

Community detection

- Community: It is formed by individuals such that those within a group <u>interact</u> with each other more frequently than with those outside the group
 - a.k.a. group, cluster, cohesive subgroup, module in different contexts
- Community detection: discovering groups in a network where individuals' group memberships are not explicitly given

Community detection

- Why communities in social media?
 - -Human beings are social
 - Easy-to-use social media allows people to extend their social life in unprecedented ways
 - Difficult to meet friends in the physical world, but much easier to find friend online with similar interests
 - Interactions between nodes can help determine communities

Communities in Social Media

- Two types of groups in social media
 - Explicit Groups: formed by user subscriptions (e.g. Google groups, Twitter lists)
 - Implicit Groups: implicitly formed by social interactions
- Some social media sites allow people to join groups, however it is still necessary to extract groups based on <u>network</u> topology
 - Not all sites provide community platform
 - Not all people want to make effort to join groups
 - Groups can change dynamically
- Network <u>interaction</u> provides rich information about the <u>relationship</u> between users
 - Can complement other kinds of information, e.g. user profile
 - Help network visualization and navigation
 - Provide basic information for other tasks, e.g. recommendation

Subjectivity of Community Definition

Taxonomy of Community Detection Criteria

- Criteria vary depending on the tasks
- Roughly, community detection methods can be divided into 4 categories (not exclusive):
 - Node-Centric Community
 - Each node in a group satisfies certain properties
 - Group-Centric Community
 - Consider the connections within a group as a whole. The group has to satisfy certain properties without zooming into node-level
 - Network-Centric Community
 - Partition the whole network into several disjoint sets
 - Hierarchy-Centric Community
 - Construct a hierarchical structure of communities

Node-Centric Community Detection

1. Node-Centric Community Detection

- Nodes in a community must satisfy specific properties, like:
 - Complete Mutuality
 - cliques
 - Reachability of members
 - k-clique, k-clan, k-club
 - Nodal degrees
 - k-plex, k-core
 - Relative frequency of Within-Outside Ties
 - LS sets, Lambda sets
- Commonly used in traditional social network analysis
- Here, we discuss only some of these properties

Complete Mutuality: Cliques

 Clique: a <u>maximum</u> <u>complete</u> subgraph in which all nodes are adjacent to each other

- NP-hard to find the maximum clique in a network
- Straightforward implementation to find cliques is very expensive in time complexity

Finding the Maximum Clique

- In a clique of size k, each node maintains degree >= k-1
 - Nodes with degree < k-1 will not be included in the maximum clique
- Recursively apply the following pruning procedure
 - Sample a sub-network from the given network, and find a clique in the sub-network, say, by a greedy approach
 - Suppose the clique above is size k, in order to find out a *larger* clique, all nodes with degree <= k-1 should be removed.
- Repeat until the network is small enough
- Many nodes will be pruned as social media networks follow a <u>power law distribution</u> for node degrees (Zipfian low, previous lessons)

Maximum Clique Example

- Suppose we sample a sub-network with nodes {1-9} and find a clique {1, 2, 3} of size 3
- In order to find a clique >3, remove all nodes with degree
 <=3-1=2
 - Remove nodes 2 and 9
 - Remove nodes 1 and 3
 - Remove node 4

Clique Percolation Method (CPM)

- Clique is a very strict definition, unstable
- Normally use cliques as a core or a seed to find larger communities
- CPM is such a method to find overlapping communities
 - Input
 - A parameter k, and a network
 - Procedure
 - Find out all cliques of size k in a given network
 - Construct a <u>clique graph</u>. Two cliques are adjacent if they share k-1 nodes
 - Each <u>connected</u> components in the clique graph form a community

CPM Example

Cliques of size 3:

{1, 2, 3}, {1, 3, 4}, {4, 5, 6}, {5, 6, 7}, {5, 6, 8}, {5, 7, 8}, {6, 7, 8}

Construct a <u>clique graph</u>. Two cliques are adjacent if they share k-1 nodes (2 if k=3)

Communities:

