
WEB AND SOCIAL INFORMATION
EXTRACTION

Lecturer: Prof. Paola Velardi
Lab Lecturer and project coordinator: Prof. Giovanni Stilo, Dr. Bardh
Prenkaj

18/02/19

About this course

§ http://twiki.di.uniroma1.it/twiki/view/Estrinfo/Web
Home

§ (Slides and course material)
§ PLEASE SIGN TO GOOGLE GROUP (to receive self

assessments and other course-related info)
§ Course is organized as follows:

§ 2/3 “standard” lectures
§ 1/3 Lab:

§ design of an IR system with Lucene,
§ Using Twitter API
§ Implement crawlers

18/02/19

http://twiki.di.uniroma1.it/twiki/view/Estrinfo/WebHome

Lectures
§ Part I: web information retrieval

§ Architecture of an information retrieval system
§ Text processing, indexing
§ Ranking: vector space model, latent semantic indexing
§ Web information retrieval: browsing, scraping
§ Web information retrieval: link analysis (HITS, PageRank)

§ Part II: social network analysis
§ Modeling a social network: local and global measures
§ Community detection
§ Mining social networks:

§ opinion mining,
§ temporal mining,
§ user profiling and Recommenders

18/02/19

PART I
INFORMATION RETRIEVAL:

DEFINITION AND ARCHITECTURE

18/02/19

Information Retrieval is:
§ Information Retrieval (IR) is finding material (usually

documents) of an unstructured nature (usually text)
that satisfies an information need from large
collections (usually stored on computers).

§ �Usually� text, but more and more: images, videos,
data, services,audio..

§ �Usually� unstructured (= no pre-defined model)
but: Xml (and its dialects e.g. Voicexml..),RDF, html
are �more structured� than txt or pdf

§ �Large� collections: how large?? The Web! (The
Indexed Web contains at least 50 billion pages)

18/02/19

Indexed pages (Google): 50 billion
webpages! Bing is only around 5.

18/02/19

IR vs. databases:
Structured vs unstructured data
§ Structured data tends to refer to information in
�tables�

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Typically allows numerical range and exact match
(for text) queries, e.g.,
Salary < 60000 AND Manager = Smith.

18/02/19

Unstructured data

§ Typically refers to free-form text
§ Allows:

§ “Keyword queries” (possibly including

operators)

§ (information AND(retrieval OR extraction))

§ More sophisticated �concept� queries, e.g.,

§ find all web pages dealing with drug
abuse

18/02/19

Semi-structured data
§ In fact almost no data is fully �unstructured�
§ E.g., this slide has distinctly identified zones such as

the Title and Bullets
§ This structure allows for �semi-structured� search

queries such as:
§ Title contains “data” AND Bullets contain “search”
§ Only plain txt format is truly unstructured (though even

natural language does have a structure: a title, paragraphs,
punctuation..)

18/02/19

Unstructured (text) vs. structured (database)
data from 2007 to 2014 (exabyte)

Blue= unstructured
Yellow=structured

Total (Unstructured) Enterprise Data
Growth 2005-2015

18/02/19
The business is now unstructured data!

Not only text retrieval: other IR tasks
§ Clustering: Given a set of docs, group them into clusters based

on their contents.
§ Classification: Given a set of “topics”, plus a new doc d, decide

which topic(s) d belongs to (eg spam-nospam).
§ Information Extraction: Find all sentence “snippets” dealing

with a given topic (e.g. company merges)
§ Question Answering: deal with a wide range of question types

including: facts, lists, definitions, How, Why, hypothetical,
semantically constrained, and cross-lingual questions

§ Opinion Mining: Analyse/summarize sentiment in a text (e.g.
TripAdvisor) (Hot Topic!!)

§ All the above, applied to images, video, audio, social networks
18/02/19

Terminology

Searching: Seeking for specific information
within a body of information. The result of a search
is a set of hits (e.g. the list of web pages matching
a query).
Browsing: Unstructured exploration of a body of
information (e.g. a web browser is a software to
traverse and retrieve info on the WWW).
Crawling: Moving from one item to another
following links, such as citations, references, etc.
Scraping: pulling specific content from web pages

18/02/19

Terminology (2)
• Query: A string of text, describing the information that the

user is seeking. Each word of the query is called a search
term or keyword.

• A query can be a single search term, a string of terms, a phrase
in natural language, or a stylized expression using special
symbols (e.g. x AND y AND NOT z).

• Full text searching: Methods that compare the query terms
with every word in the text, without distinguishing the
function (meaning, part-of-speech, position) of the various
words.

