Latent Semantic Indexing




Latent Semantic Indexing

= [erm-document matrices are very large,
though most cells are “zeros”

= But the number of topics that people talk
about is small (in some sense)

= Clothes, movies, politics, ...

= Each topic can be represented as a
cluster of (semantically) related terms,
e.g.. clothes=golf, jacket, shoe..

= Can we represent the term-document
space by a lower dimensional “latent”
space (latent space=set of topics)?



Searching with latent topics

s Given a collection of documents, LSI learns clusters
of frequently co-occurring terms (ex: information
retrieval, ranking and web)

= If you query with ranking,
LS| “automatically” extends the search

to documents including also (and even ONLY) web



~

Document base (20)

With standard VSM
4 documents are selected

Selection based on ‘Golf’
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20 documents

Selection based on ‘Golf’

i1

1

Golf
Tiger

Woods
Belfry

Tee

The most relevant words
associated with golf in thes_
docs are:

Car, Topgear and Petrol

N /




20 docs

Selezione basata su ‘Golf’

1

Golf
Tiger
Woods
Belfry

If we consider the co-occurring terms
with higher tf*idf,
car e topgear turn out to
be related to Golf
more than petrol

.




We now search with all
the words in the “semantic domain” of Golf .
The list of retrieved docs now
is based on Golf and the other
related words

Selection based on the semantic dom



20 docs
l The co-occurrence based
ranking improves the performance.
Note that one of the most relevant doc does
NOT include the word Golf, and
a doc with a “spurious”
sense disappears

Selection based on semantic

Golf
Rank

Tiger
Woods
Belfry
Tee

/
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Ranking with latent Semantic

Indexing

= Previous example just gives the intuition

= Latent Semantic Indexing is an algebraic method to
identify clusters of co-occurring terms, called “latent
topics”, and to compute query-doc similarity in a
latent space, in which every coordinate is a latent
topic.

= A “latent” quantity is one which cannot directly
observed, what is observed is a measurement which
may include some amount of random errors (topics
are “latent” in this sense: we observe them, but they
are an approximation of “true” semantic topics)

= Since it is an algebraic method, needs some linear
algebra background



The LS| method: how to detect “topics”

Linear Algebra
Background
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Eigenvalues & Eigenvectors

= Eigenvectors (for a square mxm matrix S)

/‘?‘V 7"\"\ Example
(right) eigenvector eigenvalue <6 _2) (‘) ( ) 72 C)
v ER™ £ AER N A\‘/ Ky

= Def: A vectorvE R", v #0, is an eigenvector of a
matrix mxm A with correspondlng eigenvalue A, if:

Av = \v
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Algebraic method

= How many eigenvalues are there at most?
Av = A\v

equation has a non-zero solution if A — AI| =0

Av=)v < (A-A)v=0

Where | is the identity matrix

this is a m-th order equation in A which can have at

most m distinct solutions (roots of the characteristic
polynomial) - can be complex even though A is real.
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Example of eigenvector/eigenvalues

- @0 0@ 0 —
A3 2)e{3 )
3 5 -3
Av=Ay
1 -1 oyl 1
3 5 -3 -3
1+-3(-1) | 4
3+5(-3) -12
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Example of comniitation

remember
- [ TR
a b
det M =| M |= — ad - begD(A=5)+3=0
A=(l '1) ¢ 4 L 6A+5+3=0
3 5
A -6A+8=0
det(A-AN =0
2 and 4 are the (A -4 2)=(-) -
- )_ll eigenvalues of S 7 Characteristic
S ) —  polynomial
1 -1 | (A O _0 ( =(0 (_7”-5‘}0
3 5 0 A ) _1 O) ;
(I—A -1 )—o (o Lg )M\ o
- 0
I ( -1 —1 o 0)
{ -3a-=0 B —3a 0
3a+ =0 a-f=0
5
3a+3p=0

