6λ 3v 3
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Geometric explanation 

Multiplying a matrix and a vector has two effects over the 
vector: rotation (the coordinates of the vector change) and 
scaling (the length changes). The max compression and 
rotation  depends on the matrix’s eigenvalues λi (s1,s2 and 
s3 in the picture) 

Ax = x1λ1v1 + x2λ2v2 + x3λ3v 3

x is a generic vector with coordinates xi; λi,vi are the eigenvalues 
and eigenvectors of A 



Geometric explanation 

In the distorsion, the max effect is played by the 
biggest eigenvalues  (s1 and s2 in the picture ) 

The eigenvalues describe the distorsion operated by the 
matrix on the original vector 



Summary  so far 
n  A matrix A has eigenvectors v and eigenvalues λ, defined by 

Av=λv 
n  Eigenvalues can be computed as:  

n  We can compute only the the direction of eigenvectors, since for 
any eigenvalue there are infinite eigenvectors lying on the same 
direction 

n  If A is normal (i.e. if AAT=ATA) then the eigenvector form an 
othonormal basis  

n  The product of A by ANY vector x is a linear transformation of x 
where the rotation is determined by eigenvectors and the 
translation is determined by the eigenvalues. The biggest role 
in this transformation is played by the biggest eigenvalues. 26 



n  Let  A  be a square matrix with m orthogonal 
eigenvectors  (hence, A is normal) 

n  Theorem: Exists an eigen decomposition                       
n  A=UΛU-1 

n  Λ  is a diagonal matrix (all zero except the diagonal 
cells) 

n  Columns of U are eigenvectors of A 

n  Diagonal elements of  Λ   are eigenvalues of A 

 

Eigen/diagonal Decomposition 

27 



Diagonal decomposition: why/how 
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Then, AU can be written 

And A=UΛU–1. 

Thus AU=UΛ, or U–1AU=Λ 
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Example 
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From which we get v21=0 and v22 any real  

from which we get v11=−2v12 

AU=UΛ 

From this we compute λ1=1, λ2=3  



Diagonal decomposition – 
example 2 

Recall  A= 2 1
1 2
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So what? 

n  What do these matrices have to do with 
Information Retrieval and document ranking? 

n  Recall M × N term-document matrices …  
n  But everything so far needs square normal 

matrices – so you need to be patient and learn 
one last notion 

31 



Singular Value Decomposition for 
non-square matrixes 

TVUA Σ=

M×M M×N V is N×N 

For a non-square M × N matrix A of rank r there exists a  
factorization (Singular Value Decomposition = SVD) as follows: 

The columns of U are orthogonal eigenvectors of AAT   

(left singular vectors).   
The columns of V are orthogonal eigenvectors of ATA (right  
singular eigenvector). NOTE THAT AAT and ATA are square symmetric  
(and hence NORMAL) 

ii λσ =

( )rdiag σσ ...1=Σ Singular values. 

Eigenvalues λ1 … λr of AAT = eigenvalues of ATA  and: 

32 



An example 
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Singular Value Decomposition 

n  Illustration of SVD dimensions and sparseness 

M 

N 
MxM NxN MxN 

All zeros! 

So these 
become  
zeros, too 

So these 
become  
zeros, too 



Back to matrix-vector multiplication 

n  Remember what we said? In a matrix vector 
multiplication the biggest role is played by the 
biggest eigenvalues 

n  The diagonal matrix Σ has the eigenvalues of 
ATA (called the singular values of A) in 
decreasing order along the diagonal 

n  We can therefore apply an approximation by 
setting σi=0  if σi≤θ  and only consider the first k 
singular values 

35 



n  If we retain only k singular values, and set the rest to 0, 
then we don’t need the matrix parts in red 

n  Then Σ is k×k, U is M×k, VT is k×N, and Ak is M×N  
n  This is referred to as the reduced SVD, or rank k 

approximation 

Reduced SVD 

k 

36 

Now all the red and yellow parts are zeros!! 