• Fielded searching: Methods that search on specific
bibliographic or structural fields, such as author or heading.

18/02/19

Examples of Search Systems

Find file on a computer system (e.g., Spotlight for Mac).

Library catalog for searching bibliographic records about
books and other objects (e.g., Library of Congress catalog).

Abstracting and indexing system to find research
information about specific topics (e.g., Medline for medical
information).

Web search service to find web pages (e.g., Google).

18/02/19

18/02/19

Find file

Seems boaring and simple, but..

21/02/19

Library Catalogue

18/02/19

Abstracting & Indexing

18/02/19

Web Search

18/02/19

ARCHITECTURE OF AN IR SYSTEM

18/02/19

18/02/19

Inside The IR Black Box

18/02/19

User
Interface

Text Operations

Query
Operations Indexing

Searching

Ranking

Index

Text

query

user need

user feedback

ranked docs

retrieved docs

logical viewlogical view

inverted file

DB Manager
Module

1

2

3

Text
Database

Text

4

5

6

7

8

More in detail (representation, indexing, comparison,
ranking)

18/02/19

How many pages on the web in 2017?

how many page web 2017

How � many � page � web � 2017

Inside The IR Black Box

18/02/19

Representation:a data structure describing the content
of a document

Tables
(= vectors)

clouds

18/02/19

Inside The IR Black Box

18/02/19

Indexing:

a data structure that improves the speed of
word retrieval

Points at
words in texts

18/02/19

Inside The IR Black Box

18/02/19

Sorting & Ranking: how well a retrieved document
matches the user�s needs?

Eclipse

18/02/19

When a user submits a query to a search system, the
system returns a set of hits. With a large collection of
documents, the set of hits maybe very large.

The value to the user depends on the order in which the hits
are presented.

Three main methods:
• Sorting the hits, e.g., by date (more recent are better.. Is
this true?)
• Ranking the hits by similarity between query and

document
• Ranking the hits by the importance of the documents

Sorting & ranking

18/02/19

More details on
§ Document Representation
§ Document Indexing
§ Ranking of Search results
(next 4-6 lessons)

18/02/19

1. Document Representation

§ Objective: given a document in whatever format (txt,
html, pdf..) provide a formal, structured
representation of the document (e.g. a vector whose
attributes are words, or a graph, or..)

§ Several steps from document downloading to the
final selected representation

§ The most common representation model is “bag of
words”

18/02/19

Document representation: the bag of
words model (1)

21/02/19

Or equivalently: d(-,-,dog,is,-,on,table,the)

• Every document d is represented as a vector
• The dimension of the vector is the dimesion of the
vocabulary of the entire document archive
• Every dimension of the vector correspond to a word in
• the vocabulary
• The word might or might not be present in the
document d

The bag-of-words model (2)

di=(..,..,…after,..attend,..both,..build,.before, ..center,
college,…computer,.dinner,………..university,..work)

WORD ORDER DOES NOT MATTER!!!18/02/19

The Bag of Words Model (3)

§ This is the most common way of representing
documents in information retrieval

§ Variants of this model include (more details later):
§ How to weight a word within a document (boolean, tf*idf, etc.)

§ Boolean: 1 is the word i is in doc j, 0 else
§ Tf*idf and others: the weight is a function of the word

frequency in the document, and of the frequency of
documents whith that word

§ What is a “word”:
§ single, inflected word (“going”),
§ lemmatised word (going, go, goneàgo)
§ Multi-word, proper nouns, numbers, dates (“board of

directors”, “John Wyne”, “April, 2010”
§ Meaning: (plan,project,designàPLAN#03)

18/02/19

Bag of Words (BoW) model is also used for
images (“words” are now image features)

18/02/19

Several steps from document downloading to the
final selected BoW representation:

1. Document parsing
2. Tokenization
3. Stopwords/Normaliz

ation
4. POS Tagging
5. Stemming
6. Deep NL Analysis
7. Indexing

Note that intermediate
steps can be skipped

Deep analysis

Stemming

POS tagging

18/02/19

1. Document Parsing
Document parsing implies scanning a document and
transforming it into a “bag of words” but: which words?
We need to deal with format and language of each document.
§ What format is it in?
§ pdf/word/excel/html?
§ What language is it in?
§ What character set is in use (latin, greek, chinese..)?
Each of these is a kind of classification
problem, which we will study later in the
course.
But these tasks are often done heuristically …

Sec. 2.1

18/02/19

(Doc parsing) Complications:
Format/language
§ Documents being indexed can include docs from

many different languages
§ A single index may have to contain terms of several

languages.
§ Sometimes a document or its components can

contain multiple languages/formats
§ ex : French email with a German pdf attachment.

