
WEB	AND	SOCIAL	INFORMATION	
EXTRACTION	

Lecturer:	Prof.	Paola	Velardi		
Lab	Lecturer	and	project	coordinator:	Dr.	Giovanni	S:lo		

22/02/18	

About	this	course	

§  hCp://twiki.di.uniroma1.it/twiki/view/Estrinfo/
WebHome	

§  (Slides	and	course	material)	
§  PLEASE	SIGN	TO	GOOGLE	GROUP	(to	receive	self	
assessments	and	other	course-related	info)	

§  Course	is	organized	as	follows:	
§  2/3		“standard”	lectures		
§  1/3	Lab:		

§  design	of	an	IR	system	with	Lucene,		
§  Using	TwiCer	API	
§  Implemen:	crawlers		
§  Presenta:on	of	2018	Project		22/02/18	

Lectures	
§  Part	I:	web	informa:on	retrieval	

§  Architecture	of	an	informa:on	retrieval	system	
§  Text	processing,	indexing	
§  Ranking:	vector	space	model,	latent	seman:c	indexing	
§  Web	informa:on	retrieval:	browsing,	scraping	
§  Web	informa:on	retrieval:	link	analysis	(HITS,	PageRank)	

§  Part	II:	social	network	analysis	
§  Modeling	a	social	network:	local	and	global	measures	
§  Community	detec:on	
§  Mining	social	networks:		

§  opinion	mining,		
§  temporal	mining,	
§  user	profiling	and	Recommenders	

22/02/18	

PART	I	
INFORMATION	RETRIEVAL:	

DEFINITION	AND	ARCHITECTURE	

22/02/18	

Informa:on	Retrieval		is:	
§  Informa:on	Retrieval	(IR)	is	finding	material	(usually	
documents)	of	an	unstructured	nature	(usually	text)	
that	sa:sfies	an	informa:on	need	from	large	
collec:ons	(usually	stored	on	computers).	

§  “Usually”	text,	but	more	and	more:	images,	videos,	
data,	services,audio..	

§  “Usually”	unstructured	(=	no	pre-defined	model)	
but:	Xml	(and	its	dialects	e.g.	Voicexml..),RDF,	html	
are	”more	structured”	than	txt	or	pdf	

§  “Large”	collec:ons:	how	large??	The	Web!	(The	
Indexed	Web	contains	at	least	50	billion	pages)	

22/02/18	

Indexed	pages	(Google):	50	billion	
webpages!	Bing	is	only	around	5.		

22/02/18	

IR	vs.	databases:	
Structured	vs	unstructured	data	

§  Structured	data	tends	to	refer	to	informa:on	in	
“tables”	

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000 Ivy Smith

Typically allows numerical range and exact match
(for text) queries, e.g.,
Salary < 60000 AND Manager = Smith.

22/02/18	

Unstructured	data	
§  Typically	refers	to	free-form	text	
§  Allows:	

§ Keyword	queries	including	operators			
§ (informa:on	∧(retrieval∨extrac:on))	

§ More	sophis:cated	“concept”	queries,	e.g.,	
§ find	all	web	pages	dealing	with	drug	
abuse	

	
22/02/18	

Semi-structured	data	
§  In	fact	almost	no	data	is	“unstructured”	
§  E.g.,	this	slide	has	dis:nctly	iden:fied	zones	such	as	
the	Title	and	Bullets	

§  This	structure	allows	for	“semi-structured”	search	
such	as	
§  Title	contains	“data”	AND	Bullets	contain	“search”	
§  Only	plain	txt	format	is	truly	unstructured	(though		even	
natural	language	does	have	a	structure:	a	:tle,	paragraphs,	
punctua:on..)		

	
	

	

22/02/18	

Unstructured	(text)	vs.	structured	(database)	
data	from	2007	to	2014	(exabyte)	

Blue=	unstructured	
Yellow=structured	

Total	(Unstructured)	Enterprise	Data	
Growth	2005-2015	

22/02/18	
The business is now unstructured data!