Let’s recap 
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Since the yellow part is zero, an exact representation of A is: 

€ 

A =σ1u1v1
T +σ2u2v2

T + ...+σrurvr
T

r =min(M,N)
But “for some” k<r, a good approximation is: 

Ak =σ1u1v1
T +σ 2u2v2

T +...+σ kukvk
T

M<N 

M>N 



Example of rank approximation 
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Approximation error 

n  How good (bad) is this approximation? 
n  It’s the best possible, measured by the Frobenius 

norm of the error: 

where the σi are ordered such that σi ≥ σi+1. 
n  Suggests why Frobenius error drops as k increases. 

1
)(:

min +
=

=−=− kFkF
kXrankX

AAXA σ
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ii λσ =



Images gives a better intuition 
(image = matrix of pixels) 
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K=10 

41 



K=20 
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K=30 
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K=100 

44 



K=322 (the original image) 
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We save space!! But this is only 
one issue 

46 



So, finally, back to IR 

n  Our initial problem was:  
n  the term-document (MxN) matrix A is highly 

sparse (has many zeros) 
n  However, since groups of terms tend to co-occur 

together, can we identify the semantic space of 
these clusters of terms, and apply the vector 
space model in the semantic space defined by 
such clusters?  

n  What we learned so far: 
n  Matrix A can be decomposed and rank k 

approximated using SVD 
n  Does this help solving our initial problems?   47 



A is our term document matrix 

n  Latent Semantic Indexing via the SVD 

n  If A is a term/document matrix, then AAT and 
AT A are the matrixes of term and document 
co-occurrences, repectively 

48 



Meaning of ATA and AAT 

L = A AT    =   

€ 

Lij   = Aik ATkj

€ 

AT

€ 

ALij = AikA
T
kj

k=1

N
∑ = AikAjk

k=1

N
∑

Lij is the number of documents in which wi and wj  
co-occurr  
Similarly, LT

ij
 is the number of co-occurring words in docs di and dj 

(or viceversa if A is a document-term matrix rather than  
term-document) 

Word i in doc k Word j in doc k 



Example 



Term-document matrix 
A 



Term co-occurrences example 

L trees,graph = (000001110) •(000000111)T=2 



So the matrix L=AAT is the matrix 
of term co-occurrences 

n  Remember: eigenvectors of a matrix define an orthonormal 
space 

n  Remember: bigger eigenvalues define the “main” directions 
of this space 

n  But: Matrix L and LT are SIMILARITY matrixes (respectively, 
of terms and of documents). They define a SIMILARITY 
SPACE (the orthonormal space of their eigenvectors) 

n  If the matrix elements are word co-occurrences, bigger 
eigenvalues are associated to bigger groups of similar 
words  

n  Similarly, bigger eigenvalues of LT=ATA are associated 
with bigger groups of similar documents (those in which 
co-occur the same terms) 



LSI: the intuition 
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t1 

t3 t2 

Projecting A in the term 
space: green, yellow and 
red vectors are documents. 
If they form small angles, 
they have common words 
(remember cosin-sim) 
The black vector 
are the unary eigenvector 
of A: they represent the  
main “directions” of the 
document vectors 

The blue segments give the 
intuition of eigenvalues of 
LT=ATA 
Bigger eigenvalues are 
those for 
which the projection of all 
vectors on the direction of 
correspondent eigenvectors 
is higher 



LSI intuition 
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t1 

t3 t2 
We now project our document vectors on the reference orthonormal 
system represented  by the 3 black vectors 

If we multiply all 
document vectors 
by LT= ATA, their 
“distorsion” is mostly 
determined by the 
highest eigenvalues 

d
!"
j = (d j

1,d j
2 ,d j

3)

LT d
!"
j = d j

1λ1v1 + d j
2λ2v2 + d j

3λ 3v 3



LSI intuition 
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..If we remove the dimension(s) 
with lower eigenvalues (i.e. if we  
rank-reduce Σ) we don’t loose 
much information 

Remember that the two “new” axis represent a combination  
of co-occurring words e.g. a latent semantic space 

d
!"
j = (d j

1,d j
2 ,d j

3)

LT d
!"
j ≅ d j

1λ1v1 + d j
2λ2v2



Example 
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1.000 1.000 0.000 0.000 
1.000 0.000 0.000 0.000 
0.000 0.000 1.000 1.000 
0.000 0.000 1.000 1.000 

t1 
t2 
t3 
t4 

d1    d2   d3    d4 

0.000 -0.851 -0.526  0.000 
 0.000 -0.526  0.851  0.000 
-0.707  0.000  0.000 -0.707 
-0.707  0.000  0.000  0.707 

