Basic ranking Models

Boolean and Vector Space Models

What is Ranking

Indexing provides the set of documents which
include the keywords of the user’s query

Often many documents (millions, if the document
archive is the full web) are possible “hits” for the
user

Ranking is an essential step to order possibly
interesting documents in a why that fits at best
the users’ actual information needs

Ranking methods are where most of the current
research institutions in the area of IR devote their

effort (including Google)

What is ranking (2)

* Ranking algorithms are made of two
components:

— A representation function to represent documents
and queries, starting from the set of indexed keywords
in each document;

— A similarity function sim(q;,d;) to determine the
similarity between query g and document d

— The similarity function is the basis for establlshing an
order of relevance of documents w.r.t. the query

* We start with two “basic” ranking methods: the
Boolean model and Vector Space model.

Boolean Model

The Boolean Model (1)

e Simple model based on set theory
e First model used in “classic” IR systems

e REPRESENTATION: Queries are represented as
ooolean expressions

* £.g,9=a A (b v —c)(wherea, band c are
keywords)

e (apple A (computer v —red)

The Boolean Model (2)

e According to bag of word (BoW) model, each document is
represented by a fixed-lenght vector dj, position (ij) of the
vector is the weight (relevance) of keyword i in document j
(i=1,2..|V[] where |V]| dimension of vocabulary

* In boolean model, terms are either present or absent,
therefore:

° le E {0/1}
e E.g., if the vocabulary is: {apple, computer, red} the

document d1: ” the apple is red, red, red!” is represented
as: di(1,0,1)

which is the same as:
apple A (—computer) A red

The Boolean Model (3)

The first step is to transform boolean query in Disjunctive Normal Form
(DFN) = a disjunction of conjunctive componentes cc

g=a A (b v (—c)) =(arbnrc) v(arnbr(—c) v(an(—b) A(—=c))

Next, each conjunctive Lomponent of the DNFis transformed into

a binary string
(1,1,0)

v(qdnf) = (1,1,1 (1,0,0)
Ex., if a=apple, b=computer, c=red = (apple AND (computer OR not(red)) =

(apple,computer,red) Vv (apple, computer) V (apple)
A DFN query v(gdnf) is now made of Conjunctive Components v(qcc) in the

form of binary vectors: they represent the list of all and only possible
matching document vectors

Example: v(gcc) = (1,1,0) = equivalent to: (apple A~ computer A —(red))

All documents including apple and computer and not including red are
matches for the initial query. Every v(qcc) defines a set of possibly matching
documents.

8

Similarity/Matching function

sim(q,dj) = 1 iff vec(dj) = v (qcc);, v(gce)ie v(qdnf)
O otherwise

In other terms, matching documents are only those
whose boolean vector (ignoring words not in the
query) is equal to one of the conjunctive
components of the query disjunctive normal form

Example

v(gdnf) = (1,1,1) (1,1,0) (1,0,0)

e For example, matching documents (md) for the
above query are:

e md1 = “apple apple blue day” => (1,0,0)

e md2 = “apple computerred] => (1,1,1)
e Unmatched documents (ud)

e udl="applered “=> (1,0,1)

e ud2= “day” => (0,0,0)

Note that words in documents not included in the query don’t need to be represented
in document and query vectors, they are «don’t care» boolean variables!
(in the example, these irrelevant words are blue day)

Venn Diagram (K. = generic keyword)

K K,

a

K

C

qzka VAN (kb V _'kC)

11

Drawbacks of the Boolean Model

JExpressive power of boolean expressions to
capture information needs and document
semantics IS inadequate

(JRetrieval based on binary decision criteria (with no
partial match) does not reflect our intuitions
behind relevance adequately

e As aresult

JAnswer set contains either too few or too many
documents in response to a user query

dNo ranking of documents

Boolean Search

* Boolean query almost disappeared from web search
engines (not used by most users)

 “Advanced search” allows for other types of search

GO gle apple computer Q
All Images News Shopping Videos More Settings Tools
Search settings
Any time v All results v
Languages
See apple ComPUter Turn on SafeSearch
Advanced search
- Your data in Search
s History
Search help
Apple MacBook Apple MacBook Huawei iMac 21,5" - APPLE iMac

e However still used when users are motivated to search
specific information (e.g., legal domains or medical
domains)

