
Basic ranking Models

Boolean and Vector Space Models

Document Processing

Indexing

Ranking

What is Ranking
• Indexing provides the set of documents which

include the keywords of the user’s query
• Often many documents (millions, if the document

archive is the full web) are possible “hits” for the
user

• Ranking is an essential step to order possibly
interesting documents in a why that fits at best
the users’ actual information needs

• Ranking methods are where most of the current
research institutions in the area of IR devote their
effort (including Google)

What is ranking (2)

• Ranking algorithms are made of two
components:
– A representation function to represent documents

and queries, starting from the set of indexed keywords
in each document;

– A similarity function sim(qi,dj) to determine the
similarity between query qi and document dj

– The similarity function is the basis for establishing an
order of relevance of documents w.r.t. the query

• We start with two “basic” ranking methods: the
Boolean model and Vector Space model.

s 5

Boolean Model

6

The Boolean Model (1)

• Simple model based on set theory
• First model used in “classic” IR systems

• REPRESENTATION: Queries are represented as
boolean expressions

• E.g., q = a Ù (b Ú ¬c) (where a, b and c are
keywords)

• (apple Ù (computer Ú ¬red)

The Boolean Model (2)
• According to bag of word (BoW) model, each document is

represented by a fixed-lenght vector dj, position (ij) of the
vector is the weight (relevance) of keyword i in document j
(i=1,2..|V| where |V| dimension of vocabulary

• In boolean model, terms are either present or absent,
therefore:

• wij {0,1}
• E.g., if the vocabulary is: {apple, computer, red} the

document d1: ” the apple is red, red, red!” is represented
as: d1(1,0,1)
which is the same as:
apple Ù (¬computer) Ù red

∈

8

The Boolean Model (3)

q = a Ù (b Ú (¬c)) = (aÙbÙc) Ú(aÙbÙ(¬c))Ú(aÙ(¬b) Ù(¬c))
Next, each conjunctive component of the DNF is transformed into
a binary string
v(qdnf) = (1,1,1) (1,1,0) (1,0,0)
Ex., if a=apple, b=computer, c=red è (apple AND (computer OR not(red)) è

(apple,computer,red) Ú (apple, computer) Ú (apple)
A DFN query v(qdnf) is now made of Conjunctive Components v(qcc) in the
form of binary vectors: they represent the list of all and only possible
matching document vectors
Example: v(qcc) = (1,1,0) è equivalent to: (apple Ù computer Ù ¬(red))
All documents including apple and computer and not including red are
matches for the initial query. Every v(qcc) defines a set of possibly matching
documents.

The first step is to transform boolean query in Disjunctive Normal Form
(DFN) = a disjunction of conjunctive componentes cc

9

Similarity/Matching function

sim(q,dj) = 1 iff vec(dj) = v (qcc)i , v(qcc)i v(qdnf)
0 otherwise

In other terms, matching documents are only those
whose boolean vector (ignoring words not in the
query) is equal to one of the conjunctive
components of the query disjunctive normal form

∈

Example

• For example, matching documents (md) for the
above query are:

• md1 = “apple apple blue day” => (1,0,0)
• md2 = “apple computer red] => (1,1,1)

• Unmatched documents (ud)
• ud1 = “ apple red “ => (1,0,1)
• ud2 = “day” => (0,0,0)

v(qdnf) = (1,1,1) (1,1,0) (1,0,0)

Note that words in documents not included in the query don’t need to be represented
in document and query vectors, they are «don’t care» boolean variables!
(in the example, these irrelevant words are blue day)

11

Venn Diagram (Ki = generic keyword)

q = ka Ù (kb Ú ¬kc)

(1,1,1)
(1,0,0)

(1,1,0)
Ka Kb

Kc

s 12

Drawbacks of the Boolean Model

qExpressive power of boolean expressions to
capture information needs and document
semantics IS inadequate

qRetrieval based on binary decision criteria (with no
partial match) does not reflect our intuitions
behind relevance adequately

• As a result
qAnswer set contains either too few or too many

documents in response to a user query
qNo ranking of documents

Boolean Search
• Boolean query almost disappeared from web search

engines (not used by most users)
• “Advanced search” allows for other types of search

• However still used when users are motivated to search
specific information (e.g., legal domains or medical
domains)

Advanced search allows for boolean expressions
+ other types of contraints

Twitter search also exploits boolean
and other operators

Operators: OR, AND,NOT

But also:

Sent from (userid), sent to (userid),
Sent from (place) etc.