Note that we compute only the DIRECTION of eigenvectors



Geometric interpretation
e R iEEECECm—

3.00| [-2.00 1.28
Ax = .
1.00| [0.00 3.14

w
l

T L L L L L L L L L L] L] L] L] L] L L
-6 -4 . 2 4
1

I A matrix-vector multiplication Ax
.+ is a linear transformation over
the vector
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Matrix vector multiplication

aii a2 .o Ain I a11T1 +a12&2 +*** + A1n Ty
@y QG ... Q3, ) 91 &1 + ATy + *** T A2, T
AX - pr—
| Qi Q2 een Qun ] LTqh | Q1 . Q29 oo Qrnnln

Matrix multiplication by a vector = a linear transformation of
the initial vector, that implies rotation and translation
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Geometric interpretation

3.00| [-2.00 1.84
Ax = .
1.00| [0.00 2.48

/
111111111111111111111111
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Geometric interpretation

e |

xxxxx

] [o] 1

0.76

11111111

YYYYY

rrrrrrrr

A=134 44

det(A-AT) = -0.22

0.97 |51
A-ADx=1 g4 | T
6+

rrrrrrrrrrr

Ax=1.34x=AXx

An eigenvector is a special
vector that is transformed
Into its scalar multiple under
'a given matrix (no rotation!)
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Geometric interpretation

[ 3.00| [-2. -2.88 T
Ax — ~ 54
142

Here we found another
eigenvector for the matrix A

1111111111111
IIIIIIIIIIIII

. ’Ax ar
o o+ Note that for any single eigenvalue
e r you have infinite eigenvectors,
win--022 L put they have the same direction

-1.94 | 51
(A-ax=| oo 6~- 19



Matrix-vector multiplication

= Eigenvectors of different eigenvalues are linearly
independent (i.e. Va,.a, =2 a,v.+.. a,v,70)

= For square normal matrixes eigenvectors of
different eigenvalues define an orthonormal

space and they are othogonal.

= A square matrix is NORMAL iff it commutes with
its transpose, i.e. AAT=ATA

= Example:

. A= (o 1 1) D AAT- (1 - 1) =ATA
10 1 1 1 2

20



Difference between orthonormal

and orthogonal?

= Orthogonal mean that the dot product is null (the
cosin of the angle is zero).
Orthonormal mean that the dot product is null
and the norm of the vectos is equal to 1.
What we are actually saying is that eigenvectors
define a set of DIRECTIONS wich are

orthogonal.

= If two or more vectors are orthonormal they are
also orthogonal but the inverse is not true.

21



Example: projecting a vector on 2
orthonormal spaces (or “bases”)

The same vector will have different components
with respect to different bases.

!
€,
~

1 2 1l 2
v=ve +ve v=v'e| +v7ie,

V;Cj

Vlel

e,
e,.e,, e,e,are unary vectors and v,,v',, v,,vV,are the
coordinates of v along the directions of e,,e’,, e,,e’,
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The effect of a matrix-vector multiplication is

governed by eigenvectors and eigenvalues
- —

= A matrix-vector multiplication such as Ax (A normal
matrix, x a generic vector as in the previous slide) can be
rewritten in terms of the eigenvalues/vectors of A.
Example: 2

X= 4
Ax=AQ2v, +4v, +6v,) ;
Ax=2A4v, +4A4v, +6Av = 2)L1v1 + 4&21/2 + 6)L3v3

= Where v,,v, v; are the (orthogonal) eigenvectors of A

= Even though x is an arbitrary vector, the action of
A on x (transformation) is determined by the
eigenvalues/vectors.
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Geometric explanation

X is a generic vector with coordinates x;; A,,v; are the eigenvalues
and eigenvectors of A

Ax = xlﬂtlv1 + xz)tzv2 + x3)L3v3

2
-~
-~

~— ¥

Multiplying a matrix and a vector has two effects over the
vector: rotation (the coordinates of the vector change) and
scaling (the length changes). The max compression and
rotation depends on the matrix’s eigenvalues Ai (s1,s2 and

s3 in the picture)



Geometric explanation

In the distorsion, the max effect is played by the
biggest eigenvalues (s1 and s2 in the picture )

The eigenvalues describe the distorsion operated by the
matrix on the original vector