Advanced search allows for boolean expressions
+ other types of contraints

Advanced Search

Find pages with... Te

all these words: apple computer

this exact word or phrase:
any of these words:
none of these words:

numbers ranging from: to

Then narrow your results

by...

language: any language v
region: any region v
last update: anytime v

site or domain:

terms appearing: anywhere in the page -
SafeSearch: Show most relevant results v
file type: any format v
usage rights: not filtered by licence v

Advanced Search

Twitter search also exploits boolean
and other operators

Operator

twitter search

"happy hour"
love OR hate
beer -root
#haiku
from:alexiskold
to:techcrunch
@mashable

"happy hour" near:"san
francisco"

near:NYC within:15mi

superhero since:2010-
12-27

ftw until:2010-12-27

movie -scary :)

flight :(
traffic ?
hilarious filter:links

news source:twitterfeed

Finds tweets...

containing both "twitter" and "search". This is the default
operator.

containing the exact phrase "happy hour".
containing either "love" or "hate" (or both).
containing "beer" but not "root".
containing the hashtag "haiku".

sent from person "alexiskold".

sent to person "techcrunch”.

referencing person "mashable".

containing the exact phrase "happy hour" and sent near
"san francisco".

sent within 15 miles of "NYC".

containing "superhero" and sent since date "2010-12-27"
(year-month-day).

containing "ftw" and sent up to date "2010-12-27".

containing "movie", but not “scary”, and with a positive
attitude.

containing "flight" and with a negative attitude.
containing "traffic" and asking a question.
containing "hilarious" and linking to URLs.

containing "news" and entered via TwitterFeed

Operators: OR, AND,NOT
But also:

Sent from (userid), sent to (userid),
Sent from (place) etc.

Vector Model

Ranked retrieval

* Thus far, our queries were Boolean.
— Documents either match or don’t.

— Good for expert users with precise
understanding of their needs and the
collection (e.g., legal search).

— Not good for the majority of users.

— Most users incapable of writing Boolean
qgueries (or they are, but they think it’s too
much work).

— Most users don’t want to wade through 1000s
of results (e.g., web search).

17

Problem with Boolean search

* Boolean queries often result in either too few
(=0) or too many (1000s) results.
— Query 1: “standard user dlink 650” - 200,000 hits
— f]luery 2: “standard user dlink 650 no card found”: 0
Its
* |t takes skill to come up with a query that
produces a manageable number of hits.

 With a ranked list of documents, it does not
matter how large the retrieved set is. User will
looks only at first results.

Scoring as the basis of ranked retrieval

 We wish to return in order of relevance the
documents most likely to be useful to the
searcher

e How can we rank-order the documents in the
collection with respect to a query?

* Assign a score —say in [0, 1] —to each
document

* This score measures how well document and
qguery “match”.

19

Query-document matching scores

We need a way of assigning a score to a
query/document pair

Let’s start with a one-term query

If the query term does not occur in the
document: score should be 0

The more frequent the query term in the
document, the higher the score (should be)

We will look at a number of alternatives for
this.

Vector Space representation model

Model: each document is a bag-of-words (as for
boolean model)

Representation: a N-dimensional vector (N=|V|,
the dimension of the vocabulary (as for boolean)

Weighting scheme: coordinate w;; of vector d,
associated to document d; is the RELEVANCE of
word i in document j (as for boolean)

How do we measure w; ? NOT as in boolean
model!

Recap on Bag of words vector

* Vector representation doesn’t consider the ordering of
words in a document
— d1:John is quicker than Mary and d2: Mary is quicker than
John have the same vectors, since we have a coordinate

(or coefficient, or weight) w; for every word i of the
vocabulary, and coordinates are ordered alphabetically

— d1=d2 =(WJohn/ Wi WMary/ unicken Wthan)
* This is called (as we said) the bag of words model.

— In a sense, this is a step back: the positional index (see
lectures on indexing) was able to distinguish these two
documents, since we know where words are placed.

22

Weighting schemes for w;: Binary
term-document matrix

documents

words Antony and Cleopatra | Julius Caesar [The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Any column j is a document vector d;.