§ What is a “unit” document?
§ A single file? A zipped group of files?
§ An email/message?
§ An email with 5 attachments?
§ A single web page of a full web site?

Sec. 2.1

18/02/19

2. Tokenization
§ Input: “Friends, Romans and Countrymen”
§ Output: Tokens

§ Friends
§ Romans
§ Countrymen

§ A token is an instance of a sequence of characters
§ Each such token is now a candidate for an index entry,

after further processing
§ Described later

§ But which are valid tokens to emit?

Sec. 2.2.1

21/02/19

1. Document parsing
2. Tokenization
3. Stopwords/Normal

ization
4. POS Tagging
5. Stemming
6. Deep NL Analysis
7. Indexing

2. Tokenization (cont’d)
§ Issues in tokenization:

§ Finland’s capital ®
Finland? Finlands? Finland’s?

§ Hewlett-Packard ® Hewlett and Packard as two
tokens?
§ state-of-the-art: break up hyphenated sequence.
§ co-education
§ lowercase, lower-case, lower case ?

§ San Francisco: one token or two?
§ How do you decide it is one token?
§ cheap San Francisco-Los Angeles fares

Sec. 2.2.1

18/02/19

2. Tokenization : Numbers
§ 3/12/91
§ Mar. 12, 1991
§ 12/3/91
§ 55 B.C.
§ B-52
§ (800) 234-2333
§ 1Z9999W99845399981 (package tracking numbers)

§ Often have embedded spaces (ex. IBAN/SWIFT)

§ Older IR systems may not index numbers
§ Since their presence greatly expands the size of the vocabulary

§ IR systems often index separately document “meta-data”
§ Creation date, format, etc.

Sec. 2.2.1

18/02/19

2. Tokenization: language issues
§ French & Italian apostrophes

§ L'ensemble ® one token or two?
§ L ? L’ ? Le ?
§ We may want l’ensemble to match with un ensemble

§ German noun compounds are not segmented
§ Lebensversicherungsgesellschaftsangestellter
§ ‘life insurance company employee’
§ German retrieval systems benefit greatly from a compound splitter

module

Sec. 2.2.1

18/02/19

2. Tokenization: language issues

§ Chinese and Japanese have no spaces between
words:
§ ��
����������������
§ Not always guaranteed a unique tokenization

§ Further complicated in Japanese, with multiple
alphabets intermingled
§ Dates/amounts in multiple formats

" %!#$500���	���������$500K(�6,000��)

Katakana Hiragana Kanji Romaji

Sec. 2.2.1

18/02/19

2. Tokenization: language issues
§ Arabic (or Hebrew) is basically written right to left,

but with certain items like numbers written left to
right

§ Words are separated, but letter forms within a word
form complex ligatures

§ ← → ← → ← start
§ ‘Algeria achieved its independence in 1962 after 132

years of French occupation.’
§ Bidirectionality is not a problem if text is coded in Unicode.

Sec. 2.2.1

18/02/19

UNICODE standard

18/02/19

Tokenization on Google?

18/02/19

YES!!!

3.1 Stop words
§ With a stop list, you exclude from the dictionary

entirely the commonest words. Intuition:
§ They have little semantic content: the, a, and, to, be
§ There are a lot of them: ~30% of postings for top 30 words
§ Stop word elimination used to be standard in older IR systems.

§ But the trend is away from doing this:
§ Good compression techniques means the space for including

stopwords in a system is very small- so removing them not a big deal

§ Good query optimization techniques mean you pay little at query time
for including stop words.

§ You need them for:
§ Phrase queries: “King of Denmark”

§ Various song/books titles, etc.: “Let it be”, “To be or not to be”

§ “Relational” queries: “flights to London”vrs “flight from London”

Sec. 2.2.2

21/02/19

1. Document parsing

2. Tokenization

3. Stopwords/Normalization

4. POS Tagging

5. Stemming

6. Deep NL Analysis
7. Indexing

Stop words on Google?

18/02/19

NO!

