Social Media Analytics

Part III

Community detection

- Community: It is formed by individuals such that those within a group <u>interact</u> with each other more frequently than with those outside the group
 - a.k.a. group, cluster, cohesive subgroup, module in different contexts
- Community detection: discovering groups in a network where individuals' <u>group</u> <u>memberships</u> are not explicitly given

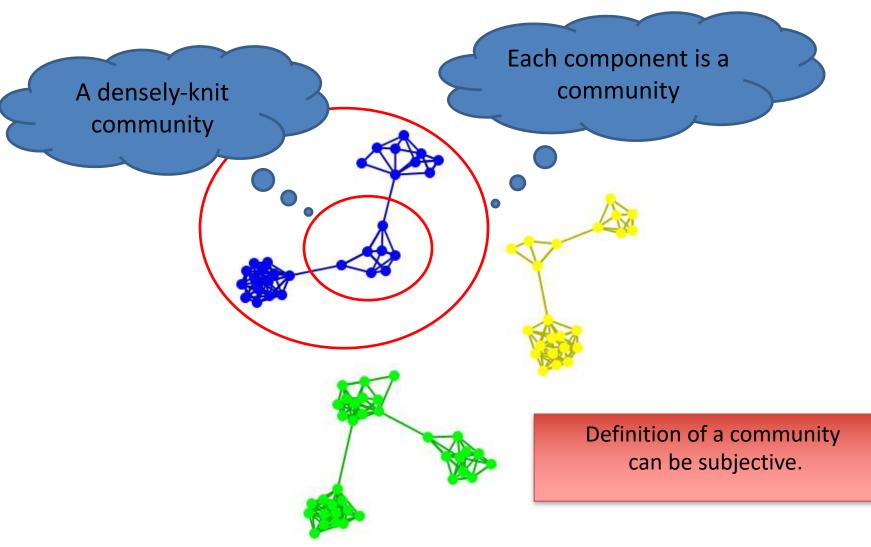
Community detection

- Why communities in social media?
 Human beings are social
 - Easy-to-use social media allows people to extend their social life in unprecedented ways
 - Difficult to meet friends in the physical world, but much easier to find friend online with similar interests
 - <u>Interactions</u> between nodes can help determine communities

Communities in Social Media

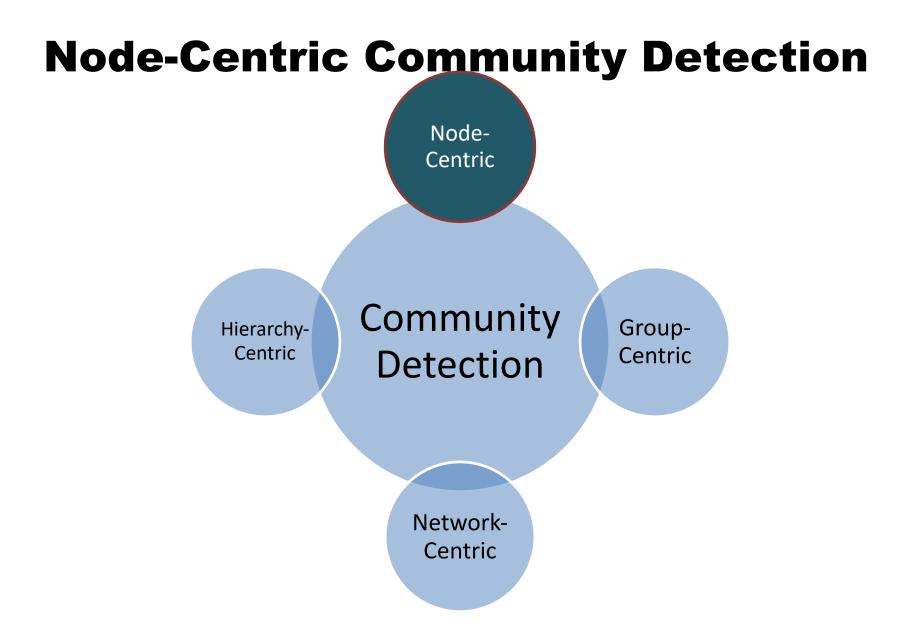
- Two types of groups in social media
 - Explicit Groups: formed by user subscriptions (e.g. Google groups, Twitter lists)
 - Implicit Groups: implicitly formed by social interactions
- Some social media sites allow people to join groups, however it is still necessary to extract groups based on <u>network</u> <u>topology</u>
 - Not all sites provide community platform
 - Not all people want to make effort to join groups
 - Groups can change dynamically
- Network <u>interaction</u> provides rich information about the <u>relationship</u> between users
 - Can complement other kinds of information, e.g. user profile
 - Help network visualization and navigation
 - Provide basic information for other tasks, e.g. recommendation

Subjectivity of Community Definition



Taxonomy of Community Detection Criteria

- Criteria vary depending on the tasks
- Roughly, community detection methods can be divided into 4 categories (not exclusive):
 - Node-Centric Community
 - Each node in a group satisfies certain properties
 - Group-Centric Community
 - Consider the connections within a group as a whole. The group has to satisfy certain properties without zooming into node-level
 - Network-Centric Community
 - Partition the whole network into several disjoint sets
 - Hierarchy-Centric Community
 - Construct a hierarchical structure of communities

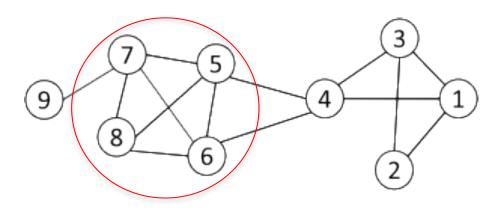


1. Node-Centric Community Detection

- Nodes in a community must satisfy specific properties, like:
 - Complete Mutuality
 - cliques
 - Reachability of members
 - k-clique, k-clan, k-club
 - Nodal degrees
 - k-plex, k-core
 - Relative frequency of Within-Outside Ties
 - LS sets, Lambda sets
- Commonly used in traditional social network analysis
- Here, we discuss only some of these properties

Complete Mutuality: Cliques

 Clique: a <u>maximum complete</u> subgraph in which all nodes are adjacent to each other



Nodes 5, 6, 7 and 8 form a clique

- **NP-hard** to find the maximum clique in a network
- Straightforward implementation to find cliques is very expensive in time complexity

Finding the Maximum Clique

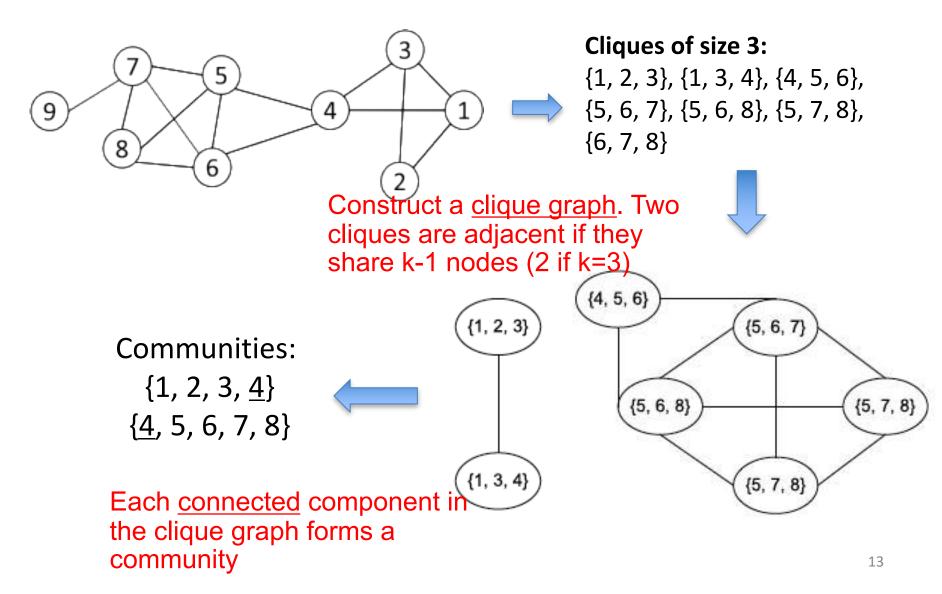
- In a clique of size k, each node maintains degree >= k-1
 - Nodes with degree < k-1 will not be included in the maximum clique
- Recursively apply the following pruning procedure
 - Sample a sub-network from the given network, and find a clique in the sub-network, say, by a greedy approach
 - Suppose the clique above is size k, in order to find out a *larger* clique, all nodes with degree <= k-1 should be removed.
- Repeat until the network is small enough
- Many nodes will be pruned as social media networks follow a <u>power law distribution</u> for node degrees (Zipfian low, previous lessons)

- Suppose we sample a sub-network with nodes {1-9} and find a clique {1, 2, 3} of size 3
- In order to find a clique >3, remove all nodes with degree
 <=3-1=2
 - Remove nodes 2 and 9
 - Remove nodes 1 and 3
 - Remove node 4

Clique Percolation Method (CPM)

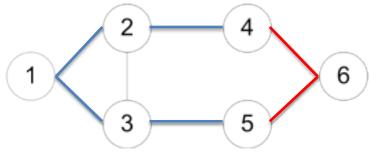
- Clique is a very strict definition, unstable
- Normally use cliques as a core or a seed to find larger communities
- CPM is such a method to find overlapping communities
 - Input
 - A parameter k, and a network
 - Procedure
 - Find out all cliques of size k in a given network
 - Construct a <u>clique graph</u>. Two cliques are adjacent if they share k-1 nodes
 - Each <u>connected</u> components in the clique graph form a community

CPM Example



Reachability : k-clique, k-club

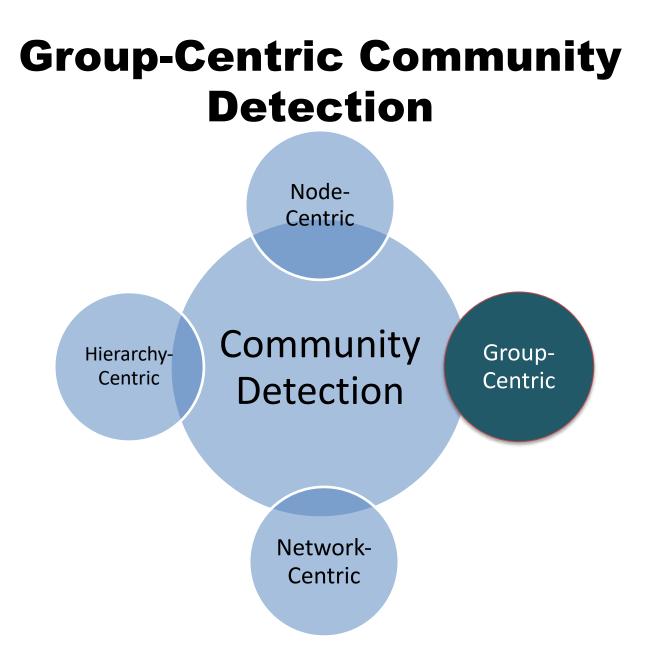
- Def: Any node in a group should be *reachable* in k hops
- k-clique: a maximal subgraph in which the largest <u>geodesic</u> <u>distance</u> between any two nodes <= k
- k-club: a substructure of <u>diameter</u> <= k



Cliques: {1, 2, 3} 2-cliques: {1, 2, 3, 4,5}, {2, 3, 4, 5, 6} 2-clubs: {1,2,3,4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6}

- A k-clique might have diameter larger than k in the subgraph
 - E.g. {1, 2, 3, 4, 5} but 4 and 5 reach each other in two hops (via 6)
 - Commonly used in traditional SNA
- Often involves combinatorial optimization

Note that the path of length k or less linking a member of the k-clique to another member may pass through an intermediary who is not in the group (e.g. for nodes 4 and 5).