16

Vector Model

Ranked retrieval
• Thus far, our queries were Boolean.
– Documents either match or don’t.
– Good for expert users with precise

understanding of their needs and the
collection (e.g., legal search).

– Not good for the majority of users.
– Most users incapable of writing Boolean

queries (or they are, but they think it’s too
much work).

– Most users don’t want to wade through 1000s
of results (e.g., web search).

17

Problem with Boolean search

• Boolean queries often result in either too few
(=0) or too many (1000s) results.
– Query 1: “standard user dlink 650” → 200,000 hits
– Query 2: “standard user dlink 650 no card found”: 0

hits
• It takes skill to come up with a query that

produces a manageable number of hits.

• With a ranked list of documents, it does not
matter how large the retrieved set is. User will
looks only at first results.

18

Scoring as the basis of ranked retrieval

• We wish to return in order of relevance the

documents most likely to be useful to the

searcher

• How can we rank-order the documents in the

collection with respect to a query?

• Assign a score – say in [0, 1] – to each

document

• This score measures how well document and

query “match”.

19

Query-document matching scores

• We need a way of assigning a score to a
query/document pair

• Let’s start with a one-term query
• If the query term does not occur in the

document: score should be 0
• The more frequent the query term in the

document, the higher the score (should be)
• We will look at a number of alternatives for

this.

20

Vector Space representation model

• Model: each document is a bag-of-words (as for
boolean model)

• Representation: a N-dimensional vector (N=|V|,
the dimension of the vocabulary (as for boolean)

• Weighting scheme: coordinate wij of vector dj
associated to document dj is the RELEVANCE of
word i in document j (as for boolean)

• How do we measure wij ? NOT as in boolean
model!

Recap on Bag of words vector
• Vector representation doesn’t consider the ordering of

words in a document
– d1: John is quicker than Mary and d2: Mary is quicker than

John have the same vectors, since we have a coordinate
(or coefficient, or weight) wi for every word i of the
vocabulary, and coordinates are ordered alphabetically

– d1=d2=(wJohn,wis,wMary,wquicker,wthan)
• This is called (as we said) the bag of words model.
– In a sense, this is a step back: the positional index (see

lectures on indexing) was able to distinguish these two
documents, since we know where words are placed.

22

Weighting schemes for wi: Binary
term-document matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Any column j is a document vector dj.
Each document is represented by a binary vector ∈ {0,1}|V|, wij is either 0 (word i is absent in dj)
or 1 (word i appears in dj)
Number of rows=dimension of vocabulary |V|
Number of columns= dimension of the document collection N

documents
words

Vector weighting scheme: Term-
document count matrix

• This scheme considers the number of
occurrences of a term in a document:
– Each document is a count vector in ℕv

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Vector weighting scheme: Term
frequency tf

• The term frequency tft,d of term t in document d is
defined as the number of times that t occurs in d.

• We want to use tf when computing query-document
match scores. But how?

• Raw term frequency is not what we want:
• A document with 10 occurrences of the term may be more

relevant than a document with one occurrence of the term.
• But not 10 times more relevant!!!

• Relevance does not increase proportionally with term
frequency.

• One possibility is to normalize, e.g.:

25
tfi
norm = tfi / max j (tf j)

Other vector weighting schemes (2):
log-frequency weighting

• The log frequency weight of term t in doc d is

• 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

î
í
ì >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

26

When it comes to scoring, is frequency
appropriate?

• Score for a document-query pair: sum over terms
t in both q and d:

• Sim(q,d)

– The score is 0 if none of the query terms is present in
the document (), and grows when the
document includes many of the query terms, with a
high frequency

• However, frequency-based ranking (whether
normalized or log) IS NOT FULLY APPROPRIATE

• WHY??