Not	only	text	retrieval:	other	IR	tasks		
§  Clustering:	Given	a	set	of	docs,	group	them	into	clusters	

based	on	their	contents.	
§  Classifica:on:	Given	a	set	of	topics,	plus	a	new	doc	d,	decide	

which	topic(s)	d	belongs	to	(eg	spam-nospam).	
§  Informa:on	Extrac:on:	Find	all	sentence	“snippets”	dealing	

with	a	given	topic	(e.g.	company	merges)		
§  Ques:on	Answering:	deal	with	a	wide	range	of	ques:on	types	

including:	facts,	lists,	defini:ons,	How,	Why,	hypothe:cal,	
seman:cally	constrained,	and	cross-lingual	ques:ons	

§  Opinion	Mining:	Analyse/summarize	sen:ment	in	a	text	(e.g.	
TripAdvisor)		(Hot	Topic!!)	

§  All	the	above,	applied	to	images,	video,	audio,	social	networks	

	
	

22/02/18	

Terminology	

Searching: Seeking for specific information
within a body of information. The result of a search
is a set of hits (e.g. the list of web pages matching
a query).
Browsing: Unstructured exploration of a body of
information (e.g. a web browser is a software to
traverse and retrieve info on the WWW).
Crawling: Moving from one item to another
following links, such as citations, references, etc.
Scraping: pulling specific content from web pages

22/02/18	

Terminology	(2)	

•  Query: A string of text, describing the information that the
user is seeking. Each word of the query is called a search
term or keyword.

•  A query can be a single search term, a string of terms, a phrase
in natural language, or a stylized expression using special
symbols.

•  Full text searching: Methods that compare the query with
every word in the text, without distinguishing the function
(meaning, part-of-speech, position) of the various words.

•  Fielded searching: Methods that search on specific
bibliographic or structural fields, such as author or heading.

22/02/18	

Examples	of	Search	Systems	

Find file on a computer system (e.g., Spotlight for Mac).

Library catalog for searching bibliographic records about
books and other objects (e.g., Library of Congress catalog).

Abstracting and indexing system to find research
information about specific topics (e.g., Medline for medical
information).

Web search service to find web pages (e.g., Google).

22/02/18	

22/02/18	

Find file

Library	Catalogue	

22/02/18	

Abstrac:ng	&	Indexing	

22/02/18	

Web	Search	

22/02/18	

ARCHITECTURE	OF	AN	IR	SYSTEM	

22/02/18	

22/02/18	

Inside The IR Black Box

22/02/18	

User
Interface

 Text Operations

Query
Operations Indexing

Searching

Ranking

Index

Text

query

user need

user feedback

ranked docs

retrieved docs

logical view logical view

inverted file

DB Manager
Module

1

2

3

Text
Database

Text

4

5

6

7

8

More in detail (representation, indexing, comparison,
ranking)

22/02/18	

How many pages on the web in 2017?

how many page web 2017

How ∧ many ∧ page ∧ web ∧ 2017

Inside The IR Black Box

22/02/18	

Representation:a data structure describing the content
of a document

Tables
(= vectors)

clouds

22/02/18	

Inside The IR Black Box

22/02/18	

Indexing:

a data structure that improves the speed of
word retrieval

Points at
words in texts

22/02/18	

Inside The IR Black Box

22/02/18	

Sorting & Ranking: how well a retrieved document
matches the user’s needs?

Eclipse

22/02/18	

When a user submits a query to a search system, the
system returns a set of hits. With a large collection of
documents, the set of hits maybe very large.

The value to the user depends on the order in which the hits
are presented.

Three main methods:

• Sorting the hits, e.g., by date (more recent are better.. Is
this true?)