Summary so far

= A matrix A has eigenvectors v and eigenvalues A, defined by
Av=Av

= Eigenvalues can be computed as:

Av =Av <— (A-A)v=0

= We can compute only the the direction of eigenvectors, since for
any eigenvalue there are infinite eigenvectors lying on the same
direction

= If Ais normal (i.e. if AAT=ATA) then the eigenvector form an
othonormal basis

= [he product of A by ANY vector x is a linear transformation of x
where the rotation is determined by eigenvectors and the
translation is determined by the eigenvalues. The biggest role
in this transformation is played by the biggest eigenvalues.
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Eigen/diagonal Decomposition

= Let A be a square matrix with m orthogonal
eigenvectors (hence, A is normal)

= Theorem: Exists an eigen decomposition
m /A\=U/\U'1

= /\ is a diagonal matrix (all zero except the diagonal

cells)
A =diag(A1, ..., ), Ai = Aiga

= Columns of U are eigenvectors of A

= Diagonal elements of A are eigenvalues of A

27



Diagonal decomposition: why/how

Let U have the eigenvectors as columns: U=|v, .. v

Then, AU can be written

AU =4 12

Thus AU=UA, or U-TAU=A

And A=UAU-". N




Example

4 = [1 0‘
11 3 AU=UA
V11 ﬂ] 0
= [vqva) ,
V2 V2 Vig V2 0 12 0 4

From this we compute A,=1, A\,=3
[1 0] [VH] _1 [v“] from which we get v,,=-2v,,

Vi2 Vi2

1 0
A[V1V2]=[l 3

l O V21 Va1 .
[1 3‘ [ ] =3 [ ] From which we get v,,=0 and v,, any real

V22

29



Diagonal decomposition —
example 2

Recall A=

2
1

L.
2 -

‘ 1 1]
The eigenvectors( l )and () form U = -
| | = |

1/2 —=1/2
Inverting, we have U™ = - Recall
7 1/2 1/2 Uu-' =1.

1 111 O][1/2 -1/2
-1 1|0 3{{1/2 1/2 | =

Then, A=UAU =




So what?

= What do these matrices have to do with
Information Retrieval and document ranking?

s Recall M x N term-document matrices ...
= But everytl iormal

matrices — YQUR FUTURE and learn

one last nc

——

S —

Bofo'ro After
learning ALGEBRA
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Singular Value Decomposition for
non-square matrixes

For a non-square M x N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD) as follows:

A=U2V"
A BN
MxM || MxN Vis NxN

The columns of U are orthogonal eigenvectors of AAT

(left singular vectors).
The columns of V are orthogonal eigenvectors of ATA (right

singular eigenvector). NOTE THAT AATand ATA are square symmetric

(and hence NORMAL)
Eigenvalues A, ... A, of AAT = eigenvalues of ATA and: o, = /A

2 = diag((fl...(fr) <#Singular values.| **




An example

Find the SVD of A, ULV’ where A = ( g g _22 )

5 0 0 1/v2  1/v2 0

A=UZV'=U|( , 4 0)(1/\/1_8 —1/4/18 4/\/E)
2/3  —2/3 —1/3

fewa . . fa_o
= 0 0 1/vV2  1/V/2 0
(0 3 0) 1/V18 —1/V18 4/V18
2/3  —2/3 -—1/3
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Singular Value Decomposition

= lllustration of SVD dimensions and sparseness

¥ ko ok K ‘l
ere * I'"' - 'ﬁl 1 So these
\Yn R * { J become
* * ¥ * e e *
L | All zerogh— — zeros, too
~ B = ", VT
— \ P J .8 s
L 3
r MxM  MxN  NxN
N -'R' -~ E E. -
I X  * . . A So these
* ¥ * ¥ ¥ = - - ® - be come
* * * t ¥ L * ] * Zeros! too

(33 2)- (0 200 (3 38) (i o)



Back to matrix-vector multiplication

= Remember what we said? In a matrix vector
multiplication the biggest role is played by the
biggest eigenvalues

= [he diagonal matrix 2 has the eigenvalues of
ATA (called the singular values of A) in
decreasing order along the diagonal

= \We can therefore apply an approximation by
setting 0,=0 if 0.6 and only consider the first k

singular values

35



Reduced SVD

= If we retain only k singular values, and set the rest to O,
then we don’t need the matrix parts in red

s Then Z is kxk, Uis Mxk, V' is kxN, and A, is MxN
= This is referred to as the reduced SVD, or rank k
approximation

Now all the red and yellow parts are zeros!!