å ÇÎ
+=

dqt dt) tflog (1 ,

Improve document weighting scheme:
Inverse Document frequency (1)

• Rare terms are more informative than frequent
terms
– Recall stop words! Are they so relevant? (e.g. “the”)
– Consider instead a term in the query that is rare in the

collection (e.g., arachnocentric)
– A document containing this term is very likely to be

relevant to the query “study on arachnocentric people”
(much more than the other query terms study, people)

– → We want a higher weight for rare terms like
arachnocentric (rare words are good at distinguishing
document content)

28

Improve document weighting scheme:
Inverse Document frequency (2)

• Consider a document including “high” with frequency 5 and
“serendipity” with frequency 1. Which one is more relevant to
represent a document content?
– “high” is more frequent, but is likely to be frequent in many other documents!

Instead, “serendipity” may better characterize the content of the document.
– For terms that are frequent in the entire collection, we want lower weights

than for rare terms, since they do not characterize a single document

• We will use document frequency (df) to capture the
intuition that terms appearing in many documents of
the collection should have a lower weight

• df (£ N) = number of documents that contain the
term, N= dimension of the document collection

29

Improve document weighting scheme:
Inverse Document frequency (3)

• dft is the document frequency of t: the
number of documents in the collection that
contain t
– df is a measure of the informativeness of t

• We define the idf (inverse document
frequency) of t by:

– We use log N/dft instead of N/dft to “dampen” the
effect of idf.

tt N/df log idf 10=

Will turn out that the base of the log is immaterial.

30

idf example, suppose N = 1 million

term dft = # of documents
including the term

idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

31

Digression: Collection vs. Document
frequency

• The in-collection frequency of a word i is the number
of occurrences of i in the collection, counting
multiple occurrences.

• dfi measures the document, not the collection,
frequency. +1 every times a document includes one
ore more instances of word i.

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

32

Improve document weighting scheme:
tf-idf

• The tf-idf weight of a term is the product of its tf weight
and its idf weight.

• Best known weighting scheme in information retrieval
• Note: the “-” in tf-idf is a hyphen, not a minus sign!
• Alternative names: tf.idf, tf x idf

• Increases with the number of occurrences within a
document

• Increases with the rarity of the term in the collection

tdt N
dt

df/log)tflog1(w ,,
´+=

33

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued vector of tf-idf weights ∈ R|V|

34

Geometric interpretation of VSM: documents as
vectors

• The term-document matrix can be geometrically
interpreted as a set of vectors (the documents) in a |V|-
dimensional vector space, one dimension for each term.

• Terms are the axes of the vector space
• Documents are vectors in this space. The coordinate of a

vector dj on dimension i is the tf-idf weight of word i in
document j.

• Very high-dimensional: hundreds of millions of dimensions
when you apply this to a web search engine

• Very “sparse” vectors - most entries are zero (will see later
in this course how to reduce dimensionality).

35

Vector space model (for |V|=3)

dj

X, Y, Z are the 3 dimensions associated to keywords kx, ky, kz
x, y, z are the 3 weights of keywords kx, ky, kz in dj

Documents in Vector Space

t1

t2

t3
D1

D2

D10

D3

D9

D4

D7

D8

D5

D11

D6

Scoring similarity between document
and query: vector space scoring model
• Key idea 1: Do the same for queries: represent

them as vectors in the space
• Key idea 2: Rank documents according to their
proximity to the query in this space

• proximity = similarity of vectors
• proximity ≈ inverse of distance

38

Vector Space scoring model:
formalizing “vector space proximity”
• First cut: distance between two points

(= distance between the end points of the two
vectors)

• Euclidean distance?

• Euclidean distance is a bad idea . . .
• . . . because Euclidean distance is large for

vectors of different lengths.

39

d(dj,q) = (wij −wiq)
2

i
∑

Why Euclidean distance is a bad idea

The Euclidean distance
between q and d2 (red
dashed line) is large
even though the
distribution of terms in
the query q and the
distribution of
terms in the document
d2 are very similar
(about 50% “gossip”,
50% “Jealous”). Absolute
frequencies cause the
difference.

40

Why Euclidean distance is a bad idea
(2)

• Experiment: take a document d and append it
to itself. Call this document dʹ.