Each document is represented by a binary vector € {0,1}IVl, w; is either O (word i is absent in d;)
or 1 (word i appears in d;)

Number of rows=dimension of vocabulary |V|

Number of columns= dimension of the document collection N

Vector weighting scheme: Term-
document count matrix

* This scheme considers the number of
occurrences of a term in a document:

— Each document is a

count vector

Antony and Cleopatra |Julius Caesar |The Tempest

Antony 157 73 0
Brutus 4 157 0
Caesar 232 227 0
Calpurnia 0 10 0
Cleopatra 57 0 0
mercy 2 3
worser 2 0 1

in NV
Hamlet Othello
0 0
1 0
2 1
0 0
0 0
5 5
1 1

Macbeth

Vector weighting scheme: Term
frequency tf

The term frequency tf, ;, of term t in document d is
defined as the number of times that t occurs in d.

We want to use tf when computing query-document
match scores. But how?

Raw term frequency is not what we want:

* A document with 10 occurrences of the term may be more
relevant than a document with one occurrence of the term.

 But not 10 times more relevant!!!

Relevance does not increase proportionally with term
frequency.

One possibility is to normalize, e.g.:

25

Other vector weighting schemes (2):
log-frequency weighting

* The log frequency weight of term tin doc d is
{1 +log,, tf,,, iftf, >0
Wia =

0, otherwise

*0->0,121,2->1.3,10-> 2,1000 - 4, etc.

When it comes to scoring, is frequency
appropriate?

* Score for a document-query pair: sum over terms
t in both g and d.

e Sim(g,d) — Zteqmd(l log tft,d)

— The score is 0 if none of the query terms is present in
the document(gnd =@), and grows when the
document includes many of the query terms, with a
high frequency

 However, frequency-based ranking (whether
normalized or log) IS NOT FULLY APPROPRIATE

« WHY??

Improve document weighting scheme:

Inverse Document frequency (1)

* Rare terms are more informative than frequent
terms
— Recall stop words! Are they so relevant? (e.g. “the”)

— Consider instead a term in the query that is rare in the
collection (e.g., arachnocentric)

— A document containing this term is very likely to be
relevant to the query “study on arachnocentric people”
(much more than the other query terms study, people)

— = We want a higher weight for rare terms like
arachnocentric (rare words are good at distinguishing
document content)

28

Improve document weighting scheme:
Inverse Document frequency (2)

Consider a document including “high” with frequency 5 and
“serendipity” with frequency 1. Which one is more relevant to
represent a document content?

— “high” is more frequent, but is likely to be frequent in many other documents!
Instead, “serendipity” may better characterize the content of the document.

— For terms that are frequent in the entire collection, we want lower weights
than for rare terms, since they do not characterize a single document

We will use document frequency (df) to capture the
intuition that terms appearing in many documents of
the collection should have a lower weight

df (< N) = number of documents that contain the
term, N= dimension of the document collection

29

Improve document weighting scheme:
Inverse Document frequency (3)

* df,is the document frequency of t: the
number of documents in the collection that
contain t
— df is a measure of the informativeness of t

 We define the idf (inverse document
frequency) of t by: idft _ 1Og10 N/dft

— We use log N/df, instead of N/df, to “dampen” the
effect of idf.

Will turn out that the base of the log is immaterial.

30

idf example, suppose N =1 million

df; = # of documents
including the term

calpurnia 1 6
animal 100 4
sunday 1,000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

There is one idf value for each term t in a collection.

31

Digression: Collection vs. Document
frequency

* The in-collection frequency of a word i is the number
of occurrences of i in the collection, counting
multiple occurrences.

“ Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

e df. measures the document, not the collection,
frequency. +1 every times a document includes one
ore more instances of word .

32

Improve document weighting scheme:
tf-idf

The tf-idf weight of a term is the product of its tf weight
and its idf weight.

w =(l+logtf, ,)xlog N/df,

Best known weighting scheme in information retrieval

* Note: the “-” in tf-idf is a hyphen, not a minus sign!
* Alternative names: tf.idf, tf x idf

Increases with the number of occurrences within a
document

Increases with the rarity of the term in the collection

Binary - count - weight matrix

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth
Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued vector of tf-idf weights € RIV!

34

Geometric interpretation of VSM: documents as
vectors

 The term-document matrix can be geometrically
interpreted as a set of vectors (the documents) ina | V|-
dimensional vector space, one dimension for each term.