[ % * * * * ]
* * * * ] k * * * *
* * — - * ® * b - - -
* * - - - B - - -
L ~ N 7

1<
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Let's recap

+ + * + + * * * L ]
M < N ok k3 k| = | * =% ™
+ + * + + * * * L] *
L - L o -
v’ ' v =
A U z ~ 4
v
* * * * * L
M > N ¥ ¥ ¥ - - L J -~ -~ -~
¥ ¥ * — * ~ L - - £
* ¥ * -~ -~ - - -~
* * * -~ -~ \_‘\/‘_/
N — N- - - —— ‘ g T
A o =

Since the yellow part is zero, an exact representation of A is:
A=cuv +ouv, +.+0uUv.
r =min(M,N)

But “for some” k<r, a good approximation is:

T T T



oo O -

Example of rank approximation

000 9 o001 47 20 000 0 100 07
0300 010 03 0100 Jg_Qgég\/g_g
0010 =]000 X0 0 V5|0 0 X| ¥ puemeppp—
4 0 0 0 100 | 00 0 |1 0] [ ottt 2
A
0011 4001 10 100 0
[A]* = 8(1)8 xlo30]x[oo1o 0]
100 00Vl 1¥0.2000v0.8

0.981 0.000 0.000 0.000 1.985

«_ 0.000 0.000 3.000 0.000 0.000
A™= 0.000 0.000 0.000 0.000 0.000
0.000 4.000 0.000 0.000 0.000 38
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Approximation error

= How good (bad) is this approximation?

= It's the best possible, measured by the Frobenius
norm of the error:

min [4-X|, =[4-4], =0 =%

X:rank (X )=k

where the ¢, are ordered such that ¢, = o,,4.
= Suggests why Frobenius error drops as k increases.
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Images gives a better intuition
image = matrix of pixels

The original image Q















K=322 (the original image)




We save space!! But this is only
one issue
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So, finally, back to IR

= Our initial problem was:

= the term-document (MxN) matrix A is highly
sparse (has many zeros)

= However, since groups of terms tend to co-occur
together, can we identify the semantic space of
these clusters of terms, and apply the vector
space model in the semantic space defined by
such clusters?

= \What we learned so far:

= Matrix A can be decomposed and rank k
approximated using SVD

= Does this help solving our initial problems? i



A IS our term document matrix

s Latent Semantic Indexing via the SVD

A=U2V"
A BN
MxM || MxN Vis NxN

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.
Eigenvalues A, ... A, of AAT are the eigenvalues of ATA.

s If A is a term/document matrix, then AAT and
AT A are the matrixes of term and document
CO-occurrences, repectively



Meaning of ATA and AAT

Word j in doc k

Word i in doc k y
L=AA" = L, = A Ay
N N h e 7N Y g
Lij = E AikAl{j = E AikAjk AT A
k=1 k=1

L; is the number of documents in which wi and wj

Co-Ooccurr
Similarly, LT;is the number of co-occurring words in docs di and dj

(or viceversa if A is a document-term matrix rather than
term-document)



Example

J " B — _— ¥
Example of text data: Titles of Some Technical Memos

cl: Human machine interface for ABC computer applications

c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system

o4 System and human system engineering testing of EPS

cS: Relation of user perceived response time to error measurement
ml:  The generation of random, binary, ordered trees

m2:  The intersection graph of paths in trees

m3:  Graph minors IV: Widths of frees and well-quasi-ordering
m&:  Graph minors: A survey