3.2. Normalization to terms
§ We need to “normalize” words in indexed text as well as

query words into the same form
§ We want to match U.S.A. and USA

§ Result is terms (keywords): a term is a (normalized) word type,
which is a single entry in our IR system dictionary

§ We most commonly implicitly define equivalence classes of
terms by, e.g.,
§ deleting periods to form a term

§ U.S.A., USA à USA

§ deleting hyphens to form a term
§ anti-discriminatory, antidiscriminatory à antidiscriminatory

§ Synonyms (this is rather more complex..)
§ car , automobile

Sec. 2.2.3

21/02/19

1. Document parsing
2. Tokenization
3. Stopwords/Normalization
4. POS Tagging
5. Stemming
6. Deep NL Analysis
7. Indexing

3.2 Normalization: other languages
§ Accents: e.g., French résumé vs. resume.
§ Umlauts: e.g., German: Tuebingen vs. Tübingen

§ Should be equivalent

§ Most important criterion to decide what
normalization types:

§ How are your users like to write their
queries for these words?

Sec. 2.2.3

18/02/19

Do we really want normalization?

18/02/19

3.2 Case folding
(a.k.a normalization)
§ Reduce all letters to lower case

§ exception: upper case in mid-sentence
§ e.g., General Motors
§ Fed vs. fed
§ MIT vs. mit

§ Often best to lower case everything, since users will use
lowercase regardless of ‘correct’ capitalization…

§ This may cause different senses to be merged..
Often the most relevant is simply the most frequent
on the WEB, rather than the most intuitive

Sec. 2.2.3

21/02/19

1. Document parsing
2. Tokenization
3. Stopwords/Normalization
4. POS Tagging
5. Stemming
6. Deep NL Analysis
7. Indexing

Does Google normalize /fold?

21/02/19

cat

21/02/19

CAT

21/02/19

C.A.T.

21/02/19

3.2 Normalization: Synonyms
§ Do we handle synonyms and homonyms?

§ E.g., by hand-constructed equivalence classes
§ car = automobile color = colour

§ We can rewrite to form equivalence-class terms
§ When the document contains automobile, index it under car-
automobile (and vice-versa)

§ Or we can expand a query
§ When the query contains automobile, look under car as well

§ What about spelling mistakes?
§ One approach is Soundex, a phonetic algorithm to encode

homophones (=same sound) to the same representation so that they
can be matched despite minor differences in spelling

§ Google à Googol

18/02/19

Synonyms on Google?

18/02/19

Not really same results, but…

Normalization: Spelling mistakes on
Google?

18/02/19

YES!!

4. Stemming/Lemmatization

§ Reduce inflectional/variant forms to base form
§ E.g.,

§ am, are, is ® be
§ car, cars, car's, cars' ® car

§ the boy's cars are different colors ® the boy car be
different color
§ Lemmatization implies doing “proper” reduction to

dictionary form (the lemma).

§ Relatively simple for English more complex for highly
inflected languages (italian, german..)

Sec. 2.2.4

21/02/19

1. Document parsing
2. Tokenization
3. Stopwords/Normalization
4. POS Tagging
5. Stemming
6. Deep NL Analysis
7. Indexing

4. Stemming
§ Reduce terms to their “roots” before indexing
§ “Stemming” suggest crude affix chopping

§ language dependent
§ e.g., automate(s), automatic, automation all reduced to

automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Sec. 2.2.4

18/02/19

Porter’s algorithm
§ Commonest algorithm for stemming English

§ Results suggest it’s at least as good as other stemming
options

§ Conventions + 5 phases of reductions
§ phases applied sequentially
§ each phase consists of a set of commands
§ sample convention: out of multiple applying rules in a

command, select the one that applies to the longest suffix.
§ E.g. caresses à caress rather than car

§

Sec. 2.2.4

18/02/19

Typical rules (commands) in Porter
stemmer
§ sses ® ss caresses → caress
§ ies ® I ponies → poni
§ SS ® SS caress → caress

§ eS ® cats → cat

§ Weight of word-sensitive rules:
§ (m>1) EMENT →

§ replacement → replac
§ cement → cement

§ It means: root must be longer than 1 to apply the rule..

Sec. 2.2.4

18/02/19

67

Three stemmers: A comparison
Sample text: Such an analysis can reveal features that are not easily

visible from the variations in the individual genes and
can lead to a picture of expression that is more
biologically transparent and accessible to interpretation

Porter’s: such an analysi can reveal featur that ar not easili
visibl from the variat in the individu gene and
can lead to pictur of express that is more
biolog transpar and access to interpret

Lovins’s: such an analys can reve featur that ar not eas
vis from th vari in th individu gen and
can lead to a pictur of expres that is mor
biolog transpar and acces to interpres

Paice’s : such an analys can rev feat that are not easy
vis from the vary in the individ gen and
can lead to a pict of express that is mor
biolog transp and access to interpret

18/02/19

Stemming on Google?