2. Group-Centric Community Detection: Density-Based Groups

• The group-centric criterion requires the **whole group** to satisfy a certain condition

– E.g., the group density >= of a given threshold

• A subgraph $G_s(V_s, E_s)$ is a $\gamma - dense$ quasi-clique if

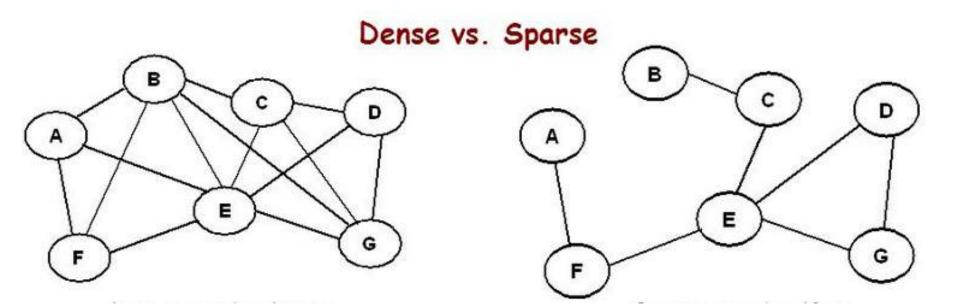
$$\frac{2|E_s|}{|V_s|(|V_s|-1)} \ge \gamma$$

where the denominator is the maximum possible node degree (any node connected to any node).

- To detect quasi-cliques we can use a strategy similar to that of cliques
 - Sample a subgraph, and find a maximal $\gamma-dense$ guasi-clique (say, of size $|V_{s}|$)
 - Remove nodes with degree less than the average degree

$$|V_s|\gamma \le \frac{2|E_s|}{|V_s|-1}$$

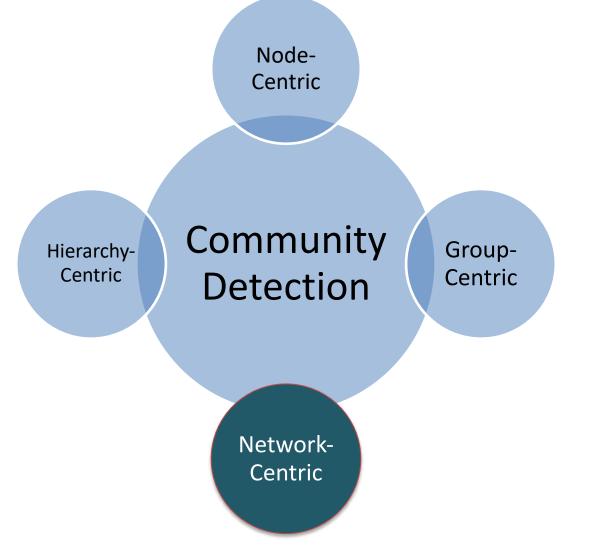
– iterate



$$\frac{2E}{V(V-1)} = \frac{28}{49}$$

$$\frac{2E}{V(V-1)} = \frac{7}{49}$$

Network-Centric Community Detection



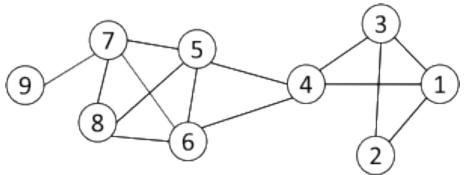
3. Network-Centric Community Detection

- Network-centric criterion needs to consider the connections within a network <u>globally</u>
- Goal: partition nodes of a network into <u>disjoint</u> sets such that members (i,j) of a set are more similar to each other than any to members (i,j) such that i belongs to a set and j to a different set.
- Many approaches to identify such sets, or CLUSTERS:
 - (1) Clustering based on vertex similarity
 - (2) Latent space models (multi-dimensional scaling)
 - (3) Block model approximation
 - (4) Spectral clustering
 - (5) Modularity maximization

Clustering based on Vertex Similarity (1)

- Define a measure of vertex similarity
- Use an algorithm to group nodes based on similarity (e.g. k-means, see later)
- Vertex similarity is defined in terms of the similarity of their neighborhood
- Example of similarity measure: Structural equivalence
- Two nodes are structurally equivalent iff they are connecting to the same set of actors

Nodes 1 and 3 are structurally equivalent, they are connected to the same nodes; So are nodes 5 and 6.



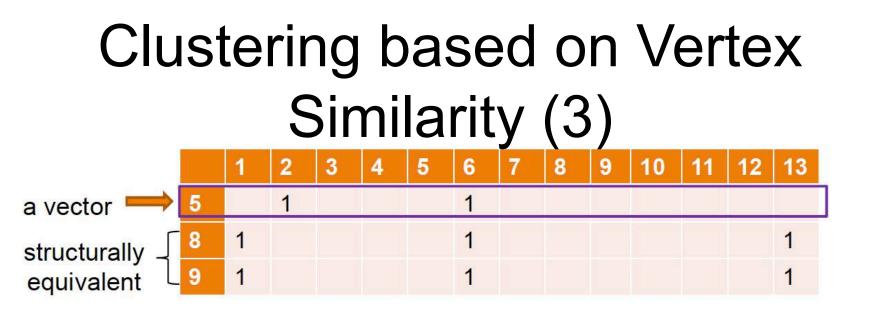
• Structural equivalence is too restricted for practical use.

Clustering based on Vertex Similarity (2)

Jaccard Similarity

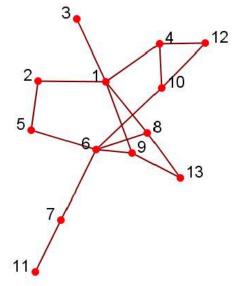
9

 $Jaccard(v_i, v_j) = \frac{|N_i \cap N_j|}{|N_i \cup N_j|}$ Cosine similarity $Cosine(v_i, v_j) = \frac{|N_i \cap N_j|}{\sqrt{|N_i| \cdot |N_j|}}$ 3 5 1 4 8 6 $Jaccard(4,6) = \frac{|\{5\}|}{|\{1,3,4,5,6,7,8\}|} = \frac{1}{7}$ $cosine(4, 6) = \frac{1}{\sqrt{4 \cdot 4}} = \frac{1}{4}$



Cosine Similarity: similarity =
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

 $sim(5,8) = \frac{1}{\sqrt{2} \times \sqrt{3}} = \frac{1}{\sqrt{6}}$



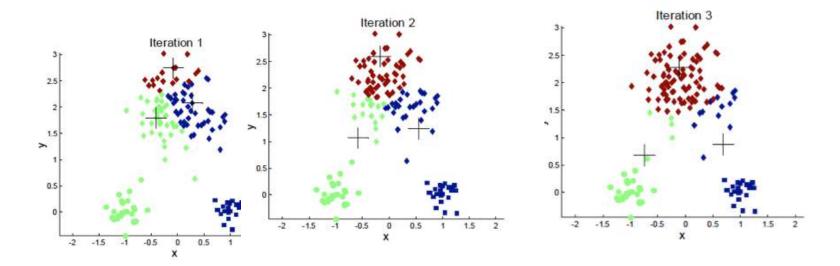
Jaccard Similarity:
$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$
.
 $J(5,8) = \frac{|\{6\}|}{|\{1,2,6,13\}|} = 1/4$

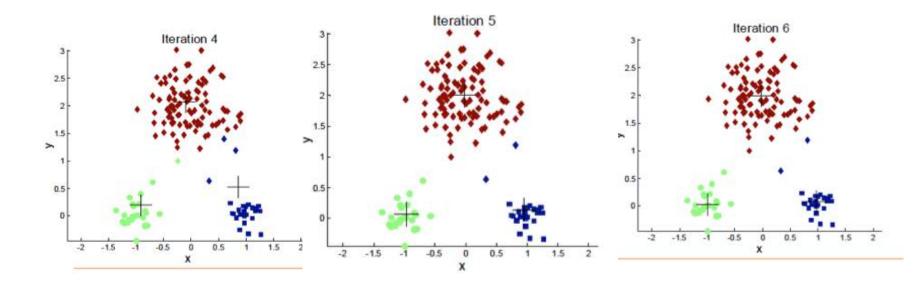
Clustering based on vertex similarity (4) Given some similarity function (e.g. Jaccard) K-Means Clustering:

- 1) Pick K objects as centers of K clusters and assign all the remaining objects to these centers
 - Each object will be assigned to the center that has minimal distance to it (distance= inverse of similarity)
 - Solve any ties randomly (if distance is the same, assign randomly)
- 2) In each cluster C, find a new center X_C so as to minimize the total sum of distances between X_C and all other elements in C
- 3) Reassign all elements to new centers as explained in step (1)
- Repeat the previous two steps until the algorithm converges (clusters stay the same)

An animation of kMeans

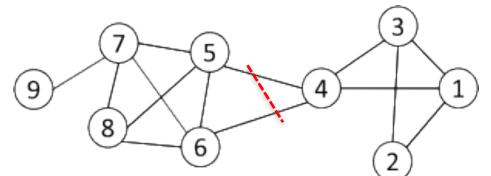
Illustration of k-means clustering





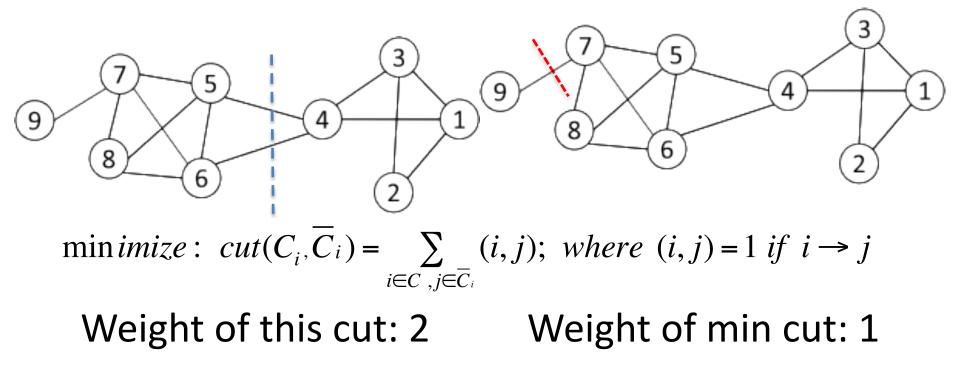
Clustering based on Min Cut (1)

- Target: find clusters such that most interactions (edges) are within groups whereas interactions between members of different groups are fewer
- community detection \rightarrow minimum cut problem
- Cut: A partition of vertices of a graph into two disjoint sets
- Minimum cut problem: find a graph partition such that the number of edges between the two sets is minimized
- (http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem)