* Terms are the axes of the vector space

 Documents are vectors in this space. The coordinate of a
vector d; on dimension i is the tf-idf weight of word i in
document .

* Very high-dimensional: hundreds of millions of dimensions
when you apply this to a web search engine

* Very “sparse” vectors - most entries are zero (will see later
in this course how to reduce dimensionality).

35

Vector space model (for |V|=3)

Z
P(x, vy, Z)
Z-coordinate
=\
X-coordinate

/ V-coordinate

X
X, Y, Z are the 3 dimensions associated to keywords k,, k,, k,

X, Y, z are the 3 weights of keywords k,, k,, k,in d,

Documents in Vector Space

Scoring similarity between document
and query: vector space scoring model

* Keyidea 1: Do the same for queries: represent
them as vectors in the space

* Key idea 2: Rank documents according to their
proximity to the query in this space

* proximity = similarity of vectors

* proximity = inverse of distance

38

Vector Space scoring model:
formalizing “vector space proximity”

First cut: distance between two points

(= distance between the end points of the two
vectors)

. . N
Euclidean distance: d(dj,Q)=\/E(Wij —w,)’

Euclidean distance is a bad idea . . .

... because Euclidean distance is large for
vectors of different lengths.

Why Euclidean distance is a bad idea

The Euclidean distance
betweenq and 672>(red
dashed line) is large
even though the

distribution of terms in
the query g and the
distribution of

terms in the document
32 are very similar
(about 50% “gossip”,
50% “Jealous”). Absolute
frequencies cause the
difference.

GOSSIP >
P
Wz

] -~

/ a -~

/ Z

| L

. — ‘T JEALOUS

40

Why Euclidean distance is a bad idea
(2)

* Experiment: take a document d and append it
to itself. Call this document d'.

* “Semantically” d and d’ have the same
content

* The Euclidean distance between the two
documents can be quite large (word frequency

doubles in d’)

0 Document A is document B appended to itself

A better distance measure: the angle
between two vectors

In previous example, the angle between the two
documents is O.

Key idea: Rank documents according to angle
with query.

In previous example, the angle is zero,
corresponding to maximum similarity!

In fact the two documents have the same words,
with same relative weight.

Small angle = similar distribution of keywords in
the document

From angles to cosines

* The following two notions are equivalent.

— Rank documents in decreasing order of the angle
between query and document

— Rank documents in increasing order of
cosine(query,document)

* Cosine is a monotonically decreasing function for
the interval [0°, 180°]

e Cosine is 0 when vectors are orthogonal (no
words in common!), cosine is 1 when they are
parallel (same distribution of keywords — not
same frequency)

Length normalization

* A vector can be (length-) normalized by dividing
each of its components by its length — for this we

use the L, norm:
Rl = 2

— Dividing a vector by its L, norm makes it a unit
(length) vector

— Effect on the two documents d and d’ (where d’ is d
appended to itself) from earlier slide: they have
identical vectors after length-normalization.

Vector Space Model: the cosin-
similarity

Dot product Unit vectors

N\ B v

Ged q d 4.4,

‘q”d‘ ‘d‘ \/Z\V\ q \/Z\V\ d2

q; is the tf-idf weight of term j in the query (also denoted as w;)

d; is the tf-idf weight of term i in the document (also denoted as w; 4)
9

cos(q,?) is the cosine similarity of g and d ..

equivalently, the cosine of the angle between q and d

cos(q, d)=

Cosin-similarity is the cosin of the angle between normalized query end document vectors.

46

Examples: Computing Similarity Scores

D, =(0.8,0.3)
D, =(0.2,0.7)
1.0 0 0=(0.4,0.8)
. D, cosa, =0.74
cosa, =0.98
” D, is more similar to Q than D,!!
0.4 Dl
0.2

0.2 04 06 08 1.0

A complete example

A small collection of N=3 documents, |V|=6 words

dl: “new york times”
d2: “new york post”
d3: “los angeles times™

Compute idf

angles logx(3/1)=1.584
los logx(3/1)=1.584
new logx(3/2)=0.584
post logx3/1)=1.584
times log2(3/2)=0.584
york logy(3/2)=0.584