§ rose § roses

18/02/19

NO!

5. Deep Natural
Language Analysis
§ Has to do with more detailed Natural Language

Processing algorithms
§ E.g. semantic disambiguation, phrase indexing

(«board of directors»), named entities (President
Obama= Barak Obama) etc.

§ Standard search engines increasingly use deeper
techniques (e.g. Google’s Knowledge Graph
http://www.google.com/insidesearch/features/searc
h/knowledge.html and RankBrain)

§ More (on deep NLP techniques) in NLP course (not
here)!

21/02/19

1. Document parsing
2. Tokenization
3. Stopwords/Normalization
4. POS Tagging
5. Stemming
6. Deep NL Analysis
7. Indexing

http://www.google.com/insidesearch/features/search/knowledge.html

18/02/19

Knowledge map

18/02/19

Google
Knowledge Graph

2. Document Indexing

1. Document Representation

21/02/19

1. Document parsing

2. Tokenization

3. Stopwords/Normalization

4. POS Tagging

5. Stemming

6. Deep NL Analysis
7. Indexing

Why indexing
§ The purpose of storing an index is to optimize speed

and performance in finding relevant documents for a
search query.

§ Without an index, the search engine would scan
every document in the document archive , which
would require considerable time and computing
power (especially if archive=the full web content).

§ For example, while an index of 10,000 documents
can be queried within milliseconds, a sequential scan
of every word in 10,000 large documents could take
hours.

18/02/19

http://en.wikipedia.org/wiki/Lexical_analysis

Inverted index
§ What is an inverted index
§ How to build an inverted index
§ How to store an index
§ How to process indexes

22/02/19

Inverted index

What happens if the word Caesar
is added to, e.g., document #14?

Sec. 1.2

For each term, we have a list that records which
documents the term occurs in. The list is called posting
list.

We need variable-size postings lists (document content is
often dynamic!!)22/02/19

• What is an inverted index
• How to build an inverted index
• How to store an index
• Advanced topics

Tokenizer
Token stream Friends Romans Countrymen

Inverted index construction

Linguistic
modules

Modified tokens
friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed

Friends, Romans, Countrymen.

Sec. 1.2

22/02/19

• What is an inverted index
• How to build an inverted index
• How to store an index
• How to process indexes

Indexer steps: Token sequence
§ Sequence of (Modified token, Document ID) pairs.

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Sec. 1.2

18/02/19

Indexer steps: Sort

§ Sort by terms
§ And then �docID�

Core indexing step

Sec. 1.2

18/02/19

Indexer steps: Dictionary & Postings
§ Multiple term

entries in a single
document are
merged.

§ Split into Dictionary
and Postings

§ Doc. frequency
information is
added.

Why frequency?
Will discuss later.

Sec. 1.2

18/02/19

Where do we pay in storage?

Pointers

Terms
and

counts

Sec. 1.2

Lists of
docIDs

18/02/19

Dictionary data structures
for inverted indexes
§ The dictionary data structure stores the term

vocabulary, document frequency, pointers to each
postings list … in what data structure?

Sec. 3.1

81

• What is an inverted index
• How to build an inverted index
• How to store an index
• How to process indexes

Array
§ As we just have shown, the simplest structure is an
array:

§ Searching (lookup) an item is O(log(n)); inserting an item O(n)
§ Can we store a dictionary in memory more efficiently?

Sec. 3.1

82

Alternative Dictionary data structures
§ Two main choices:

§ Hashtables
§ Trees

§ Some IR systems use hashtables, some trees

Sec. 3.1

83

Hash tables (1)

1. Each vocabulary term is hashed to (mapped onto) an
integer (We assume you have seen hashtables before)

§ E.g. the index for a specific keyword will be equal to sum of
ASCII values of characters multiplied by their respective
order in the string after which it is modulo with 2069 (prime
number).

Sec. 3.1

84

Hash tables (2)
§ 2. The keyword is

stored in the hash
table where it can
be quickly
retrieved using
hashed key.

18/02/19

Hash tables (4)
§ To achieve a good hashing mechanism, it is important to have a

good hash function with the following basic requirements:
§ Easy to compute: It should be easy to compute and must not

become an algorithm in itself.
§ Uniform distribution: It should provide a uniform distribution

across the hash table and should not result in clustering.
§ Less collisions: Collisions occur when pairs of elements are

mapped to the same hash value. These should be avoided.
Note: Irrespective of how good a hash function is, collisions occur.
Therefore, to maintain the performance of a hash table, it is important to
manage collisions through various collision resolution techniques.