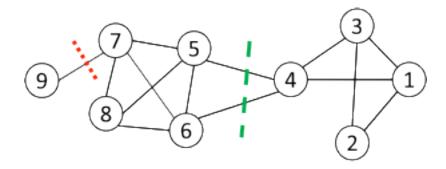


Clustering based on Min Cut (2)

Cut: set of edges whose removal disconnects GMin-Cut: a cut in G of minimum cost



Ratio Cut & Normalized Cut



- Minimum cut often returns an imbalanced partition, with \bullet one set being a singleton, e.g. node 9
- Change the objective function to consider community

size (above formulas apply to a k-partition): Ratio $\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}(C_i, \overline{C}_i)}{|C_i|}$, C_i : a community \overline{C}_i : the remaining graph Normalized $\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{Cut}(C_i, \overline{C}_i)}{\operatorname{vol}(C_i)}$ $|C_i|$: number of nodes in C_i $\operatorname{vol}(C_i)$: sum of degrees in C_i

Typically, graph partition problems fall under the category of NP-hard problems. Practical solutions based on heuristics

Ratio Cut & Normalized Cut Example

Ratio
$$\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}(C_i, \bar{C}_i)}{|C_i|}$$
, Normalized $\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}(C_i, \bar{C}_i)}{\operatorname{vol}(C_i)}$
For partition in red: π_1
Ratio $\operatorname{Cut}(\pi_1) = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{8} \right) = 9/16 = 0.56$

Normalized $\operatorname{Cut}(\pi_1) = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{27} \right) = 14/27 = 0.52$

For partition in green: π_2

Ratio
$$\operatorname{Cut}(\pi_2) = \frac{1}{2} \left(\frac{2}{4} + \frac{2}{5} \right) = 9/20 = 0.45 < \text{Ratio } \operatorname{Cut}(\pi_1)$$

Normalized $\operatorname{Cut}(\pi_2) = \frac{1}{2} \left(\frac{2}{12} + \frac{2}{16} \right) = 7/48 = 0.15 < \text{Normalized } \operatorname{Cut}(\pi_1)$

Both ratio cut and normalized cut prefer a balanced partition

Clustering based on Modularity (1)

 Modularity considers if the number of edges is smaller than «expected»

Q= (#edges within a «candidate» community C – expected # of such edges)

- If there is a (statistically) significant difference then **there is some structure in** *C*
- The larger, the better

Clustering based on Modularity (2)

- Let G be a network (a candidate community) with 2m edges and let *i* and *j* be two nodes with degree k_i and k_j
- What is the «expected» (prior) number of edges between these two nodes (expected = random network, no structure)?

•
$$P_{ij} = \frac{k_i k_j}{2m-1}$$
 for large m: $P_{ij} \approx \frac{k_i k_j}{2m}$

- $Q = \frac{1}{2m} \sum_{ij} \left[A_{ij} P_{ij} \right] \delta(g_i, g_j)$
- Where A_{ij} is the actual observed number of edges between i and j

Clustering based on Modularity (3)

 Let's consider the two candidate communities C1 and C2. Let s be a variable such that, if a node i belongs to C1, then s_i=1 else s_i=-1. We define:

•
$$\delta(g_i, g_j) = \frac{s_i s_j + 1}{2}$$

• Note if i,j belong to the same cluster δ =1 if they belong to different clusters δ =0

Turning modularity computation into an eigevector/value problem

•
$$Q = \frac{1}{4m} \sum_{ij} [A_{ij} - P_{ij}](s_i s_j + 1)$$

- Relaxation: we ignore the +1
- In matrix form we have:

•
$$Q = \frac{1}{4m} \mathbf{s}^T B \mathbf{s}$$
 where $B_{ij} = A_{ij} - P_{ij}$

- **s** is a {-1,1} membership vector
- Vector **s** can be re-written in terms of eigenvectors u_i of square matrix B

•
$$\boldsymbol{s} = \sum_i a_i \boldsymbol{u}_i$$

$$\mathbf{s} = \sum_i a_i u_i$$
 $a_i = u_i^T \mathbf{s}$

$$Q = \frac{1}{4m} \mathbf{s}^{T} B \mathbf{s}$$

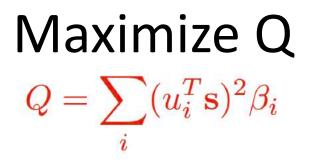
$$\operatorname{drop the} (1/4m) \longrightarrow = \left(\sum_{i} a_{i} u_{i}^{T}\right) B\left(\sum_{j} a_{j} u_{j}\right)$$

$$= \left(\sum_{i} a_{i} u_{i}^{T} B\right) \left(\sum_{j} a_{j} u_{j}\right)$$

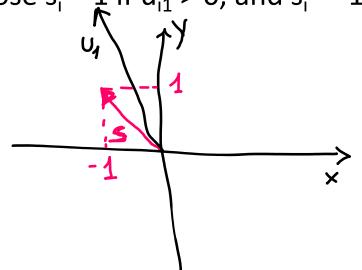
$$= \sum_{i} \sum_{j} a_{i} a_{j} u_{i}^{T} B u_{j}$$
Note:
$$1. B u_{j} = \beta_{i} u_{j}$$

$$2. \text{ When } i \neq j, u_{i}^{T} B u_{j} = 0 \text{ because } u_{i} \perp u_{j}$$

$$Q = \sum_{i} (u_{i}^{T} \mathbf{s})^{2} \beta_{i}$$



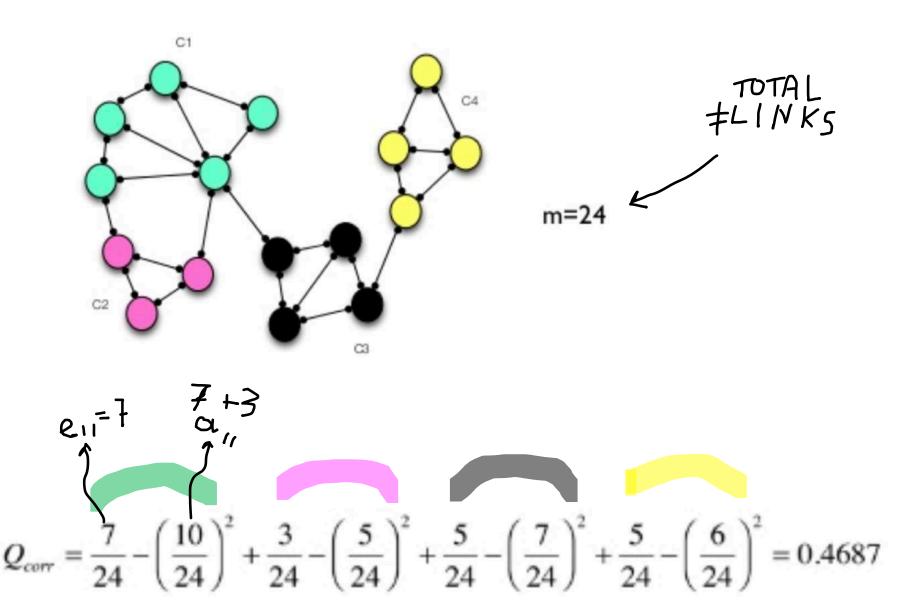
- Note: to maximize Q we should choose s parallel to the principal eigenvector u₁, but coordinates s_i in s must be +1 or -1 so we can't do this freely...
- We can maximize the projection $\mathbf{u}_1 \cdot \mathbf{s}$
- To do this: choose $s_i = 1$ if $u_{i1} > 0$, and $s_i = -1$ if $u_{i1} \le 0$.



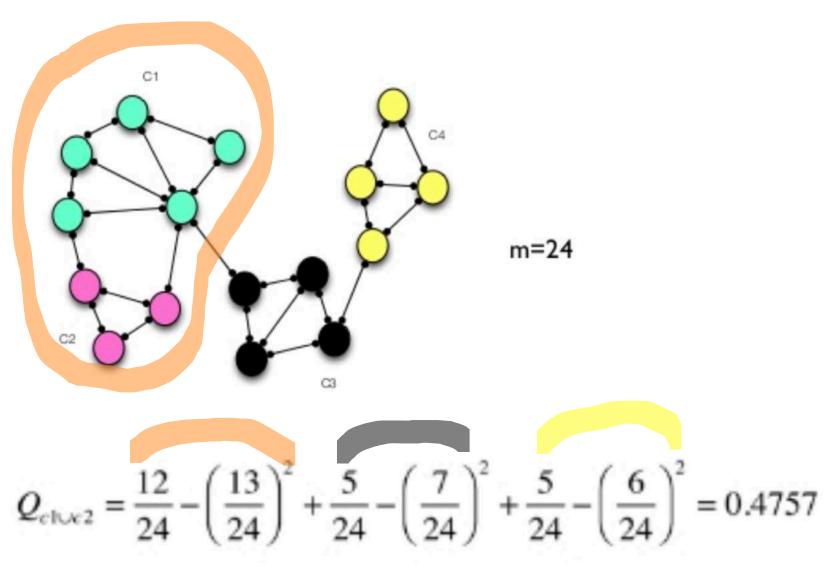
Generalizing to c communities (no demonstration)

- What we have discussed is for c=2 communites
- What for more communities?
- $Q = \frac{1}{2m} \sum_{ij} [A_{ij} P_{ij}] \delta(C_k, C_h) \rightarrow$
- $Q = \sum_{i=1}^{c} (e_{ii} a_i^2) = \sum_{i=1}^{c} (e_{ii}) \sum_{i} (a_i^2) =$
- Where e_{ii} is the fraction (probability) of edges within community C_i and a_i is the fraction of edges with one end in nodes of community C_i and the other end in any other community.

Example



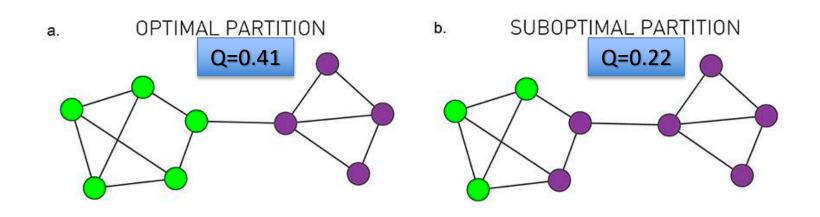
What if I merge C1 and C2?