Term-document matrix
- .
A =

2 ¢33 ¢4 ¢5 ml m2 m3 m4d

¢
human | 0 0 | 0 0 0 0 0
interface | 0 | 0 0 (0 0 0 0

computer | I 0 0 0 0 0 0 0
user 0 I 1 0 I 0 0 0 0
system 0 l I 2 0 0 0 0 0
response 0 | 0 0 I 0 0 0 0
time 0 I 0 0 I 0 0 0 0
EPS 0 0 I I 0 0 0 0 0
survey 0 I 0 0 0 0 0 0 I

-~

trees 0 0 0 0 0 I I
raph 0 0 0 () 0 () I

0
I
minors 0 0 0 0 0 1

—
L—
p—
(—
et B et et



Term co-occurrences example

¢l ¢2 ¢3 ¢4 ¢S5 ml m2 m3 md
human I 0 0 1 0 0 0 0 0
interface | 0 | 0 0 0 0 0 (0
computer l I 0 0 0 0 0 0 0
user 0 1 | 0 | 0 0 0 0
system 0 l I 2 0 0 0 0 0
response 0 l 0 0 I 0 0 0 0
time 0 I 0 I (0 0 0 0
EPS 0 0 I I 0 (0 0 (0 0
survey 0 l 0 0 0 0 ' I
trees o 0 0 0 0 | n 0
sraph 0 0 0 0 0 (0 I
minors 0 | | ' ‘ | I

L

trees,graph —

(000001110) +(000000111)™=2




So the matrix L=AAT is the matrix
of term co-occurrences

= Remember: eigenvectors of a matrix define an orthonormal
space

= Remember: bigger eigenvalues define the "main” directions
of this space

= But: Matrix L and LT are SIMILARITY matrixes (respectively,
of terms and of documents). They define a SIMILARITY
SPACE (the orthonormal space of their eigenvectors)

= If the matrix elements are word co-occurrences, bigger
eigenvalues are associated to bigger groups of similar
words

= Similarly, bigger eigenvalues of LT=ATA are associated
with bigger groups of similar documents (those in which
co-occur the same terms)




LSI: the intuition

The blue segments give the
intuition of eigenvalues of 4
LT=ATA t1
Bigger eigenvalues are
those for

which the projection of all
vectors on the direction of
correspondent eigenvectors
IS higher

t2

Projecting A in the term
space: green, yellow and
red vectors are documents.
If they form small angles,
they have common words
(remember cosin-sim)

The black vector

are the unary eigenvector
of A: they represent the
main “directions” of the
document vectors
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LS| intuition

If we multiply all
document vectors

by LT= ATA, their
“distorsion” is mostly
determined by the
highest eigenvalues

—_—

dj = (djladjzadj)
LT;]- = djl.)tlvl +djz.)L2v2 +a’]3.)L3v3

t2

We now project our document vectors on the reference orthonormal
system represented by the 3 black vectors



LS| intuition

..If we remove the dimension(s)
with lower eigenvalues (i.e. if we
rank-reduce 2) we don’t loose
much information

v

(I

dj= (d},djz-,dj-)
Lng = d]l.itlvl + djz.itzvz

Remember that the two “new” axis represent a combination
of co-occurring words e.g. a latent semantic space



Example

dl1 d2 d3 d4 We project terms

t1 1.000 1.000 0.000 0.000 gnd docs on two
t2 1.000 0.000 0.000 0.000

@ 0.0000.00010001000 d/Mensions, vl and v2
«  0.000 0.000 1.000 1.000 (the principal eigenvectors)

IO.OOO -0.851 P.526 0.000  2.000 0.000 0.000 0.000 -0.707 -0.707
0.000 -0.526 j0.851 0.000 0.000 1.618 -0.851 -0.526 0.000 0.000
-0.707 0.000 |0.000 -0.707 X X 0.526 -0.851 0.000 0.000
-0.707 0.000 J0.000 0.707 0.000 0.000-0.707 0.707

Note that the direction of each eigenvector is determined by
the direction of just two terms: (t1,t2) or (t3,t4) tic

matrix U.000 0.000 T.000 T.000 Touurumnmmates. ST1.(LT,lz) aru
0.000 0.000 1.000 1.000 | g2:(t3,t4)

Even if t2 does not occur in d2, now if we query
with t2 the system will return also d2!! >



Co-occurrence space

= In principle, the space of document or
term co-occurrences is much (much!)
higher than the original space of terms!!