18/02/19

Hash tables (5)
§ Separate chaining is

one of the most
commonly used
collision resolution
techniques.

§ It is usually
implemented using
linked lists.

18/02/19

Hash Tables (6)

§ Pros:

§ Lookup is faster: O(1) (average) (depends on probability of

collisions and collision-handling). Insertion is faster O(1)

§ Can reduce storage requirement if n (number of keywords)

is much smaller than the universe of keys U

§ Cons:

§ good, general purpose hash functions are very difficult to

find

§ static table size requires costly resizing if indexed set is

highly dynamic

§ search performance degrades considerably as the table

nears its capacity (too many collisions)
18/02/19

Root
a-m n-z

a-hu hy-m n-sh si-z

aa
rd
va
rk

hu
yg
en
s

si
ck
le

zy
go
t

Other structures: binary trees

Sec. 3.1

89

A B-tree of order m is generalization of a binary tree, an
m-way tree that satisfies the following conditions.

§ Every node has a variable number < m of children.

§ Every internal node (except the root) has k <m/2
children.

§ The root has >2 children.

§ An internal node with k children contains (k-1)
ordered keys.

Tree: B-tree (balanced trees)

Sec. 3.1

90

B-trees
§ Each internal node of a B-tree contains a number of

keys. The keys act as separation values which divide
its subtrees.

§ Its leftmost child contains keys less than or equal to
the first key in the node. The second child contains
keys greater than the first keys but less than or
equal to the second key, and so on.

22/02/19

B-tree example (nodes are numeric)

18/02/19

keys

B-tree for indexing (nodes here are
prefixes)

18/02/19

Keywords are stored at the leaves of the tree, known
as “buckets”

Inserting into a B-Tree

§ To insert key value x into a B-Tree:
§ Use the B-Tree search to determine on which node

to make the insertion.
§ Insert x into appropriate position on that leaf node.
§ If resulting number of keys on that node < k, then

simply output that node and return.
§ Otherwise, split the node.

B-Trees pros and cons
§ Trees require a standard ordering of characters and hence

strings … but we typically have one
§ Pros:

§ Size is not limited, as for hashing (we may keep on adding
nodes)

§ Cons:
§ Search is slower (wrt hash tables): O(h) where h=log(n) is

depth of B-tree [and this requires balanced tree]

Sec. 3.1

95

Summary

§ Once keywords are extracted, we create
posting lists

§ How do we search/insert a keyword?
Array, Hash Tables, Trees (B-trees,
B+trees)

§ Next problem is: How do we process a
query (= searching documents with some
combination of keywords)?

Sec. 1.3

22/02/19

• What is an inverted index
• How to build an inverted index
• How to store an index
• How to process an index

Query processing: AND
§ Consider processing the query:

Brutus AND Caesar
§ Locate Brutus in the Dictionary;

§ Retrieve its postings (e.g. pointers to documents including Brutus).

§ Locate Caesar in the Dictionary;
§ Retrieve its postings.

§ �Merge� the two postings:

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar

Sec. 1.3

22/02/19

• What is an inverted index
• How to build an inverted index
• How to store an index
• How to process an index

The “merge” operation
§ Walk through the two postings simultaneously from

right to left, in time linear in the total number of
postings entries

34
1282 4 8 16 32 64

1 2 3 5 8 13 21
128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar2 8

If list lengths are x and y, merge takes O(x+y) operations.
Crucial: postings sorted by docID.

Sec. 1.3

18/02/19

Intersecting two postings lists
(a �merge� algorithm)

18/02/19

Step 1

18/02/19

Step 2

18/02/19

Intersection è 2

Step 3

18/02/19

Step 4

18/02/19

Step 5

18/02/19

Step 6

18/02/19

Optimizationof index search

§ What is the best order of words for query processing?
§ Consider a query that is an AND of n terms.
§ For each of the n terms, get its postings, then AND them

together.

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

Query: Brutus AND Calpurnia AND Caesar
106

Sec. 1.3

18/02/19

Query optimization example
§ Process words in order of increasing freq:

§ start with smallest set (word with smallest list), then keep
cutting further.

This is why we kept
document freq. in dictionary

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Sec. 1.3

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

18/02/19

More general optimization
§ e.g., (madding OR crowd) AND (ignoble OR
strife)

§ Get doc. freq.�s for all terms.
§ Estimate the size of each OR by the sum of its

doc. freq.�s (conservative).
§ Process AND in increasing order of OR sizes.