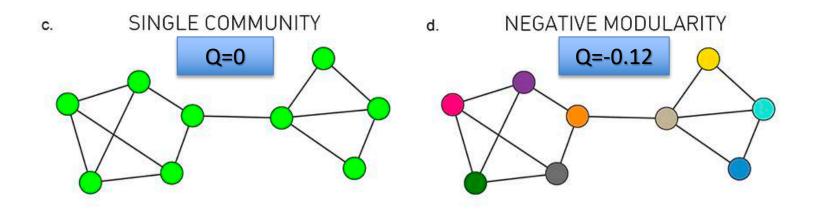


Calculating communities with modularity

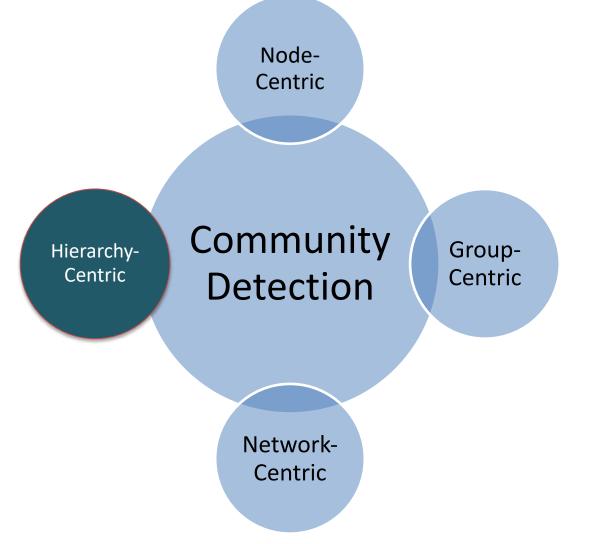
- Q is NP-hard to optimize
- Greedy algorithm (Newman, 2003)
- C= trivial clustering where every node is a cluster Repeat:
- Merge the two clusters that will increase modularity by the largest amount
- Stop when all merges would reduce modularity wrt step i-1

Example





Hierarchy-Centric Community Detection

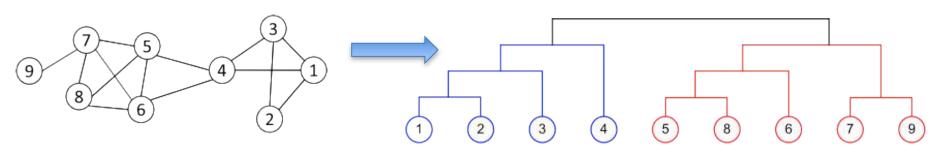


4. Hierarchy-Centric Community Detection

- Goal: build a <u>hierarchical structure</u> of communities based on network topology
- Allow the analysis of a network <u>at different</u> resolutions
- Representative approaches:
 - Divisive Hierarchical Clustering (top-down)
 - Agglomerative Hierarchical clustering (bottom-up)

Agglomerative Hierarchical Clustering

- Initialize each node as a community (singleton clusters)
- Merge communities successively into larger communities following a certain criterion
 - E.g., based on vertex similarity

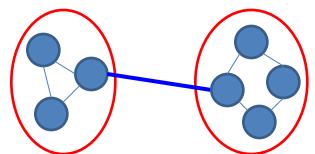


Dendrogram according to Agglomerative Clustering

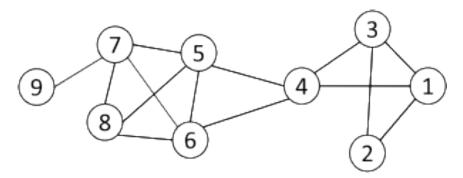
Divisive Hierarchical Clustering

- Divisive clustering
 - Partition nodes into several sets
 - Each set is further divided into smaller ones
 - Network-centric partition can be applied for the partition
- One particular example: recursively remove the "weakest" edge
 - Find the edge with the least strength
 - Remove the edge and update the corresponding strength of each edge (according to some measure of strength)
- Recursively apply the above two steps until a network is decomposed into desired number of connected components.
- Each component forms a community

Divisive clustering based on Edge Betweenness



- The strength of an edge can be measured by edge betweenness
- (remember) Edge betweenness: the number of shortest paths that pass along with the edge

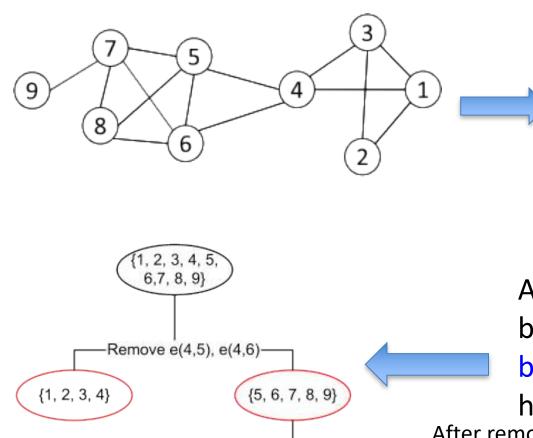


• The edges with higher betweenness tends to be the <u>bridge</u> between two communities.

Girvan-Newman Algorithm

- 1. Calculate betweenness of all edges
- 2. Remove the edge(s) with highest betweenness
- 3. Repeat steps 1 and 2 until graph is partitioned into as many regions as desired

Divisive clustering based on edge betweenness



Initial betweenness value

Table 3.3: Edge Betweenness									
	1	2	3	4	5	6	7	8	9
1	0	4	1	9	0	0	0	0	0
2	4	0	4	0	0	0	0	0	0
3	1	4	0	9	0	0	0	0	0
4	9	0	9	0	10	10	0	0	0
5	0	0	0	10	0	1	6	3	0
6	0	0	0	10	1	0	6	3	0
7	0	0	0	0	6	6	0	2	8
8	0	0	0	0	3	3	2	0	0
9	0	0	0	0	0	0	8	0	0

After removing e(4,5), the betweenness of e(4, 6)becomes 20, which is the highest;

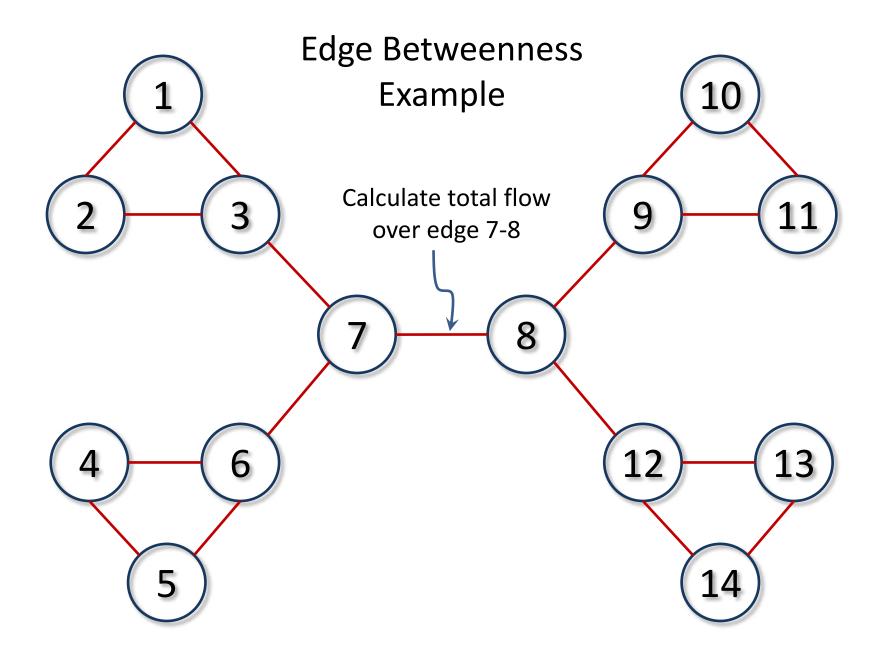
After removing e(4,6), the edge e(7,9) has the highest betweenness value 4, and should be removed.

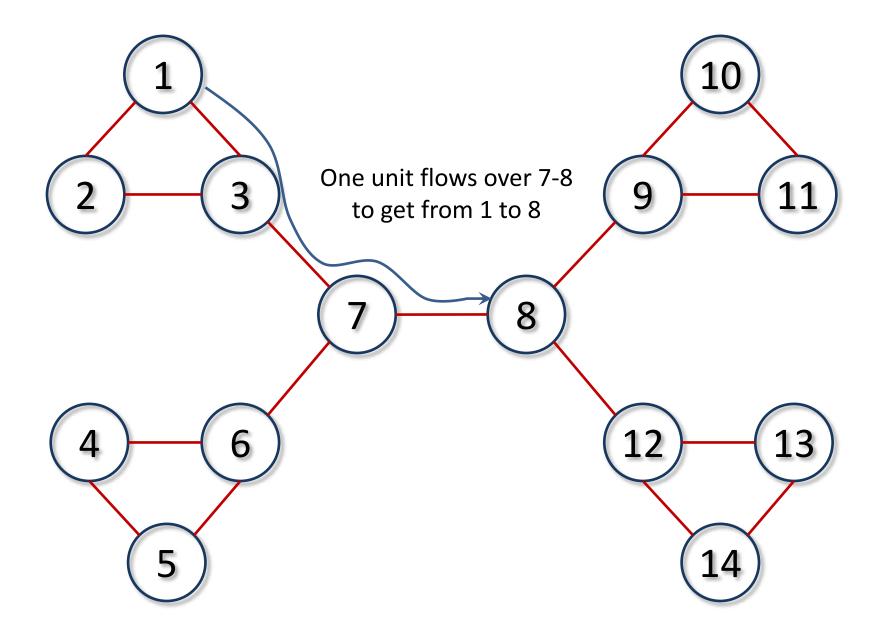
Idea: progressively removing edges with the highest betweenness

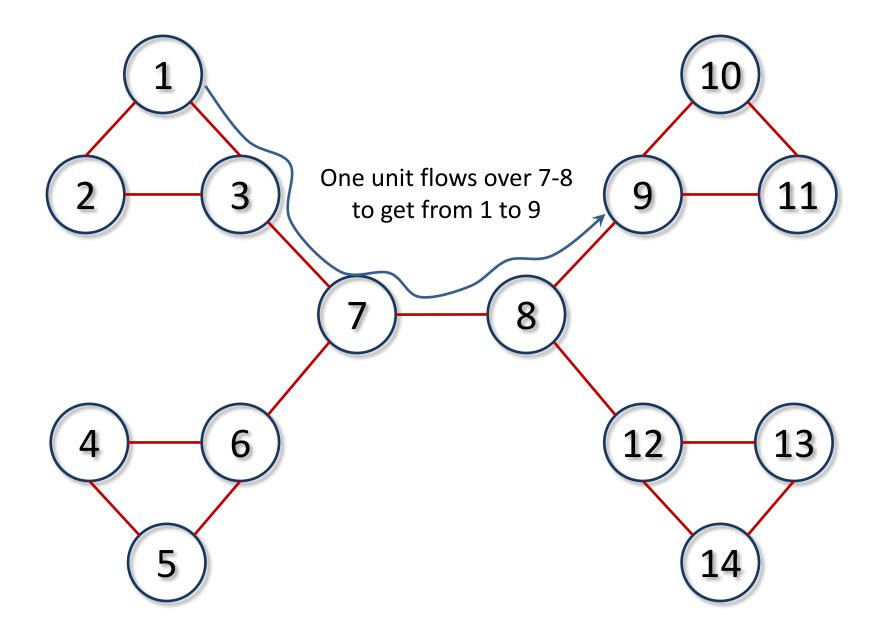
{5, 6, 7, 8}

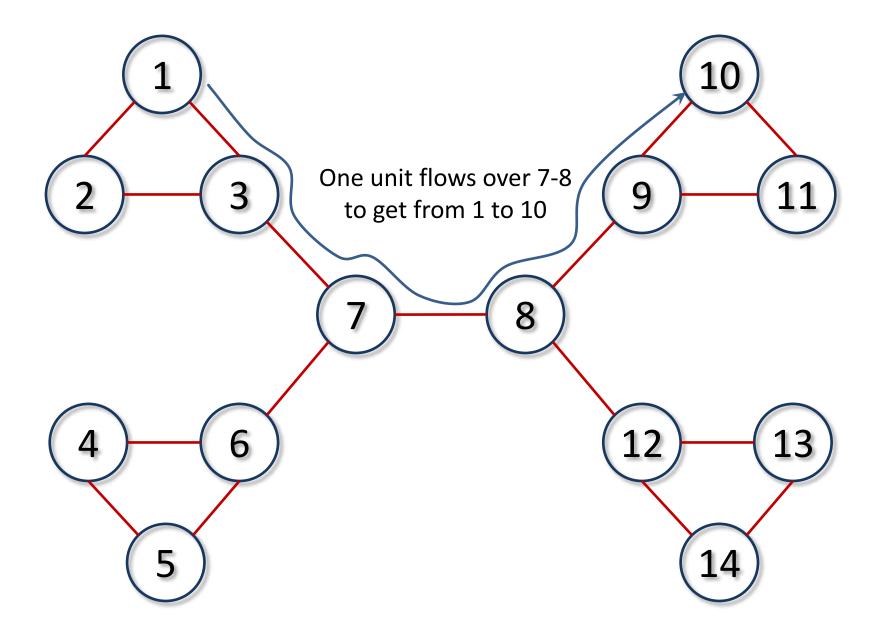
remove e(7,9)