• “Semantically” d and dʹ have the same
content

• The Euclidean distance between the two
documents can be quite large (word frequency
doubles in d’)

41

OB = (1, 1.5)
B

Document A is document B appended to itself

A better distance measure: the angle
between two vectors

• In previous example, the angle between the two
documents is 0.

• Key idea: Rank documents according to angle
with query.

• In previous example, the angle is zero,
corresponding to maximum similarity!

• In fact the two documents have the same words,
with same relative weight.

From angles to cosines

• The following two notions are equivalent.
– Rank documents in decreasing order of the angle

between query and document
– Rank documents in increasing order of
cosine(query,document)

• Cosine is a monotonically decreasing function for
the interval [0o, 180o]

• Cosine is 0 when vectors are orthogonal (no
words in common!) , cosine is 1 when they are
parallel (same distribution of keywords – not
same frequency)

44

Length normalization
• A vector can be (length-) normalized by dividing

each of its components by its length – for this we
use the L2 norm:

– Dividing a vector by its L2 norm makes it a unit
(length) vector

– Effect on the two documents d and dʹ (where d’ is d
appended to itself) from earlier slide: they have
identical vectors after length-normalization.

å=
i i
xx 2

2

!

45

Vector Space Model: the cosin-
similarity

åå
å

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(!

!

!
!

!!

!!!!

Dot product Unit vectors

qi is the tf-idf weight of term i in the query (also denoted as wi,q)
di is the tf-idf weight of term i in the document (also denoted as wi,d)
cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

46

Cosin-similarity is the cosin of the angle between normalized query end document vectors.

Examples: Computing Similarity Scores

2a

1a 1D

Q
2D

98.0cos
74.0cos

)8.0 ,4.0(
)7.0 ,2.0(
)3.0 ,8.0(

2

1

2

1

=
=

=
=
=

a
a

Q
D
D

1.0

0.8

0.6

0.8

0.4

0.60.4 1.00.2

0.2

D2 is more similar to Q than D1!!

A complete example
A small collection of N=3 documents, |V|=6 words

Compute idf

A complete example
Document-term matrix (we use normalized tf, however here
each word appears just once in each document)

tf-idf: multiply tf by idf values

A complete example (2)
Query: “new new times”

When computing the tf-idf values for the query terms we divide the frequency by
the maximum frequency (2) to normalize, and multiply with the idf values

We calculate the length (the NORM) of each document vector and of the query:

A complete example (3)

Similarity values are computed using cosin-sim formula:

According to the computed similarity values, the final
order in which the documents are presented as result to
the query will be: d1, d2, d3.

cos(
!q,
!
d) =

!q •
!
d
!q
!
d
=
!q
!q
•

!
d
!
d
=

qidii=1
V∑

qi
2

i=1
V∑ di

2
i=1
V∑

Cos-sim can be used also to measure similarity
between documents

term SaS PaP WH
affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

L08VSM-tfidf 52

How similar are
the novels:
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Term frequencies (counts)

Cosine similarity amongst 3 documents

3 documents example contd.

Log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

Tf-idf and normalize

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Summary – vector space ranking

• Represent the query as a weighted tf-idf vector
• Represent each document as a weighted tf-idf vector
• Compute the cosine similarity score for the query

vector and each document vector as the normalized
dot product

• Rank documents with respect to the query by score
• Return the top K (e.g., K = 10) to the user

54

!q •
!
d
!q
!
d

Computing cosine scores efficiently
• Input:
– Query
– Posting list of document collection
– Remember:

(ti, dfi)è[(Doc_ID1,tf(i,1)), (Doc_ID2,tf(i,2)), ecc]
• Note: The posting list has all the information

that we need to calculate the similarity
scores

• Output: List of K top ranked documents

Computing cosine scores

• We are going to compute the cos-sim scores,
but in a “clever” way

• Here are some constants that we need:
– The number N of documents in the corpus
– The document frequency dfi of each term ti (this is

equals the number of ITEMS in the posting list of
ti)

– The term frequency tfi of each term ti in a
document (which is the second argument of a
(Doc_ID,tf) pair in the posting list)

Remember the cos-sim formula

åå
å

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(!

!

!
!

!!