• Ranking the hits by similarity between query and
 document

• Ranking the hits by the importance of the documents

Sorting & ranking

22/02/18	

More	details	on	
§  Representa:on	
§  Indexing	
§  Ranking	
(next	4-6	lessons)		

22/02/18	

1. Document Representation

§  Objec:ve:	given	a	document	in	whatever	format	(txt,	
html,	pdf..)	provide	a	formal,	structured	
representa:on	of	the	document	(e.g.	a	vector	whose	
aCributes	are	words,	or	a	graph,	or..)	

§  Several	steps	from	document	downloading	to	the	
final	selected	representaQon	

§  The	most	common	representa:on	model	is	“bag	of	
words”	

22/02/18	

The	bag-of-words	model	

di=(..,..,…after,..attend,..both,..build,.before, ..center,
college,…computer,.dinner,………..university,..work)	

WORD ORDER DOES NOT MATTER!!! 22/02/18	

Bag	of	Words	Model	

§  This	is	the	most	common	way	of	represen:ng	
documents	in	informa:on	retrieval	

§  Variants	of	this	model	include	(more	details	later):	
§  How	to	weight	a	word	within	a	document	(boolean,	m*idf,	etc.)	

§  Boolean:	1	is	the	word	i	is	in	doc	j,	0	else	
§  Tf*idf		and	others:	the	weight	is	a	func:on	of	the	word	
frequency	in	the	document,	and	of	the	frequency	of	
documents	whith	that	word	

§  What	is	a	“word”:		
§  single,	inflected	word	(“going”),	
§  	lemma:sed	word	(going,	go,	goneàgo)	
§  Mul:-word,	proper	nouns,	numbers,	dates	(“board	of	
directors”,	“John	Wyne”,	“April,	2010”	

§  Meaning:	(plan,project,designàPLAN#03)		
22/02/18	

Bag	of	Words		model	is	also	used	for	images	
(“words”	are	now	image	features)	

22/02/18	

Phases	in	document	processing	(Several	steps	from	
document	downloading	to	the	final	selected	

representaQon)	

1.  Document	parsing	
2.  Tokeniza:on	
3.  Stopwords/

Normaliza:on	
4.  POS	Tagging	
5.  Stemming	
6.  Deep	NL	Analysis	
7.  Indexing	

Note that intermediate
steps can be skipped

Deep	analysis	

Stemming	

POS	tagging	

22/02/18	

1.	Document	Parsing	
Document	parsing	implies	scanning	a	document	and	
transforming	it	into	a	“bag	of	words”	but:	which	words?	
§ We	need	to	deal	with	format	and	language	of	each	document.	
§  What	format	is	it	in?	
§ pdf/word/excel/html?	
§  What	language	is	it	in?	
§  What	character	set	is	in	use	(la:n,	greek,	chinese..)?	

Each of these is a classification problem,
which we will study later in the course.

But these tasks are often done heuristically …

Sec. 2.1

22/02/18	

(Doc	parsing)	Complica:ons:	Format/
language	
§  Documents	being	indexed	can	include	docs	from	
many	different	languages	
§  A	single	index	may	have	to	contain	terms	of	several	
languages.	

§  Some:mes	a	document	or	its	components	can	
contain	mul:ple	languages/formats	
§  ex	:	French	email	with	a	German	pdf	aCachment.	

§  What	is	a	“unit”	document?	
§  A	single	file?	A	zipped	group	of	files?	
§  An	email/message?		
§  An	email	with	5	aCachments?	
§  A	single	web	page	of	a	full	web	site?	

Sec. 2.1

22/02/18	

2.	Tokeniza:on	
§  Input:	“Friends,	Romans	and	Countrymen”	
§  Output:	Tokens	

§  Friends	
§  Romans	
§  Countrymen	

§  A	token	is	an	instance	of	a	sequence	of	characters	
§  Each	such	token	is	now	a	candidate	for	an	index	
entry,	aser	further	processing	
§  Described	later	

§  But	which	are	valid	tokens	to	emit?	