A complete example

Document-term matrix (we use normalized tf, however here
each word appears just once in each document)

angeles los new post fimes york

dl 0 0 1 0 1 1
d2 0 0 1 1 0 1
d3 | | 0 0 | 0

tf-idf: multiply tf by idf values

angeles los new post times york
dl 0 0 0.584 0 0.584 0.584
d2 0 0 0.584 1.584 0 0.584
d3 1.584 1.584 0 0 0.584 0

A complete example (2)

Query: “new new times”

When computing the tf-idf values for the query terms we divide the frequency by
the maximum frequency (2) to normalize, and multiply with the idf values

0 0 (2/2)*0.584=0.584 0 (1/2)*0.584=0.292 0

We calculate the length (the NORM) of each document vector and of the query:

Length of d1 = sqrt(0.584"2+0.584"2+0.584"2)=1.011

Length of d2 = sqrt(0.584"2+1.584"2+0.584"2)=1.786
Length of d3 = sqrt(1.584"2+1.584"2+0.584"2)=2.316

Length of q = sqrt(0.584/2+0.292"2)=0.652

A complete example (3)

Similarity values are computed using cosin-sim formula:

4

g+d i.i 244,

il | Jsta sl

cosSim(d1,q) = (0¥0+0*0+0.584%0.584+0%0+0.584%0.292+0.584*0) / (1.011¥0.652) = 0.776
cosSim(d2.q) = (0¥0+0*0+0.584*0.584+1.584*0+0%0.292+0.584*0) / (1.786%0.652) = 0.292
cosSim(d3.q) = (1.584*0+1.584*0+0%0.584+0%0+0.584*%0.292+0%0) / (2.316%0.652) = 0.112

cos(§,d) =

—

q

X

According to the computed similarity values, the final
order in which the documents are presented as result to
the query will be: d1, d2, d3.

Cos-sim can be used also to measure similarity

How similar are

the novels:

between documents

Cosine similarity amongst 3 documents

SaS: Sense and mmm-m-

Sensibility

PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

affection

jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

LO8VSM-tfidf 52

3 documents example contd.

Log frequency weighting Tf-idf and normalize

affection 3.06 2.76 2.30 affection 0.789 0.832 0.524

jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465
gossip 1.30 0 1.78 gossip 0.335 0 0.405
wuthering 0 0 2.58 wuthering 0 0 0.588

cos(SaS,PaP) =

0.789 * 0.832 + 0.515 % 0.555+0.335x 0.0+ 0.0 * 0.0

= 0.94

cos(SaS,WH) = 0.79
cos(PaPWH) = 0.69

Summary — vector space ranking

Represent the query as a weighted tf-idf vector
Represent each document as a weighted tf-idf vector

Compute the cosine similarity score for the query
vector and each document vector as the normalized
dot product q’.[j

d

g

Rank documents with respect to the query by score
Return the top K (e.g., K = 10) to the user

Computing cosine scores efficiently

* |nput:
— Query
— Posting list of document collection
— Remember:
(t;, df;)=»[(Doc_IDy,tf; 1)), (Doc_ID,,tf; 5)), ecc]
* Note: The posting list has all the information

that we need to calculate the similarity
scores

e QOutput: List of K top ranked documents

Computing cosine scores

* We are going to compute the cos-sim scores,
but in a “clever” way

* Here are some constants that we need:
— The number N of documents in the corpus

— The document frequency df. of each term t, (this is
equals the number of ITEMS in the posting list of
t)

— The term frequency tf; of each term t in a

document (which is the second argument of a
(Doc_ID,tf) pair in the posting list)

Remember the cos-sim formula

~ 4

L= Ged g, d .94,
cos(q,d) = ‘q‘d‘ ‘q\ H \/Z‘Z‘ 1\/ \Z\l
\V\
cos(é,c_z;) = tfdqutfdf d

JSHiar? [S! i

The coordinates q;,d. of the g and d vectors are the
tfidf values for term i of numerator

Computing cosine scores

. Get a query from user (e.g. “information
retrieval for retrieval of documents”)

. After removal of stop words and stemming, we
have 3 terms: information, retrieval, document

. Compute tfidf for those terms (e.g. using log-tf)

Compute tf*idf for query terms (e.g.

using logs)

tridf(t,q) — WTF(t,q)*log(

|corpus|

dft,q

)

WTF(t, q)
1 iftfi,=0
2 then return(0)

3 else return(l +log(tfi))

WTF(information)=(1+log(2))
WTF(retrieval)=1
WTF(document)=1

|corpus| is number
of documents in
archive

Computing cosine scores for documents
.o tfdf Hdf,,

* Note in the formula that we have a numerator which is the sum of tfidf, and a
“normalizing” denominator which is a product of the square of the sum of
(tfidf)~2

* We can compute numerator and denominator incrementally and separately.