Each <u>connected</u> component in the clique graph forms a community

Reachability: k-clique, k-club

- Any node in a group should be reachable in k hops
- k-clique: a maximal subgraph in which the largest geodesic distance between any two nodes <= k
- k-club: a substructure of <u>diameter</u> <= k

Cliques: {1, 2, 3}

2-cliques: {1, 2, 3, 4,5}, {2, 3, 4, 5, 6}

2-clubs: {1,2,3,4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6}

- A k-clique might have diameter larger than k in the subgraph
 - E.g. {1, 2, 3, 4, 5}
 - Commonly used in traditional SNA
- Often involves combinatorial optimization

Note that the path of length k or less linking a member of the k-clique to another member may pass through an intermediary who is not in the group (e.g. for nodes 4 and 5).

Group-Centric Community Detection

2. Group-Centric Community Detection: Density-Based Groups

- The group-centric criterion requires the whole group to satisfy a certain condition
 - E.g., the group density >= of a given threshold
- A subgraph $G_s(V_s, E_s)$ is a $\gamma dense$ quasi-clique if

$$\frac{2|E_s|}{|V_s|(|V_s|-1)} \ge \gamma$$

where the denominator is the maximum possible node degree (any node connected to any node).

- To detect quasi-cliques we can use a strategy similar to that of cliques
 - Sample a subgraph, and find a maximal $\gamma-dense$ quasi-clique (say, of size $|V_s|$)
 - Remove nodes with degree less than the average degree

$$|V_s|\gamma \le \frac{2|E_s|}{|V_s|-1}$$

iterate

_

Network-Centric Community Detection

3. Network-Centric Community Detection

- Network-centric criterion needs to consider the connections within a network globally
- Goal: partition nodes of a network into <u>disjoint</u> sets such that members (i,j) of a set are more similar to each other than any to members (i,j) such that i belongs to a set and j to a different set.
- Many approaches to identify such sets, or CLUSTERS:
 - (1) Clustering based on vertex similarity
 - (2) Latent space models (multi-dimensional scaling)
 - (3) Block model approximation
 - (4) Spectral clustering
 - (5) Modularity maximization

Clustering based on Vertex Similarity

- Define a measure of vertex similarity
- Use an algorithm to group nodes based on similarity (e.g. k-means, see later)
- Vertex similarity is defined in terms of the similarity of their neighborhood
- Example of similarity measure: Structural equivalence

 Two nodes are structurally equivalent iff they are connecting to the same set of actors

Nodes 1 and 3 are structurally equivalent; So are nodes 5 and 6.

Structural equivalence is too restricted for practical use.

Clustering based on Vertex Similarity

Jaccard Similarity

$$Jaccard(v_i, v_j) = \frac{|N_i \cap N_j|}{|N_i \cup N_j|}$$

Cosine similarity

$$Cosine(v_i, v_j) = \frac{|N_i \cap N_j|}{\sqrt{|N_i| \cdot |N_j|}}$$

$$Jaccard(4,6) = \frac{|\{5\}|}{|\{1,3,4,5,6,7,8\}|} = \frac{1}{7}$$

$$cosine(4,6) = \frac{1}{\sqrt{4 \cdot 4}} = \frac{1}{4}$$

Clustering based on Vertex Similarity

		1	2	3	4	5	6	7	8	9	10	11	12	13
a vector 🗪	5		1				1							
structurally J	8	1					1							1
structurally = equivalent	9	1					1							1

Cosine Similarity:
$$similarity = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$
. $sim(5,8) = \frac{1}{\sqrt{2} \times \sqrt{3}} = \frac{1}{\sqrt{6}}$

Jaccard Similarity:
$$J(A,B)=\frac{|A\cap B|}{|A\cup B|}.$$

$$J(5,8)=\frac{|\{6\}|}{|\{1,2,6,13\}|}=1/4.$$

Clustering based on vertex similarity (K-means) Given some similarity function (e.g. Jaccard) K-Means Clustering:

- 1) Pick K objects as centers of K clusters and assign all the remaining objects to these centers
 - Each object will be assigned to the center that has minimal distance to it (distance= inverse of similarity)
 - Solve any ties randomly (if distance is the same, assign randomly)
- 2) In each cluster C, find a new center X_C so as to minimize the total sum of distances between X_C and all other elements in C
- 3) Reassign all elements to new centers as explained in step (1)
- 4) Repeat the previous two steps until the algorithm converges (clusters stay the same)

Clustering based on vertex similarity (K-means)

Algorithm 1 Basic K-means Algorithm.