Sec. 2.2.1

22/02/18	

2.	Tokeniza:on	(cont’d)	
§  Issues	in	tokeniza:on:	

§  Finland’s	capital	→		
					Finland?	Finlands?	Finland’s?	
§  Hewle9-Packard	→	Hewle9	and	Packard	as	two	
tokens?	
§  state-of-the-art:	break	up	hyphenated	sequence.			
§  co-educa?on	
§  lowercase,	lower-case,	lower	case	?	

§  San	Francisco:	one	token	or	two?			
§  How	do	you	decide	it	is	one	token?	
§  cheap	San	Francisco-Los	Angeles	fares	

Sec. 2.2.1

22/02/18	

2.	Tokeniza:on	:	Numbers	
§  3/12/91 	 	 			
§  Mar.	12,	1991 	 	 	 		
§  12/3/91	
§  55	B.C.	
§  B-52	
§  (800)	234-2333	
§  1Z9999W99845399981	(package	tracking	numbers)	

§  Osen	have	embedded	spaces		(ex.	IBAN/SWIFT)	
§  Older	IR	systems	may	not	index	numbers	

§  Since	their	presence	greatly	expands	the	size	of	the	vocabulary	
§  IR	systems	oWen	index	separately	document	“meta-data”	

§  Crea:on	date,	format,	etc.	

Sec. 2.2.1

22/02/18	

2.	Tokeniza:on:	language	issues	
§  French	&	Italian	apostrophes	

§  L'ensemble	→	one	token	or	two?	
§  L	?	L’	?	Le	?	
§  We	may	want	l’ensemble	to	match	with	un	ensemble		

	

§  German	noun	compounds	are	not	segmented	
§  LebensversicherungsgesellschaWsangestellter	
§  ‘life	insurance	company	employee’	
§  German	retrieval	systems	benefit	greatly	from	a	compound	spliYer	

module	

Sec. 2.2.1

22/02/18	

2.	Tokeniza:on:	language	issues	

§  Chinese	and	Japanese	have	no	spaces	between	
words:	
§  莎拉波娃现在居住在美国东南部的佛罗里达。	

§  Not	always	guaranteed	a	unique	tokeniza:on		
§  Further	complicated	in	Japanese,	with	mul:ple	
alphabets	intermingled	
§  Dates/amounts	in	mul:ple	formats	

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

Sec. 2.2.1

22/02/18	

2.	Tokeniza:on:	language	issues	
§  Arabic	(or	Hebrew)	is	basically	wriCen	right	to	leW,	
but	with	certain	items	like	numbers	wriCen	les	to	
right	

§  Words	are	separated,	but	leCer	forms	within	a	word	
form	complex	ligatures	

§  																			 										←		→				←	→																									←	start	
§  ‘Algeria	achieved	its	independence	in	1962	a>er	132	
years	of	French	occupaBon.’	

§  Bidirec:onality	is	not	a	problem	if	text	is	coded	in	Unicode.	

Sec. 2.2.1

22/02/18	

UNICODE		standard	

22/02/18	

Tokeniza:on	on	Google?	

22/02/18	

3.1	Stop	words	
§  With	a	stop	list,	you	exclude	from	the	dic:onary	
en:rely	the	commonest	words.	Intui:on:	
§  They	have	liCle	seman:c	content:	the,	a,	and,	to,	be	
§  There	are	a	lot	of	them:	~30%	of	pos:ngs	for	top	30	words	
§  Stop	word	eliminaQon	used	to	be	standard	in	older	IR	systems.	

§  But	the	trend	is	away	from	doing	this:	
§  Good	compression	techniques	means	the	space	for	including	

stopwords	in	a	system	is	very	small-	so	removing	them	not	a	big	deal	
§  Good	query	op:miza:on	techniques	mean	you	pay	liYle	at	query	:me	

for	including	stop	words.	
§  You	need	them	for:	

§  Phrase	queries:	“King	of	Denmark”	
§  Various	song/books	:tles,	etc.:	“Let	it	be”,	“To	be	or	not	to	be”	
§  “Rela:onal”	queries:	“flights	to	London”vrs	“flight	from	London”	

Sec. 2.2.2

22/02/18	

Stop	words	on	Google?	