Sec. 1.3

18/02/19

Example

§ Recommend a query
processing order for:

 Term Freq
 eyes 213312
 kaleidoscope 87009
 marmalade 107913
 skies 271658
 tangerine 46653
 trees 316812

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

300321

379571

363465

(kaleydoscopeOReyes)AND(tangerineORtrees)AND(marmaladeORskies)

18/02/19

OR
size

Skip pointers
§ Intersection is the most important operation when it

comes to search engines.
§ This is because in web search, most queries are

implicitly intersections: e.g. "car repairs", "britney
spears songs" etc. translates into –"car AND
repairs", "britney AND spears AND songs", which
means it will be intersecting 2 or more postings lists
in order to return a result.

§ Because intersection is so crucial, search engines try
to speed it up in any possible way. One such way is
to use skip pointers.

18/02/19

http://www.skorks.com/2010/02/lets-roll-our-own-boolean-query-search-engine/
http://www.skorks.com/2010/01/search-fundamentals-basic-indexing/

Augment postings with
skip pointers (at indexing time)

§ Idea: move cursor on a posting list to the first posting
where DocID is equal or larger than the compared
one.

§ Why? To avoid unnecessary comparisons
§ Where do we place skip pointers?

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

41 128

Sec. 2.3

22/02/19

• What is an inverted index
• How to build an inverted index
• How to store an index
• How to process an index
(skip pointers)

Example: Step 1

18/02/19

Some items have two pointers, one pointing to
an adjacent item the other skipping a few items ahead

Step 2

18/02/19

Say we are comparing p2=8 and p1=34: since 8<34, we must
move the pointer to the right. But 8 has a skip! So we
first compare the id of the skip (31) with the id of p1 (34).

Step 3

18/02/19

Since 31<34, we skip from 8 to 31 avoiding useless
comparisons with 17 and 21!

Another example

Example: Start using the normal intersection algorithm.

Continue until the match 12 and advance to the next item in each
list (48, 13). At this point the "car" list is on 48 and the "repairs" list
is on 13, but 13 has a skip pointer.

Check the value the skip pointer is pointing at (i.e. 29) and if this
value is less than the current value of the "car" list (which it is 48
in our example), we follow our skip pointer and jump to this value
in the list. It would be useless to compare all elements between the
current and subsequent skip!!18/02/19

Where do we place skips?
§ Tradeoff:

§ More skips ® shorter skip spans Þ more likely to skip.
But lots of comparisons to skip pointers.

§ Fewer skips ® few pointer comparison, but then long skip
spans Þ few successful skips.

18/02/19

Placing skips
§ Simple heuristic: for postings of length L, use ÖL

evenly-spaced skip pointers.
§ This ignores the distribution of query terms.
§ Easy if the index is relatively static; harder if L keeps

changing because of updates.

§ How much do skip pointers help?
§ Traditionally, CPUs were slow , they used to help a lot.

§ But today’s CPUs are fast and disk is slow, so reducing disk
postings list size dominates.

18/02/19

Algorithm INTERSECT with skip
pointers

18/02/19

Phrase queries

§ Want to be able to answer queries such as "red brick
house"– as a phrase

§ red AND brick AND house match phrases such as
"red house near the brick factory ” which is not what
we are searching for
§ The concept of phrase queries has proven easily

understood by users; one of the few “advanced search”
ideas that works

§ About 10% of web queries are phrase queries.

§ For this, it no longer suffices to store only

<term : docs> entries
22/02/19

• What is an inverted index
• How to build an inverted index
• How to store an index
• How to process an index
(phrase queries)

A first attempt: Bi-word indexes
§ Index every consecutive pair of terms in the text as a

phrase
§ For example the text “Friends, Romans, Countrymen”

would generate the biwords
§ friends romans
§ romans countrymen

§ Each of these biwords is now a dictionary term
§ Two-word phrase query-processing is now

immediate.