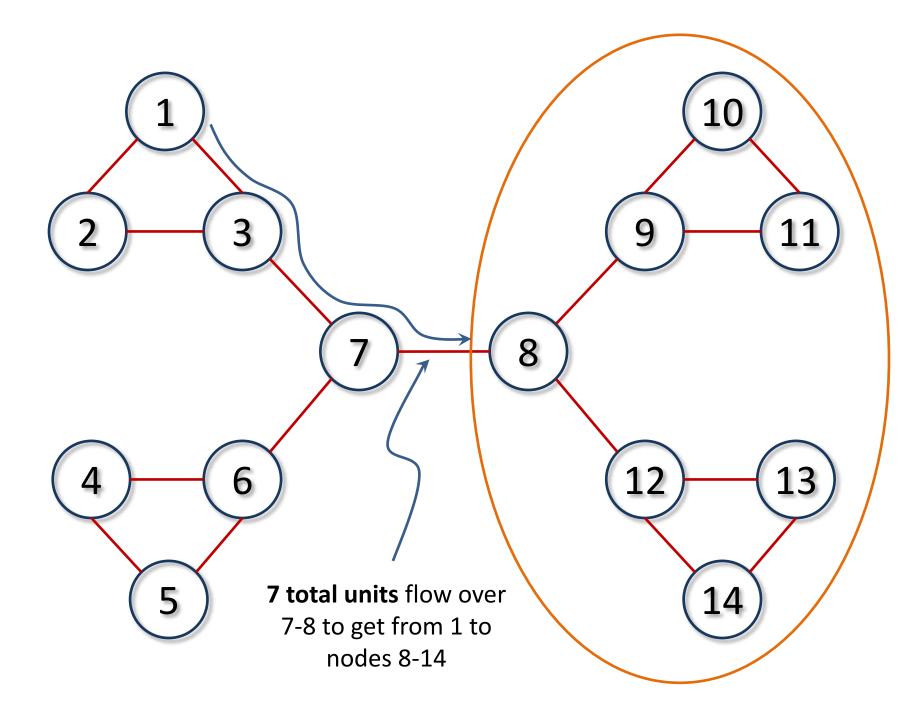
{9}

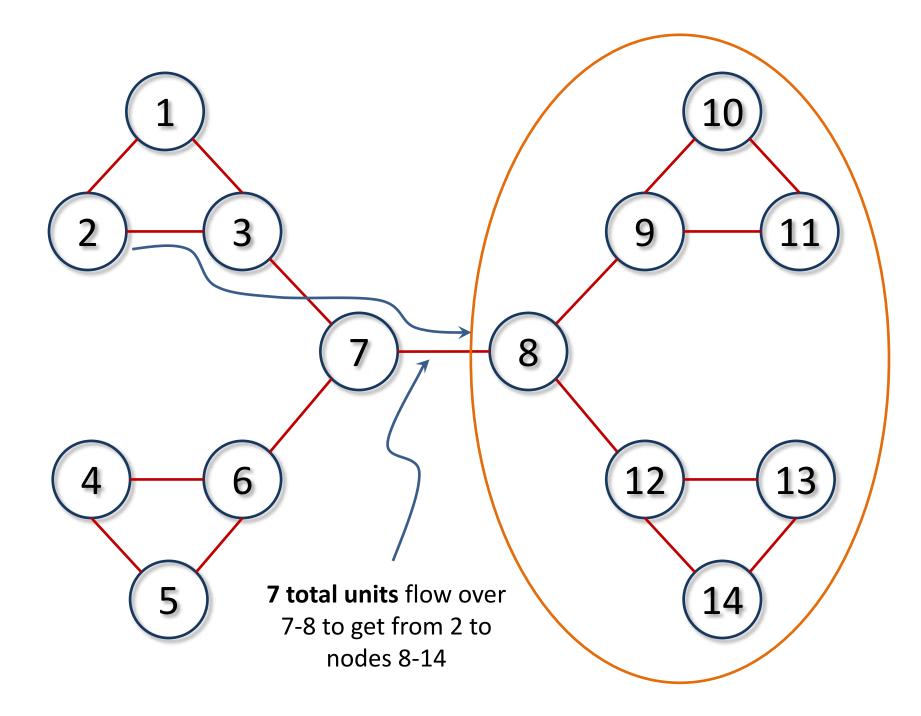


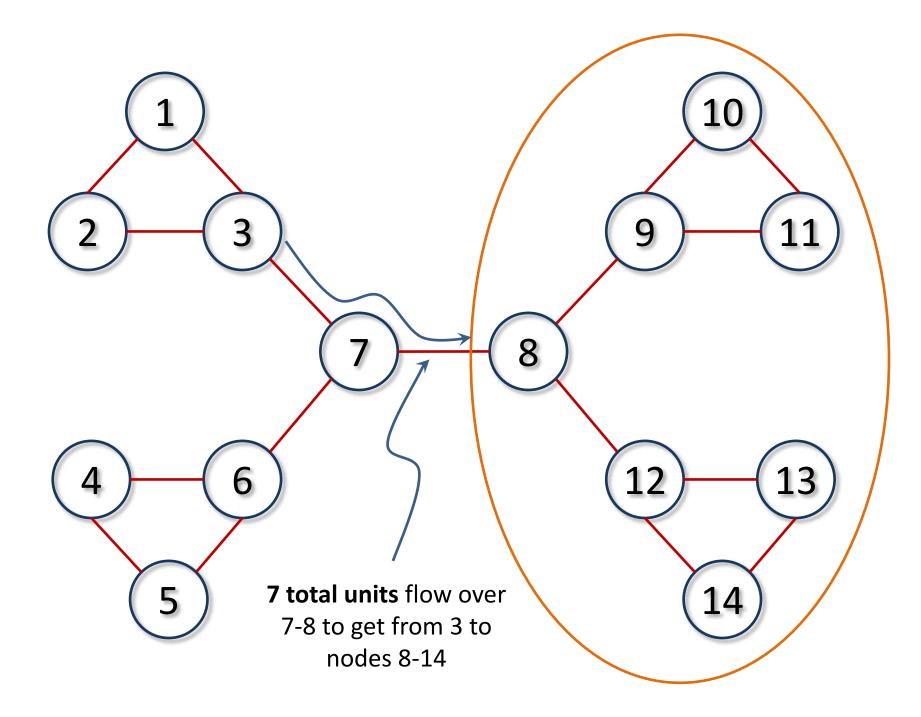


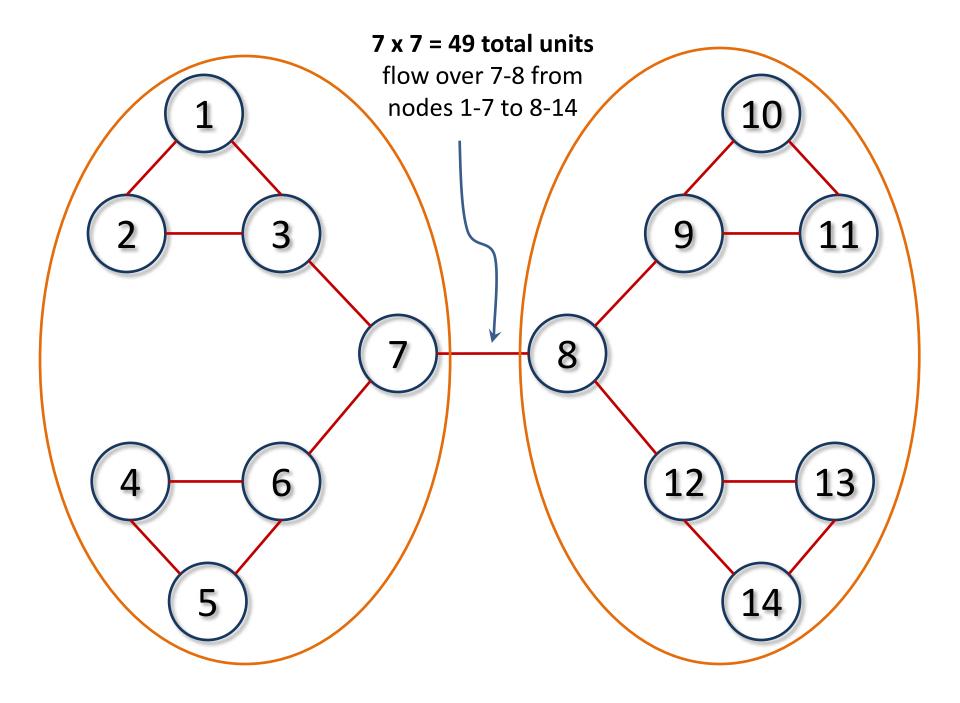


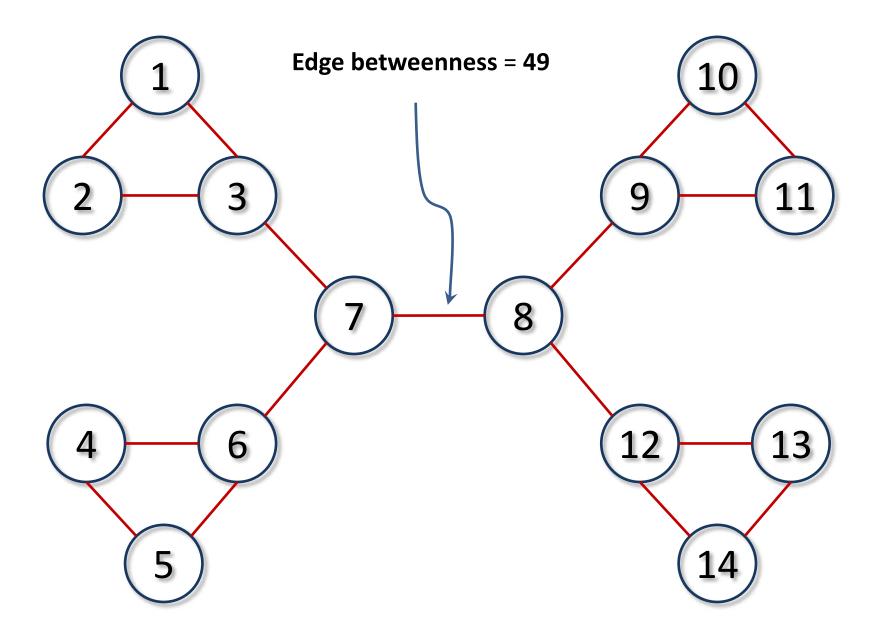


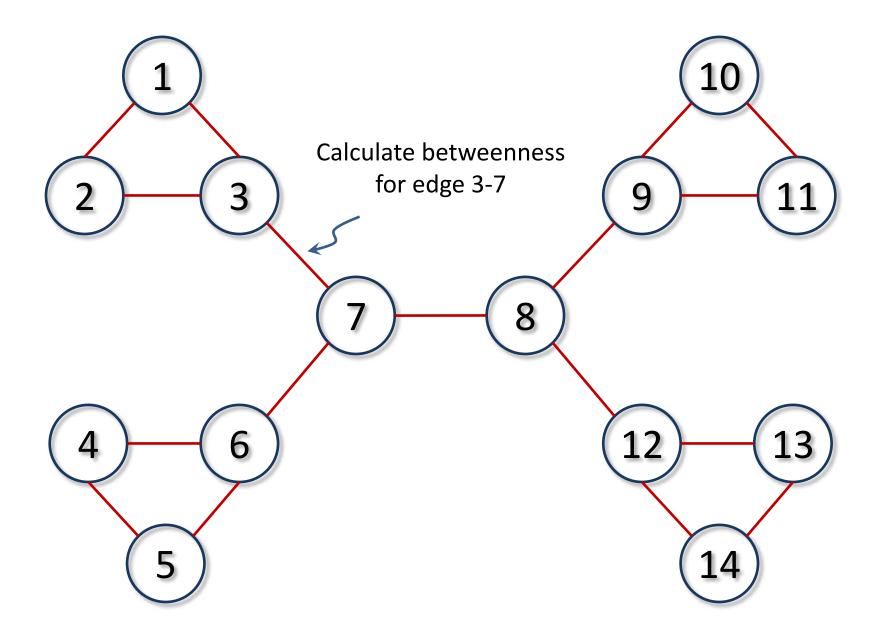


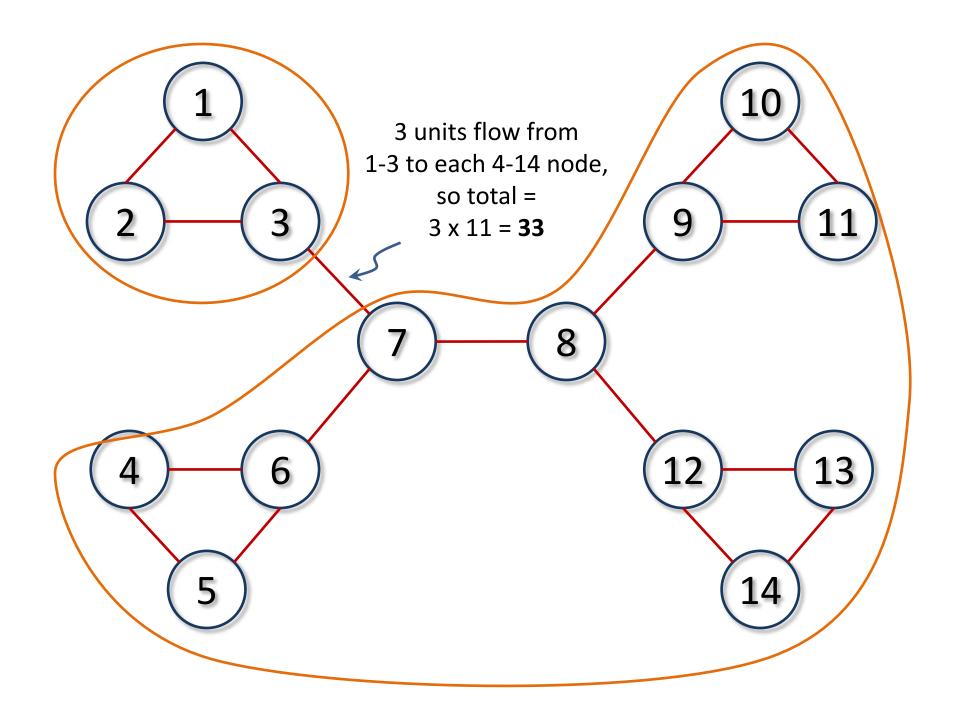


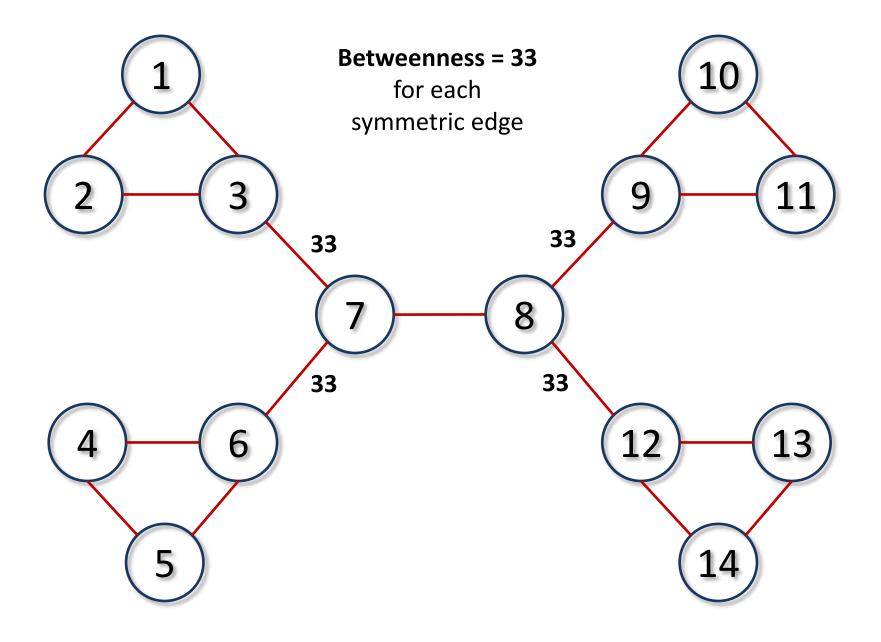


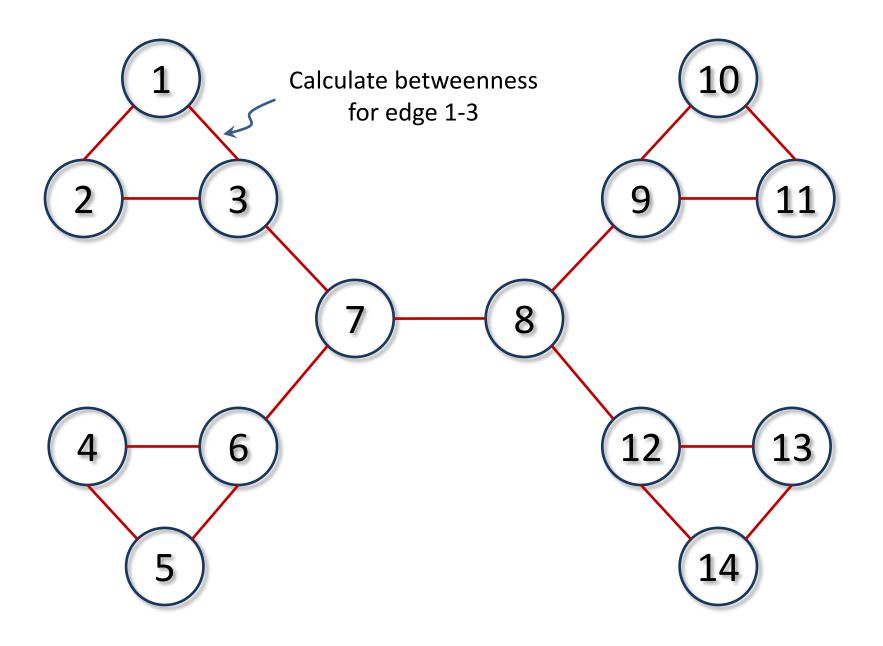


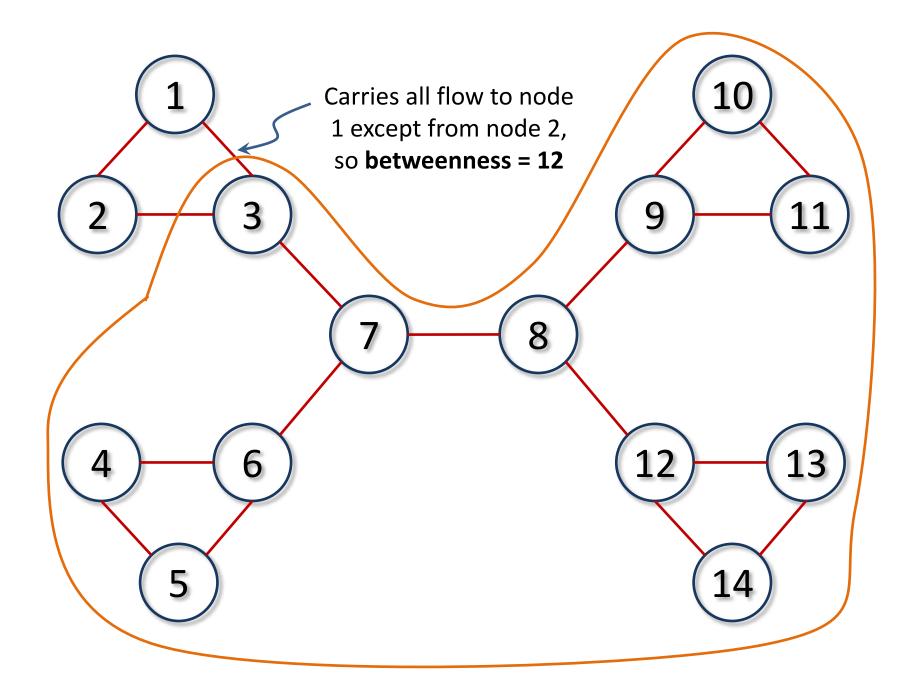


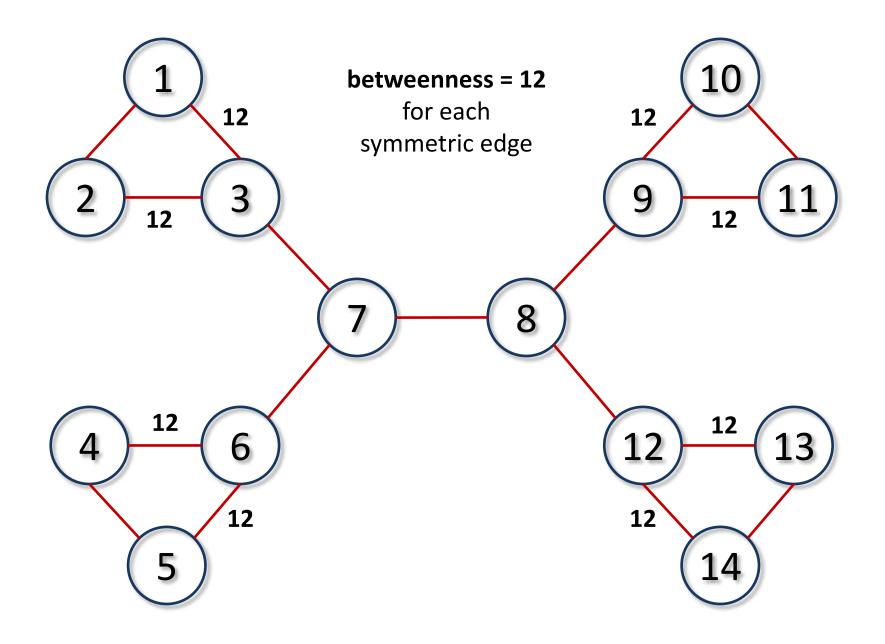


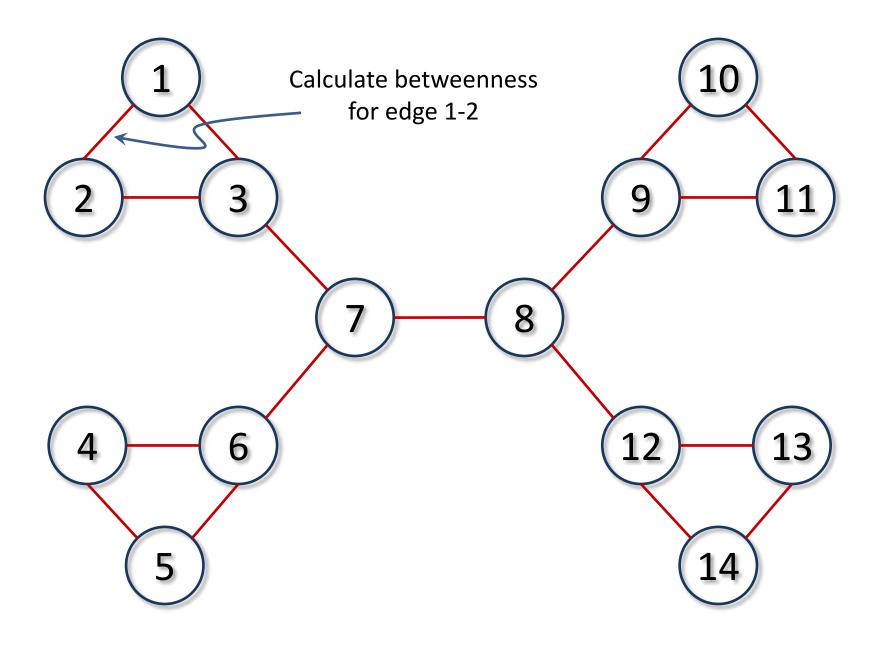


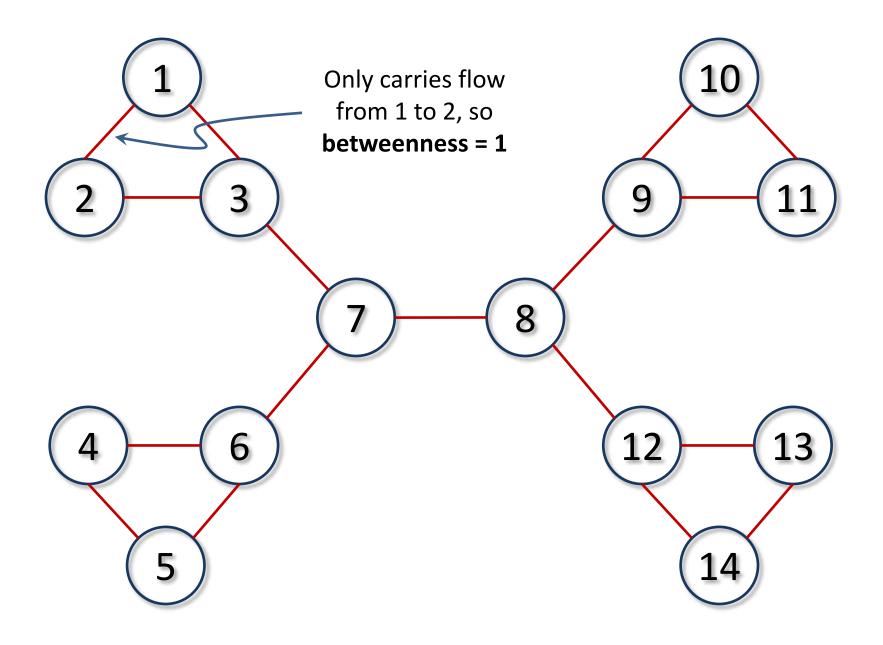


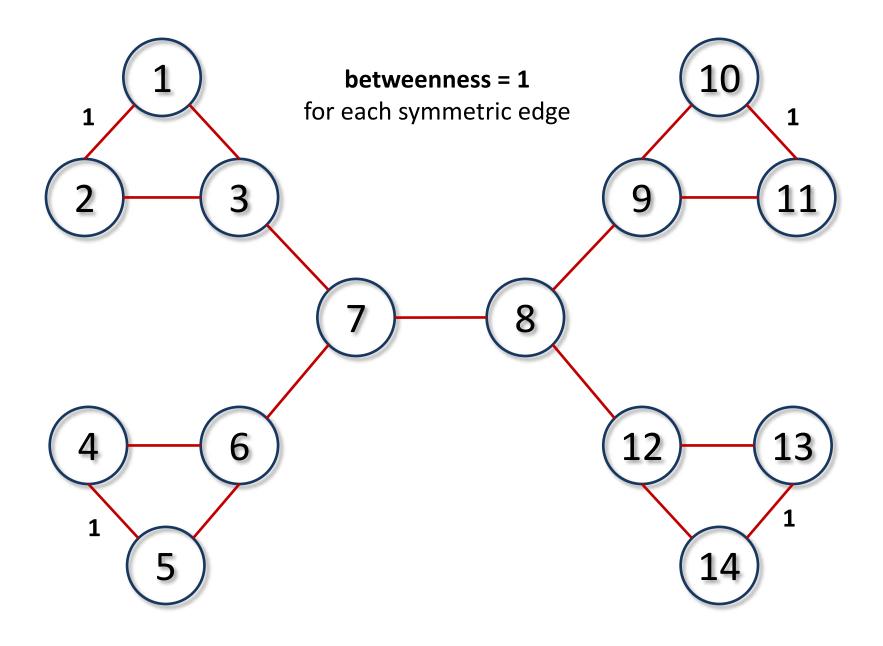


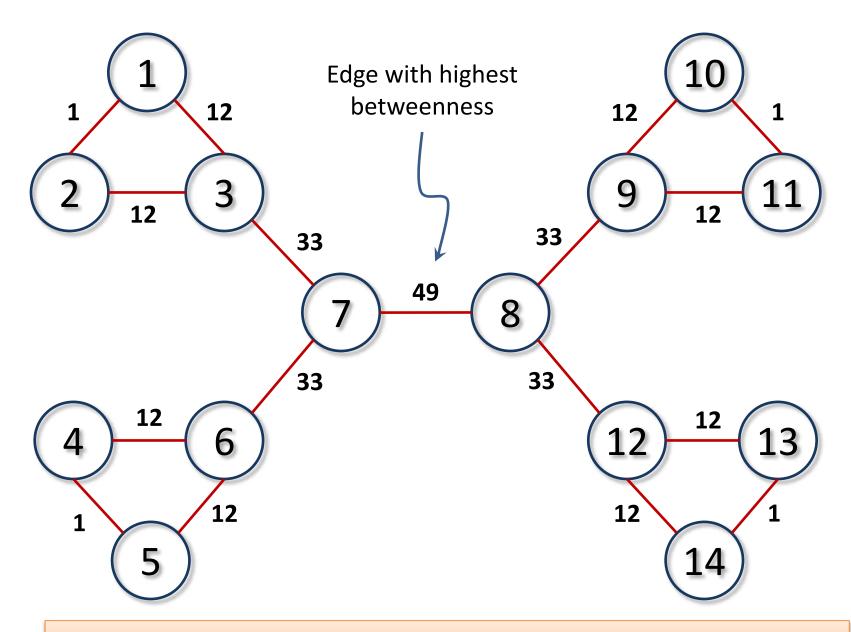




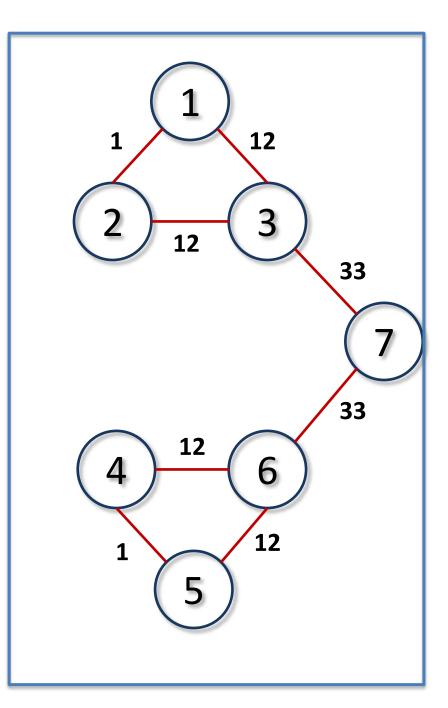


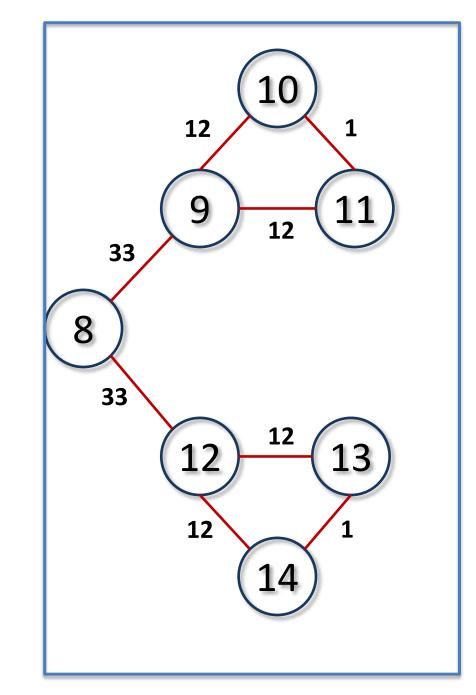


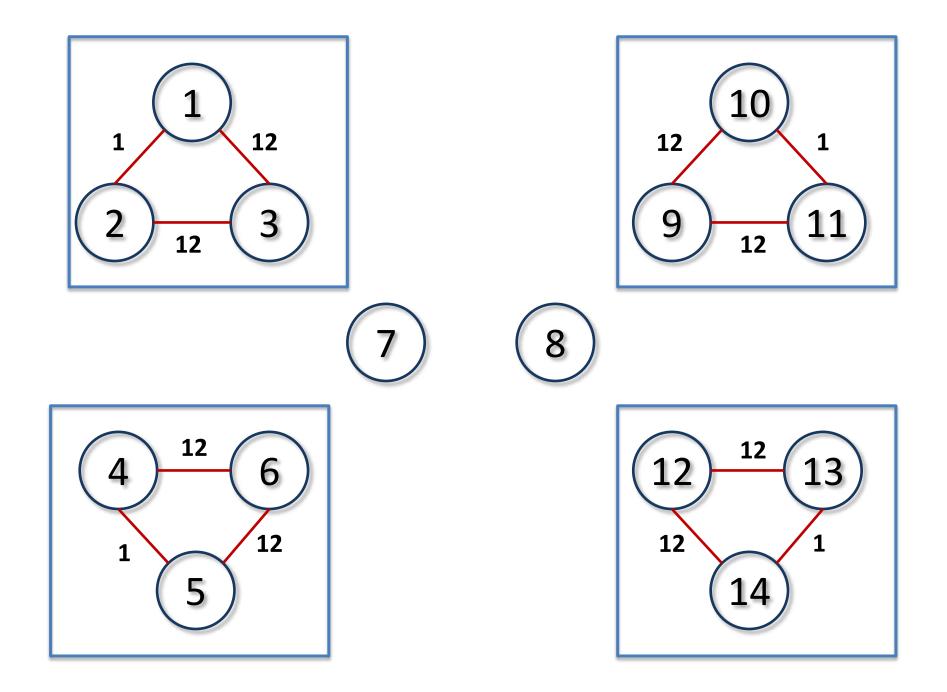




Now progressively remove edges with highest betweenness





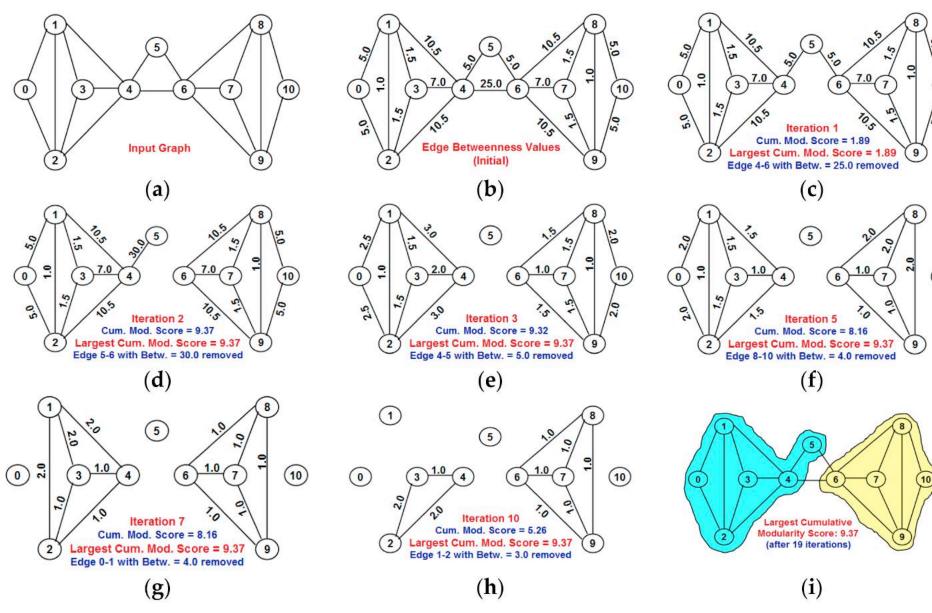


Another example

10

10

5.0



Summary of Hierarchical Clustering

- Most hierarchical clustering algorithm output a binary tree
 - Each node has two children nodes
 - Might be highly imbalanced
- Agglomerative clustering can be very sensitive to the nodes processing order and merging criteria adopted.
- Divisive clustering is more stable, but generally more computationally expensive

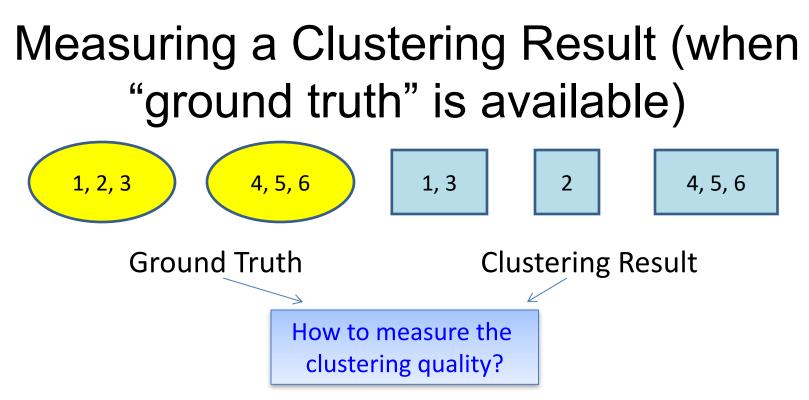
Summary of Community Detection

- Node-Centric Community Detection
 - cliques, k-cliques, k-clubs
- Group-Centric Community Detection
 - quasi-cliques
- Network-Centric Community Detection
 - Clustering based on vertex similarity