!!!!

cos(
!q,
!
d) =

tfidfi ,qtfidfi ,di=1
V∑

tfidfi ,q
2

i=1
V∑ tfidfi ,d

2
i=1
V∑

The coordinates qi,di of the q and d vectors are the
tfidf values for term i of numerator

Computing cosine scores

1. Get a query from user (e.g. “information
retrieval for retrieval of documents”)

2. After removal of stop words and stemming, we
have 3 terms: information, retrieval, document

3. Compute tfidf for those terms (e.g. using log-tf)

Compute tf*idf for query terms (e.g.
using logs)

WTF(information)=(1+log(2))
WTF(retrieval)=1
WTF(document)=1

|corpus| is number
of documents in
archive

Computing cosine scores for documents

• Note in the formula that we have a numerator which is the sum of tfidf, and a
“normalizing” denominator which is a product of the square of the sum of
(tfidf)^2

• We can compute numerator and denominator incrementally and separately.
• Define two variables, Score and Magnitude: the first to compute numerator, the

second to compute denominator (vector norm)
• For each keyword ti in the query:

1. Get posting list for that word
2. For each document dj in posting list of keyword ti, update the entry in

Score(dj,q): Score(dj,q)=Score(dj,q)+tfidf(ti,q)*tfidf(ti,dj)
3. We also need to compute the NORMs of dj (denominator), and we do

this incrementally, as well:
Magnitude(dj)=Magnitude(dj)+tfidf(ti,dj)^2

NOTE WE DO NOT NEED TO COMPUTE THE NORM OF q SINCE THIS VALUE IS THE SAME
FOR ALL cos(q,d) and does not affect the ranking order

cos(
!q,
!
d) =

tfidfi ,qtfidfi ,di=1
V∑

tfidfi ,q
2

i=1
V∑ tfidfi ,d

2
i=1
V∑

Algorithm to compute cosin similarity
scores

Initialize(Scores [d in Collection])
Initialize (Magnitude [d in Collection]))
For each keyword t in query q:

Fetch dft
Fetch posting list of t, p(t)
Compute tfidft,q for the query
For each d in p(t):

Compute tfidft,d
Score(d)= Score(d)+tfidft,q*tfidft,d
Magnitude(d)= Magnitude(d)+(tfidft,d)^2

For d in Scores:
Do NORMALIZE (Scores(d)/SQRT(Magnitude(d)))

Return top K scores

tfidf weighting has many variants

Augmented used to assign same relevance to very rare words

Weighting may differ in queries vs
documents

• Many search engines allow for different
weightings for queries vs documents (queries are
very short, each word occurs typically once)

• To denote the specific combination in use in an
search engine, we use the notation qqq.ddd with
the acronyms from the previous table

• Example: ltn.lnc means:
– Query: logarithmic tf (l in leftmost column), idf (t in

second column), no normalization …
– Document: logarithmic tf, no idf and cosine

normalization

63

64

Summary: What’s the point of using vector
spaces?

• A well-formed algebraic space for retrieval
• Query becomes a vector in the same space as

the docs.
– Can measure each doc’s proximity to it.

• Natural measure of scores/ranking – no longer
Boolean.
– Documents and queries are expressed as bags of

words

65

Summary: What’s the point of using
vector spaces? (2)

• Non-binary (numeric) term weights used to
compute degree of similarity between a
query and each of the documents.

• Enables
qpartial matches

• to deal with incompleteness
qanswer set ranking

• to deal with information overload

66

The Vector Model : Pros and Cons

• Advantages:
qterm-weighting improves answer set quality
qpartial matching allows retrieval of docs that

approximate the query conditions
qcosine ranking formula sorts documents according

to degree of similarity to the query
• Disadvantages:

qassumes independence of index terms, which is a
step back from proximity search

Google ranking method

• Ranking is (also) based on the content and on the
specific page (later in this course, PageRank)

• Unknown, but over 200 methods/algorithms are jointly
used. PageRank is one of the 200!

• In a query, keywords are interpreted as a boolean AND
search (advanced options for complex boolean queries)

• However, answers are returned even if a word is not
included (basically, it is a mixed boolean-vector space
model)

• Additionally, query words are spell-corrected, and
additional words can be added (see Query Expansion)