Sec. 2.4.1

18/02/19

Longer phrase queries
§ Longer phrases are processed using bi-words:
§ stanford university palo alto can be broken into the

Boolean query on biwords:
stanford university AND university palo AND palo alto

Sec. 2.4.1

18/02/19

Extended biwords
§ Parse the indexed text and perform part-of-speech-tagging

(POS Tagging).
§ Identify Nouns (N) and articles/prepositions (X).
§ Call any string of terms of the form NX*N (regex) an extended

biword (noun followed by article/prep followed by anything
followed by noun).
§ Each such extended biword is now made a term in the

dictionary.
§ Example: catcher in the rye

N X X N
§ Query processing: parse it into N’s and X’s

§ Segment query into enhanced biwords
§ Look up in index: catcher rye (NN)

Sec. 2.4.1

18/02/19

Issues for biword indexes
§ Index blowup due to bigger dictionary

§ Infeasible for more than biwords, big even for them

§ Biword indexes are not the standard solution (for all
biwords) but can be part of a compound strategy

Sec. 2.4.1

18/02/19

Solution 2: Positional indexes
§ Positional indexes are a more efficient alternative to biword

indexes.
§ In a non-positional index each posting is a document ID
§ In a positional index each posting is a docID and a list of

positions

<term, number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>

Sec. 2.4.2

18/02/19

Example: search for «to be»

18/02/19

Frequency
in doc

Step 1: “to” and “be” co-occur in
DOC 1

18/02/19

Step 2

18/02/19

Not consecutive!

Step 3 (move pointer of “to” in DOC 1)

18/02/19

Not a match!
18 is after 17

Step 4 (move pointer of “BE” in doc 1)

18/02/19

Step 5

18/02/19

No matches in
DOC1 !!

Step 6: start looking in DOC 4

18/02/19

After a number of steps..

18/02/19

429->430
433->434!!
DOC4 has 2 matches

Proximity search
§ We just saw how to use a positional index for phrase

searches (phrase: sequence of consecutive words).
§ We can also use it for proximity search.
§ For example: employment /4 place: Find all documents

that contain EMPLOYMENT and PLACE within 4 words of
each other.

§ “Employment agencies that place healthcare workers are
seeing growth“ is a hit.

§ “Employment agencies that have learned to adapt now
place healthcare workers” is not a hit.

Sec. 2.4.2

22/02/19

• What is an inverted index
• How to build an inverted index
• How to store an index
• How to process an index

(proximity search)

135

Proximity intersection
An algorithm for
proximity intersection
of postings lists p1 and
p2.
The algorithm finds
places where the two
terms appear within k
words of each other
and returns a list of
triples giving docID
and
the term position in p1
and p2.

18/02/19

Example (search for a,b at max
distance k=2)

§ 1: 1 2 3 4 5 6 7 8 9
§ a x b x x b a x b

§ I=<3> (pos(b))
§ <1,1,3> <DocID, pos(a),pos(b)>

§ I=<3,6>
§ I=<6>, <1,7,6>
§ etc
18/02/19

Positional index size

§ Need an entry for each occurrence, not just once per

document

§ Index size depends on average document size

§ Average web page has <1000 terms

§ SEC filings, books, even some epic poems … easily 100,000

terms

§ Consider a term with frequency 0.1%

1001100,000

111000

Positional postingsPostingsDocument size

Sec. 2.4.2

18/02/19

Positional index size
§ Positional index expands postings storage substantially

§ some rough rules of thumb are to expect a positional index to
be 2 to 4 times as large as a non-positional index

§ Positional index is now standardly used because of the
power and usefulness of phrase and proximity queries

Sec. 2.4.2

18/02/19

Combined scheme
§ Biword indexes and positional indexes can be profitably

combined.
§ Many biwords are extremely frequent: Michael Jackson,

Britney Spears etc
§ For these biwords, increased speed compared to

positional postings intersection is substantial.
§ Combination scheme: Include frequent biwords as

vocabulary terms in the index. Do all other phrases by
positional intersection.

18/02/19

Google indexing system

§ Google is changing the
way to handle its
index continuously

§ See an history on:
http://moz.com/google-
algorithm-change

18/02/19

http://moz.com/google-algorithm-change

Caffeine+Panda, Google Index
§ Major recent changes have been Caffeine & Panda
§ Caffeine:

§ Old index had several layers, some of which were refreshed at a faster
rate than others (they had different indexes); the main layer would
update every couple of weeks (“Google dance”)

§ Caffeine analyzes the web in small portions and update search index
on a continuous basis, globally. As new pages are found, or new
information on existing pages, these are added straight to the index.

§ Panda (Penguin, Hummingbird): aims to promote the high quality content
site by dooming the rank of low quality content sites.

§ Note: Caffeine is parte of the INDEXING strategy, not searching (later in
this course)

22/02/19

http://www.hongkiat.com/blog/google-panda-tips/%23

Suggested Reading:
https://arxiv.org/pdf/1712.01208.pdf

18/02/19