= But with SVD we consider only the most
relevant ones, trough rank reduction

A=UNV'=UZV' =A,

58



Summary so-far

= \We compute the SVD rank-k approximation for
the term-document matrix A

= This approximation is based on considering only

the principal eigenvalues of the term co-
occurrence and document similarity matrixes
(L=AAT and LT=ATA)

= The eigenvectors of the eigenvalues of L=AAT
and LT=ATA represent the main “directions”

identified by term vectors and document vectors,
respectively.
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LSI: what are the steps

= From term-doc matrix A, compute the
approximation A, with SVD

= Project docs, terms and queries in a space of
k<<r dimensions (the k “survived”
eigenvectors) and compute cos-similarity as
usual

= These dimensions are not the original
axes, but those defined by the orthonormal
space of the reduced matrix Ak
Ag = Akq 0,4, V1+0,4,V2 +..0,q, Vi
Where o,q; (i=1,2..k<<r) are the new coordinates of q in the
orthonormal space of Ak 60



Projecting terms documents and
queries in the LS space

)= | = @) = ] |

If A=UZVT we also After rank k-

have that: approximation :
V = ATUS- A=Ak=U,3,V,T
t = tATZVT d = d'U,3, "
d = dATUS- q. = q'U, 3z,
q=qATUZ" sim(q, d) =
sim(q'U, 2,7, .

dTU, s, ")



Consider a term-doc matrix MxN
(M=11, N=3) and a query @

(wh
N
N
(wh
(R

Terms

|

a

arrived
damaged
delivery
fire

gold A
In

of
shipment
silver
truck

q=

= NI O = = OO0 =0 = - %Q_
_— = e w2 OO0 = - é
|

Il
OO0 = = a0 =>0 -

O
0
0
0
O
1
0
O
O
1
1




-0.4201
-0.2935
-0.1206
-0.1576
-0.1206
-0.2626
-0.4201
-0.4201
-0.2626
-0.3151
-0.2935

0.0748

-0.2001

0.2749

-0.3046

0.2749
0.3794
0.0748
0.0748
0.3794

-0.6033
-0.2001

-0.0460
0.4073
-0.4538
-0.2006
-0.4538
0.1547
-0.0460
-0.0460
0.1547
-0.4013
0.4078

-0.4945 0.6492 -0.5780
-0.6458 -0.7194 -0.2556
-0.5817 0.2468 0.7750

vl =

[ 4.0989
0.0000
0.0000

-0.4345
0.6492
-0.5780

-0.6458
-0.7194
-0.2556

1. Compute SVD: A= UXVT

0.0000 0.0000 |

23616 0.
0.0000 (1.2737

-0.5817
0.2469
0.7750



2. Obtain a low rank approximation
(k=2) A= U V',

0.4201 0.0748 |
.0.2995 -0.2001
01206 0.2749

-g.lggg -g-ggjg 4.0989 0.0000
0. : 0.0000 2.3616

U= 02826 03794 S =
04201 0.0748
04201 00748
02626 0.3794
03151 -0.6093

-0.2935  -0.2001

[ .0.4945 0.6492 .0.4945 -0.6458 -0.5817
Vv = |-0.6458-0.7194 vi- |0B492 -0.7194 0.2469
0.5817 0.2469




3a. Compute doc/query similarity

= For N documents, A, has N columns, each
representing the coordinates of a document d.
projected in the k LS| dimensions

= A query is considered like a document, and is
projected in the LSI space



3c. Compute the query vector

q =[00000100011

q = Eo.2140 -D.182I|

2 0 4201
-0.2995
-0.1206
-0.1576
-0.1206
-0.2626
-0.4201
-0.4201
-0.2626
-0.3151
-0.2995

0.0748

-0.2001

0.2749

-0.3046

0.2749
0.3794
0.0748
0.0748
0.3794

-0.6093
-0.2001_

4.0989 0.0000
1
0.0000 2.3616

g is projected in the 2-dimension LS| space!