- Hierarchy-Centric Community Detection
 - Divisive clustering
 - Agglomerative clustering

COMMUNITY EVALUATION

Evaluating Community Detection (1)

- For groups with clear definitions
 - E.g., Cliques, k-cliques, k-clubs, quasi-cliques
 - Verify whether extracted communities satisfy the definition (e.g. if they are k-cliques etc.)
- For networks with ground truth information (e.g. we know already the communities)
 - Normalized mutual information
 - Accuracy of pairwise community memberships



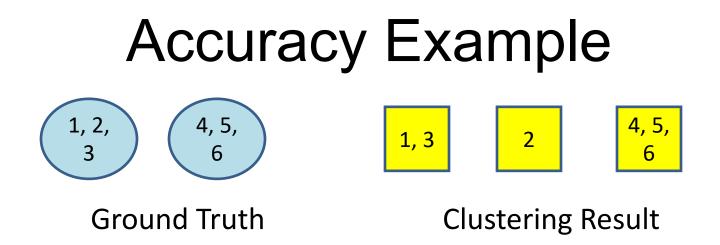
- The number of communities after grouping can be different from the ground truth
- No clear community <u>correspondence</u> between clustering result and the ground truth

Accuracy of Pairwise Community Memberships

- Basic idea: Consider all the possible pairs of nodes and check whether they reside in the same community
- An error occurs if
 - Two nodes belonging to the same (ground truth) community are assigned to different communities after clustering
 - Two nodes belonging to different communities (in ground truth) are assigned to the same community
- Construct a contingency table or confusion matrix

	C(m) = C(m)	Charles 1 Charl
	$C(v_i) = C(v_j)$	$C(v_i) \neq C(v_j)$
$C(v_i) = C(v_j)$	a	b
$C(v_i) \neq C(v_j)$	с	d
		$(v_i) \neq C(v_j)$ c

81



Pairs: (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) (3,4) (3,5) (3,6) (4,5) (4,6) (5,6)

		Ground Truth		
		$C(v_i) = C(v_j)$	$C(v_i) \neq C(v_j)$	
Clustering	$C(v_i) = C(v_j)$	4	0	
Result	$C(v_i) \neq C(v_j)$	2	9	

Accuracy = (4+9)/ (4+2+9+0) = 13/15