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

- Each cluster is associated with a centroid
- Each node is assigned to the cluster with the closest centroid

Illustration of k-means clustering

Clustering based on Min Cut

- Target: find clusters such that most interactions (edges) are within groups whereas interactions between members of different groups are fewer
- community detection → minimum cut problem
- Cut: A partition of vertices of a graph into two disjoint sets
- Minimum cut problem: find a graph partition such that the number of edges between the two sets is minimized
- (http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem)

Cut Example

Cut: set of edges whose removal disconnects GMin-Cut: a cut in G of minimum cost

$$\min imize: cut(C_i, \overline{C}_i) = \sum_{i \in C, j \in \overline{C}_i} (i, j); where (i, j) = 1 if i \rightarrow j$$

Weight of this cut: 2 Weight of min cut: 1

Ratio Cut & Normalized Cut

- Minimum cut often returns an imbalanced partition, with one set being a singleton, e.g. node 9
- Change the objective function to consider community

size (above formulas apply to a k-partition):

Ratio
$$\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^k \frac{\operatorname{cut}(C_i, \bar{C}_i)}{|C_i|},$$

Normalized $\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^k \frac{\operatorname{cut}(C_i, \bar{C}_i)}{\operatorname{vol}(C_i)}$
 C_i : a community

 C_i : the remaining graph

 C_i : number of nodes in C_i
 $\operatorname{Col}(\operatorname{C}_i)$: sum of degrees in C_i

Typically, graph partition problems fall under the category of NP-hard problems. Practical solutions based on heuristics

Ratio Cut & Normalized Cut Example

Ratio
$$\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}(C_i, \bar{C}_i)}{|C_i|}$$
, Normalized $\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}(C_i, \bar{C}_i)}{\operatorname{vol}(C_i)}$

For partition in red: π_1

For partition in red:
$$\pi_1$$
Ratio Cut $(\pi_1) = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{8} \right) = 9/16 = 0.56$
Normalized Cut $(\pi_2) = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{8} \right) = 14/27 = 0.52$

Normalized Cut(
$$\pi_1$$
) = $\frac{1}{2} \left(\frac{1}{1} + \frac{1}{27} \right) = 14/27 = 0.52$

For partition in green: π_2

Ratio
$$Cut(\pi_2) = \frac{1}{2} \left(\frac{2}{4} + \frac{2}{5} \right) = 9/20 = 0.45 < Ratio $Cut(\pi_1)$
Normalized $Cut(\pi_2) = \frac{1}{2} \left(\frac{2}{12} + \frac{2}{16} \right) = 7/48 = 0.15 < Normalized $Cut(\pi_1)$$$$

Both ratio cut and normalized cut prefer a balanced partition

Hierarchy-Centric Community Detection

4. Hierarchy-Centric Community Detection

- Goal: build a <u>hierarchical structure</u> of communities based on network topology
- Allow the analysis of a network <u>at different</u> resolutions
- Representative approaches:
 - Divisive Hierarchical Clustering (top-down)
 - Agglomerative Hierarchical clustering (bottomup)

Agglomerative Hierarchical Clustering

- Initialize each node as a community (singleton clusters)
- Merge communities successively into larger communities following a certain criterion
 - E.g., based on vertex similarity

Dendrogram according to Agglomerative Clustering

Divisive Hierarchical Clustering

- Divisive clustering
 - Partition nodes into several sets
 - Each set is further divided into smaller ones
 - Network-centric partition can be applied for the partition
- One particular example: recursively remove the "weakest" edge
 - Find the edge with the least strength
 - Remove the edge and update the corresponding strength of each edge (according to some measure of strength)
- Recursively apply the above two steps until a network is decomposed into desired number of connected components.
- Each component forms a community

Divisive clustering based on Edge Betweenness

- The strength of an edge can be measured by edge betweenness
- (remember) Edge betweenness: the number of shortest paths that pass along with the edge

 The edges with higher betweenness tends to be the <u>bridge</u> between two communities.