Documents and queries projected
In the LS| space

0.8 4

dy _ (-0.4945 0.6492)
06 4
4. (05817, 0.2489) 0.4 -
: 0.2 4

LSl Dim 2

a7 086 05 .04 0.3 9
(-0.214, -0.1821)-0.4 -
0.6 4
02 & 7.0.6458, -0.7194) .

LSI Dim 1



g/d similarity

qed
lqlld]
(-0.2140) (-0.4945) + (-0.1821) (0.6492)

sim{q, d) =

sim(q, d1)= = -0.0541
V (021402 + (0.1820)2 / (0.4945) %+  (06492)2
(-0.2140) (-0.6458) + (-0.1821) (-0.7194)
sim{q, d,) = = 0.9910
\/ (-0.2140)2+ (-0.182”2 \/ (-0.6458)2+ (0.7194)°
-0.2140) (-0.5817) + {-0.1821) { D.2469
sim{q, d3) = ( A ) + & it ) = 0.4478

J (0.2140)2 + (0.1821)° V(05817124 (0.2469)2

Ranking documents in descending order

(I2 > <I3 > d1



An overview of a semantic network of terms
based on the top 100 most significant latent

semantic dimensions (Zhu&Chen)
- —

Semantic Netwrork View of Themes in Latent Concept Dimensions

L) s TR '3 -

.,,Mn. e g B i e
)
= >

’“Aﬂnuvw ®, 8,0 en * I S

e e 1 IS g e g o

;-‘" v W re AN g v gl e i
et ’
-
.

g, o 0 S,

S s Ll S

o,
ey Poe R ) n
§ TR0 wh. 9. el
o‘g:,.: ...

.M"H. rd .,';.

..._ ‘;(::‘ ' .....’"‘"

L R "".‘\‘D:‘“.M mmy =
® .;‘ul.‘h.&‘w""’ﬂ‘m—a
e, ’g cyl;n r“"”';'r::'- Ly P
:'.8% .y"‘“:'“ win o

'w vz“" “ ® o [ PR

v 'M',“".lu.. t%’m:f'. el vwerd

L ’“:“ v f
-t T By srmqapayet casca
fRATOL .. wﬁ"“ » e W
" L

69

-----



Conclusion
- .

s LS| performs a low-rank approximation of
document-term matrix (typical rank 100-300)

s General idea

= Map documents (and terms) to a low-
dimensional representation.

= Design a mapping such that the low-dimensional
space reflects semantic associations between
words (latent semantic space).

s Compute document similarity based on the cos-
sim in this latent semantic space




Another LS| Example






Input matrix A:

d1 d2 d3
t1 1.000 1.000 0.000
1.000 1.000 0.000
_t2| 0.000 1.000 0.000 [ TR
t3 0.000 0.000 1.000
t4

Input matrix B:

1.000 1.000 0.000 0.000
AT 1.000 1.000 1.000 0.000
0.000 0.000 0.000 1.000

AAT Matrix product A*B
Term co-occurrences

Il 2.000 2.000 1.000 0.000
{9  2-000 2.000 1.000 0.000

1.000 1.000 1.000 0.000
83 0.000 0.000 0.000 1.000

L A



Input matrix:

1.000 1.000 O
1.000 1.000 O
0.000 1.000 O
0.000 0.000 1

.000
.000
.000
.000

AUZV =~A
K —

B (5631 _36 0. :m
0.863 1.106 0.000
CT.7850.621 0.000

Singular Value Decomposition:

uU:

-0.657 0.000
-0.657 0.000

-0.369 0.000 ¢

0.000 -1.000

oo N

-0.615 -0.788
0.000 0.000
0.788 -0.8615

.136 0.000| 0.
L000 1.000]0,
.000 0.000] 0.

oo o o

000
000
662

0.

0.

.261
.261
.929
.000

000

.000

000

0.000 0.000 1.000

Now it is like if t3 belongs to d1!