22/02/18	

3.2.	Normaliza:on	to	terms	
§  We	need	to	“normalize”	words	in	indexed	text	as	well	as	

query	words	into	the	same	form	
§  We	want	to	match	U.S.A.	and	USA	

§  Result	is	terms:	a	term	is	a	(normalized)	word	type,	which	is	a	
single	entry	in	our	IR	system	dic:onary	

§  We	most	commonly	implicitly	define	equivalence	classes	of	
terms	by,	e.g.,		
§  dele:ng	periods	to	form	a	term	

§  U.S.A.,	USA		à		USA	

§  dele:ng	hyphens	to	form	a	term	
§  an?-discriminatory,	an?discriminatory	à	an?discriminatory	

§  Synonyms		(this	is	rather	more	complex..)	
§  car		,	automobile		

Sec. 2.2.3

22/02/18	

3.2	Normaliza:on:	other	languages	
§  Accents:	e.g.,	French	résumé	vs.	resume.	
§  Umlauts:	e.g.,	German:	Tuebingen	vs.	Tübingen	

§  Should	be	equivalent	
§  Most	important	criterion:	

§  How	are	your	users	like	to	write	their	queries	for	these	
words?	

§  Even	in	languages	that	standardly	have	accents,	
users	osen	may	not	type	them	
§  Osen	best	to	normalize	to	a	de-accented	term	

§  Tuebingen,	Tübingen,	Tubingen	à	Tubingen	

Sec. 2.2.3

22/02/18	

3.2	Normaliza:on:	other	languages	
§  Normaliza:on	of	other	strings	like	date	forms	

§  7月30日 vs. 7/30
§  Japanese use of kana vs. Chinese characters	

	
§  Tokeniza:on	and	normaliza:on	may	depend	on	the	
language	and	so	is	interweaved	with	language	
detec:on	

§  Crucial:	Need	to	“normalize”	indexed	text	as	well	as	
query	terms	into	the	same	form	

Morgen will ich in MIT …
Is this

German “mit”?

Sec. 2.2.3

22/02/18	

Do	we	really	want	normaliza:on?	

22/02/18	

3.2	Case	folding	
§  Reduce	all	leCers	to	lower	case	

§  excep:on:	upper	case	in	mid-sentence	
§  e.g.,	General	Motors	
§  Fed	vs.	fed	
§  MIT	vs.	mit	

§  Osen	best	to	lower	case	everything,	since	users	will	use	
lowercase	regardless	of	‘correct’	capitaliza:on…	

§  This	may	cause	different	senses	to	be	merged..	
Osen	the	most	relevant	is	simply	the	most	frequent	
on	the	WEB,	rather	than	the	most	intui:ve		

Sec. 2.2.3

22/02/18	

22/02/18	

22/02/18	

Case	folding	on	Google?	

22/02/18	

Cat	CAT	C.A.T.	
SAME	RESULTS!!!	

3.2	Normaliza:on:	Synonyms	
§  Do	we	handle	synonyms	and	homonyms?	

§  E.g.,	by	hand-constructed	equivalence	classes	
§  car	=	automobile 		color	=	colour	

§  We	can	rewrite	to	form	equivalence-class	terms	
§  When	the	document	contains	automobile,	index	it	under	car-
automobile	(and	vice-versa)	

§  Or	we	can	expand	a	query	
§  When	the	query	contains	automobile,	look	under	car	as	well	

§  What	about	spelling	mistakes?	
§  One	approach	is	Soundex,	a	phone:c	algorithm	to	encode	

homophones	(=same	sound)	to	the	same	representa:on	so	that	they	
can	be	matched	despite	minor	differences	in	spelling	

§  Google	à	Googol	

22/02/18	

Synonyms	on	Google?	