* Define two variables, Score and Magnitude: the first to compute numerator, the
second to compute denominator (vector norm)

* For each keyword t; in the query:

1. Get posting list for that word

2. For each document dj in posting list of keyword ti, update the entry in
Score(dj,q): Score(dj,q)=Score(dj,q)+tfidf(ti,q)*tfidf(ti,dj)

3. We also need to compute the NORMs of dj (denominator), and we do

this incrementally, as well:
Magnitude(dj)=Magnitude(dj)+tfidf(ti,dj)*2

NOTE WE DO NOT NEED TO COMPUTE THE NORM OF q SINCE THIS VALUE IS THE SAME
FOR ALL cos(q,d) and does not affect the ranking order

Algorithm to compute cosin similarity
scores

Initialize(Scores [d in Collection])
Initialize (Magnitude [d in Collection]))

For each keyword t in query q:
Fetch df,
Fetch posting list of t, p(t)
Compute tfidf,, for the query
For each d in p(t):
Compute tfidf, 4
Score(d)= Score(d)+tfidf, ,*tfidf, 4
Magnitude(d)= Magnitude(d)+(tfidf, ;)2
For d in Scores:
Do NORMALIZE (Scores(d)/SQRT(Magnitude(d)))

Return top K scores

tfidf weighting has many variants

Term frequency

Document frequency

Normalization

n (natural) tfe d n (no) 1 n (none) 1
| (logarithm) 1 + log(tft.q) t (idf) log % c (cosine) .
VW HWg Wiy
a (augmented) 0.5+ 0.5xtfeq p (prob idf) max{0,log X=df) | u (pivoted 1/u
maxt(tft'd) df; unique) /

1 iftf;g >0
0 otherwise

b (boolean) {

L (log ave) 1+log(tf.q)

1+log(avescq4(tfs 4))

b (byte size) 1/CharLength®,

a <1

Augmented used to assign same relevance to very rare words

Weighting may differ in queries vs
documents

 Many search engines allow for different
weightings for queries vs documents (queries are

very short, each word occurs typically once)

* To denote the specific combination in use in an
search engine, we use the notation qqgqg.ddd with
the acronyms from the previous table

 Example: Itn.Inc means:

— Query: logarithmic tf (| in leftmost column), idf (t in
second column), no normalization ...

— Document: logarithmic tf, no idf and cosine
normalization

Summary: What’s the point of using vector
spaces?
* A well-formed algebraic space for retrieval

 Query becomes a vector in the same space as
the docs.

— Can measure each doc’s proximity to it.

* Natural measure of scores/ranking — no longer
Boolean.

— Documents and queries are expressed as bags of
words

Summary: What'’s the point of using
vector spaces? (2)

e Non-binary (numeric) term weights used to
compute degree of similarity between a
qguery and each of the documents.

e Enables
dpartial matches
e to deal with incompleteness

Jdanswer set ranking

e to deal with information overload

The Vector Model : Pros and Cons

e Advantages:

Jterm-weighting improves answer set quality

Jpartial matching allows retrieval of docs that
approximate the query conditions

dcosine ranking formula sorts documents according
to degree of similarity to the query

e Disadvantages:

Jassumes independence of index terms, which is a
step back from proximity search

Google ranking method

Ranking is (also) based on the content and on the
specific page (later in this course, PageRank)

Unknown, but over 200 methods/algorithms are jointly
used. PageRank is one of the 200!

In a query, keywords are interpreted as a boolean AND
search (advanced options for complex boolean queries)

However, answers are returned even if a word is not
included (basically, it is a mixed boolean-vector space
model)

Additionally, query words are spell-corrected, and
additional words can be added (see Query Expansion)