Girvan-Newman Algorithm

- 1. Calculate betweenness of all edges
- 2. Remove the edge(s) with highest betweenness
- 3. Repeat steps 1 and 2 until graph is partitioned into as many regions as desired

Divisive clustering based on edge betweenness

Initial betweenness value

Table 3.3: Edge Betweenness											
	1	2	3	4	5	6	7	8	9		
1	0	4	1	9	0	0	0	0	0		
2	4	0	4	0	0	0	0	0	0		
3	1	4	0	9	0	0	0	0	0		
4	9	0	9	0	10	10	0	0	0		
5	0	0	0	10	0	1	6	3	0		
6	0	0	0	10	1	0	6	3	0		
7	0	0	0	0	6	6	0	2	8		
8	0	0	0	0	3	3	2	0	0		
9	0	0	0	0	0	0	8	0	0		

After removing e(4,5), the betweenness of e(4,6) becomes 20, which is the

highest;

After removing e(4,6), the edge e(7,9) has the highest betweenness value 4, and should be removed.

Now progressively remove edges with highest betweenness

7 8

Complexity of Girvan-Newman

- How much computation does this require?
- Newman (2001) and Brandes (2001) independently developed similar algorithms that reduce the complexity from $O(mn^2)$ to O(mn) where m = # of edges, n = # of nodes

Computing Edge Betweenness Efficiently

For each node *N* in the graph ← Repeat for B, C, etc.

- 1. Perform breadth-first search of graph starting at node *N*
- 2. Determine the number of shortest paths from *N* to every other node
- 3. Based on these numbers, determine the amount of flow from N to all other nodes that use each edge

Divide sum of flow of all edges by 2

 \subset Since sum includes flow from A \rightarrow B and B \rightarrow A, etc.

Summary of Hierarchical Clustering

- Most hierarchical clustering algorithm output a binary tree
 - Each node has two children nodes
 - Might be highly imbalanced
- Agglomerative clustering can be very sensitive to the nodes processing order and merging criteria adopted.
- Divisive clustering is more stable, but generally more computationally expensive

Summary of Community Detection

- Node-Centric Community Detection
 - cliques, k-cliques, k-clubs
- Group-Centric Community Detection
 - quasi-cliques
- Network-Centric Community Detection
 - Clustering based on vertex similarity
- Hierarchy-Centric Community Detection
 - Divisive clustering
 - Agglomerative clustering

COMMUNITY EVALUATION

Evaluating Community Detection (1)

- For groups with clear definitions
 - E.g., Cliques, k-cliques, k-clubs, quasi-cliques
 - Verify whether extracted communities satisfy the definition (e.g. if they are k-cliques etc.)
- For networks with ground truth information (e.g. we know already the communities)
 - Normalized mutual information
 - Accuracy of pairwise community memberships

Measuring a Clustering Result

- The number of communities after grouping can be different from the ground truth
- No clear community <u>correspondence</u> between clustering result and the ground truth

Accuracy of Pairwise Community Memberships

- Consider all the possible pairs of nodes and check whether they reside in the same community
- An error occurs if
 - Two nodes belonging to the same community are assigned to different communities after clustering
 - Two nodes belonging to different communities are assigned to the same community
- Construct a contingency table or confusion matrix

		Ground Truth	
		$C(v_i) = C(v_j)$	$C(v_i) \neq C(v_j)$
Clustering	$C(v_i) = C(v_j)$	a	Ъ
Result	$C(v_i) \neq C(v_j)$	С	d

$$accuracy = \frac{a+d}{a+b+c+d} = \frac{a+d}{n(n-1)/2}$$

Accuracy Example

1, 3

2

4, 5, 6

Ground Truth

Clustering Result

Pairs: (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) (3,4) (3,5) (3,6) (4,5) (4,6) (5,6)