Alternative performance measures:

• Entropy: the information contained in a distribution

$$H(X) = \sum_{x \in X} p(x) \log p(x)$$

- Mutual Information: the shared information between two distributions $I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p_1(x)p_2(y)}\right)$
- Normalized Mutual Information (between 0 and 1)

$$NMI(X;Y) = \frac{I(X;Y)}{\sqrt{H(X)H(Y)}} \text{ or } NMI(X;Y) = \frac{2I(X;Y)}{H(X)+H(Y)}$$

 Consider a partition as a distribution (probability of one node falling into one community), we can compute the matching between the clustering result and the ground truth k^a, k^b = set of clusters generated by partitions π^a, π^b (e.g ground truth and output of clustering), *h* and *ℓ* are cluster indexes in partitions, n_h^a dimension of cluster *h* in π^a, n_{h,l} common nodes in two clusters of π^a, π^b

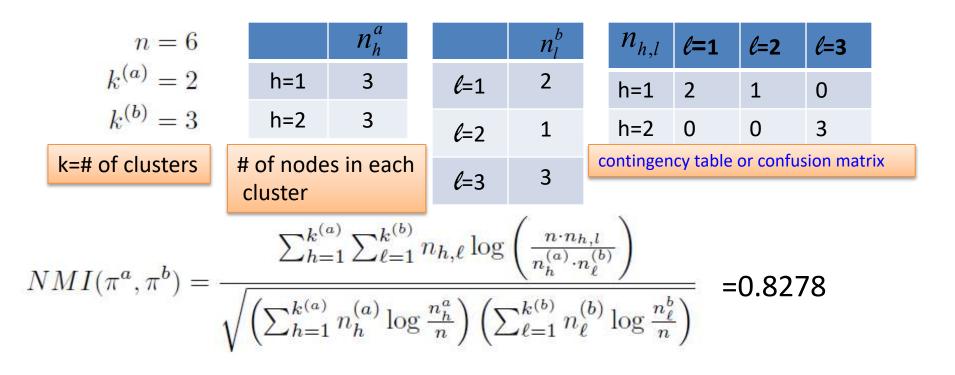
$$H(X) = \sum_{x \in X} \boxed{\begin{array}{l} n_h^a \\ n \end{array}} \text{ Is the ratio between} \\ n \text{ the nodes in cluster} \\ n \text{ of partition } \pi^a \end{array}} \qquad H(\pi^a) = \sum_{h}^{k^{(a)}} \frac{n_h^a}{n} \log(\frac{n_h}{n}) \\ H(\pi^b) = \sum_{\ell}^{k^{(b)}} \frac{n_\ell}{n} \log(\frac{n_{h,\ell}}{n}) \\ H(\pi^b) = \sum_{\ell} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^b) = \sum_{\ell} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^b) = \sum_{\ell} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^a, \pi^b) = \sum_{h \in \mathcal{I}} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^a, \pi^b) = \sum_{h \in \mathcal{I}} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^a, \pi^b) = \sum_{\ell} \sum_{\ell} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^a, \pi^b) = \sum_{\ell} \sum_{\ell} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^a, \pi^b) = \sum_{\ell} \sum_{\ell} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^a, \pi^b) = \sum_{h \in \mathcal{I}} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^a, \pi^b) = \sum_{\ell} \sum_{\ell} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^a, \pi^b) = \sum_{\ell} \sum_{\ell} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^a, \pi^b) = \sum_{\ell} \sum_{\ell} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^a, \pi^b) = \sum_{\ell} \sum_{\ell} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^a, \pi^b) = \sum_{\ell} \sum_{\ell} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{n_{h,\ell}}{n}\right) \\ H(\pi^b) = \sum_{\ell} \sum_{\ell}$$

N

NMI-Example

in a partition each node is assigned a number corresponding to its cluster

- Partition a: [1, 1, 1, 2, 2, 2]
- Partition b: [1, 2, 1, 3, 3, 3]



Reference: http://www.cse.ust.hk/~weikep/notes/NormalizedMI.m

Evaluation using Semantics

- For networks with semantics
 - Networks come with semantic or attribute information of nodes or connections
 - Human subjects can verify whether the extracted communities are coherent
- Evaluation is qualitative
- It is also intuitive and helps understand a community

Next lessons

- Information Flow and maximization of Influence in social networks (1)
- Social Sentiment Analysis (1)
- Recommenders (2-3)