2.000 0.000 0.000 0.000 
0.000 1.618 0.000 0.000 
0.000 0.000 0.618 0.000 
0.000 0.000 0.000 0.000 

0.000  0.000 -0.707 -0.707 
-0.851 -0.526  0.000  0.000 
 0.526 -0.851  0.000  0.000 
 0.000  0.000 -0.707  0.707 

x x 

1.172 0.724 0.000 0.000 
0.724 0.448 0.000 0.000 
0.000 0.000 1.000 1.000 
0.000 0.000 1.000 1.000 

We project terms 
and docs on two  
dimensions, v1 and v2 
(the principal eigenvectors)  

We have two latent semantic 
coordinates: s1:(t1,t2) and 
s2:(t3,t4) 

Approximated 
new term-doc 
matrix 

Even if t2 does not occur in d2, now if we query 
with t2 the system will return also d2!! 

Note that the direction of each eigenvector is determined by 
the direction of just two terms: (t1,t2) or (t3,t4) 



Co-occurrence space 

n  In principle, the space of document or 
term co-occurrences is much (much!) 
higher than the original space of terms!! 

n  But with SVD we consider only the most 
relevant ones, trough rank reduction 
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A =U VT ≅Uk∑ ΣkVk
T = Ak



Summary so-far 

n  We compute the SVD rank-k approximation for 
the term-document matrix A 

n  This approximation  is based on considering only 
the principal eigenvalues of the term co-
occurrence and document similarity matrixes 
(L=AAT and LT=ATA) 

n  The eigenvectors of the eigenvalues of L=AAT 
and LT=ATA represent the main “directions” 
identified by term vectors and document vectors, 
respectively.  
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LSI: what are the steps 

n  From term-doc matrix A, compute the 
approximation Ak. with SVD 

n  Project  docs, terms and queries in a space of 
k<<r dimensions (the k “survived” 
eigenvectors) and compute cos-similarity as 
usual 
n  These dimensions are not the original 

axes, but those defined by the orthonormal 
space of the reduced matrix Ak  
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Aq
!
≅ Ak q
!
=σ1q1v

!
1 +σ 2q2v

!
2 + ...σ kqk v

!
k

Where σiqi (i=1,2..k<<r) are the new coordinates of q in the  
orthonormal space of Ak  



Projecting terms documents and 
queries in the LS space 
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A 

If A=UΣVT we also 
have that: 

V = ATUΣ-1 

t = t∧TΣVT 

d = d∧TUΣ-1 
q = q∧TUΣ-1 

 
 
 
 
 

After rank k-
approximation : 

A≅Ak=UkΣkVk
T 

dk ≅ dTUkΣk
-1 

qk ≅ qTUkΣk
-1 

sim(q, d) = 
sim(qTUkΣk

-1, 
dTUkΣk

-1) 
 



Consider a term-doc matrix MxN 
(M=11, N=3) and a query q 

query 

A 



1. Compute SVD:  A= UΣVT 



2. Obtain a low rank approximation 
(k=2) Ak= UkΣkVT

k 



3a. Compute doc/query similarity 

n  For N documents, Ak has N columns, each 
representing the coordinates of a document di 
projected in the k LSI dimensions  

n  A query is considered like a document, and is 
projected in the LSI space 



3c. Compute the query vector 

qk = qTUkΣk
-1 

 

q is projected in the 2-dimension LSI space! 



Documents and queries projected 
in the LSI space 



q/d similarity 



 An overview of a semantic network of terms 
based on the top 100 most significant latent 
semantic dimensions  (Zhu&Chen) 
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Conclusion 

n  LSI performs a low-rank approximation of 
document-term matrix (typical rank 100–300) 

n  General idea 
n  Map documents (and terms) to a low-

dimensional representation. 
n  Design a mapping such that the low-dimensional 

space reflects semantic associations between 
words (latent semantic space). 

n  Compute document similarity based on the cos-
sim in this latent semantic space 



Another LSI Example 





t1 
t2 
t3 
t4 

d1           d2         d3 

AT 

t1 
t2 
t3 
t4 

Term co-occurrences AAT 



Ak=UkΣkVk
T≈A 

Now it is like if t3 belongs to d1! 