		Ground Truth	
		$C(v_i) = C(v_j)$	$C(v_i) \neq C(v_j)$
Clustering Result	$C(v_i) = C(v_j)$	4	0
	$C(v_i) \neq C(v_j)$	2	9

Accuracy = (4+9)/(4+2+9+0) = 13/15

Normalized Mutual Information

Entropy: the information contained in a distribution

$$H(X) = \sum_{x \in X} p(x) \log p(x)$$

• Mutual Information: the shared information between two distributions

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p_1(x)p_2(y)} \right)$$

Normalized Mutual Information (between 0 and 1)

$$NMI(X;Y) = \frac{I(X;Y)}{\sqrt{H(X)H(Y)}} \text{ or } NMI(X;Y) = \frac{2I(X;Y)}{H(X)+H(Y)}$$

 Consider a partition as a distribution (probability of one node falling into one community), we can compute the matching between the clustering result and the ground truth k^a , k^b = set of clusters generated by partitions π^a , π^b (e.g ground truth and output of clustering) h and ℓ are cluster indexes in partitions n_h^a dimension of cluster h in π^a , $n_{h,l}$ common nodes is two clusters of π^a , π^b

$$H(X) = \sum_{x \in X} \frac{n_h^a}{n} \log(\frac{n_h^a}{n})$$

$$I(X;Y) = \sum_{y} \frac{n_{h,l}^a}{n} \operatorname{Are\ common\ nodes}$$

$$I(X;Y) = \sum_{y} \frac{n_{h,l}}{n} \operatorname{Are\ common\ nodes}$$

$$I(X;Y) = \sum_{y} \frac{n_{h,l}}{n} \operatorname{Are\ common\ nodes}$$

$$I(X;Y) = \sum_{y} \frac{n_{h,l}}{n} \operatorname{log}(\frac{n_h^b}{n})$$

$$I(\pi^a, \pi^b) = \sum_{h} \sum_{l} \frac{n_{h,l}}{n} \operatorname{log}(\frac{n_h^a}{n})$$

$$I(\pi^a, \pi^b) = \sum_{h} \sum_{l} \frac{n_h^a}{n} \operatorname{log}(\frac{n_h^a}{n})$$

NMI-Example

in a partition each node is assigned a number corresponding to its cluster

Partition a: [1, 1, 1, 2, 2, 2]

Partition b: [1, 2, 1, 3, 3, 3]

1, 2, 3	4, 5, 6	

4, 5,6

n=6		
$k^{(a)} = 2$	h=1	
$k^{(b)} = 3$	h=2	

k=# of clusters

of nodes in each cluster

3

	n_l^b
<i>l</i> =1	2
<i>l</i> =2	1
<i>ℓ</i> =3	3

$n_{h,l}$	<i>ℓ</i> =1	<i>ℓ</i> =2	<i>ℓ</i> =3
h=1	2	1	0
h=2	0	0	3

contingency table or confusion matrix

$$NMI(\pi^{a}, \pi^{b}) = \frac{\sum_{h=1}^{k^{(a)}} \sum_{\ell=1}^{k^{(b)}} n_{h,\ell} \log \left(\frac{n \cdot n_{h,l}}{n_{h}^{(a)} \cdot n_{\ell}^{(b)}} \right)}{\sqrt{\left(\sum_{h=1}^{k^{(a)}} n_{h}^{(a)} \log \frac{n_{h}^{a}}{n}\right) \left(\sum_{\ell=1}^{k^{(b)}} n_{\ell}^{(b)} \log \frac{n_{\ell}^{b}}{n}\right)}} = 0.8278$$

Evaluation using Semantics

- For networks with semantics
 - Networks come with semantic or attribute information of nodes or connections
 - Human subjects can verify whether the extracted communities are coherent
- Evaluation is qualitative
- It is also intuitive and helps understand a community

An *animal* community

A *health* community

Next (and last) lesson

- Information Flow and maximization of Influence in social networks
- Sentiment analysis