22/02/18	

Spelling	mistakes	on	Google?	

22/02/18	

4.	Stemming/Lemma:za:on	
§  Reduce	inflec:onal/variant	forms	to	base	form	
§  E.g.,	

§  am,	are,	is	→	be	

§  car,	cars,	car's,	cars'	→	car	

§  the	boy's	cars	are	different	colors	→	the	boy	car	be	
different	color	
§  Lemma:za:on	implies	doing	“proper”	reduc:on	to	
dic:onary	form	(the	lemma).	

§  Rela:vely	simple	for	English	more	complex	for	highly	
inflected	languages	(italian,	german..)	

	

Sec. 2.2.4

22/02/18	

4.	Stemming	
§  Reduce	terms	to	their	“roots”	before	indexing	
§  “Stemming”	suggest	crude	affix	chopping	

§  language	dependent	
§  e.g.,	automate(s),	automa?c,	automa?on	all	reduced	to	
automat.	

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Sec. 2.2.4

22/02/18	

Porter’s	algorithm	
§  Commonest	algorithm	for	stemming	English	

§  Results	suggest	it’s	at	least	as	good	as	other	stemming	
op:ons	

§  Conven:ons	+	5	phases	of	reduc:ons	
§  phases	applied	sequen:ally	
§  each	phase	consists	of	a	set	of	commands	
§  sample	conven:on:	out	of	mulBple	applying		rules	in	a	
command,	select	the	one	that	applies	to	the	longest	suffix.	

§  E.g.	caresses	à	caress	rather	than	car		

§  							

Sec. 2.2.4

22/02/18	

Typical	rules	(commands)		in	Porter		
stemmer	
§  sses	→	ss																																	caresses	→	caress	
§  ies	→	I																																						ponies	→	poni	
§  SS	→	SS																																				caress	→	caress	

§  eS	→																																											cats	→	cat	

§  Weight	of	word-sensi:ve	rules:	
§  		(m>1)	EMENT	→	

§  replacement	→	replac	
§  cement		→	cement	

§  It	means:	root	must	be	longer	than	1	to	apply	the	rule..		

Sec. 2.2.4

22/02/18	

64	

Three	stemmers:	A	comparison	
Sample	text:			Such	an	analysis	can	reveal	features	that	are	not	easily	 							

												visible	from	the	variaQons	in	the	individual	genes	and					
																									can	lead	to	a	picture	of	expression	that	is	more			
																									biologically	transparent	and	accessible	to	interpretaQon	
Porter’s:										such	an	analysi	can	reveal	featur	that	ar	not	easili		
																									visibl	from	the	variat	in	the	individu	gene	and		
																									can	lead	to	pictur	of	express	that	is	more	
																									biolog	transpar	and	access	to	interpret	
Lovins’s:											such	an	analys	can	reve	featur	that	ar	not	eas		
																										vis	from	th	vari	in	th	individu	gen	and		
																										can	lead	to	a	pictur	of	expres	that	is	mor		
																										biolog	transpar	and	acces	to		interpres	
Paice’s	:												such	an	analys	can	rev	feat	that	are	not	easy		
																										vis	from	the	vary	in	the	individ	gen	and		
																										can	lead	to	a	pict	of	express	that	is	mor		
																										biolog	transp	and	access	to	interpret	
22/02/18	

Stemming	on	Google?	

§  rose	 §  roses	

22/02/18	

5.	Deep	Natural	Language	Analysis	
§  Has	to	do	with	more	detailed	Natural	Language	
Processing	algorithms		

§  E.g.	seman:c	disambigua:on,		phrase	indexing	
(board	of	directors),	named	en::es	(President	
Obama=	Barak	Obama)	etc.	

§  Standard	search	engines	increasingly	use	deeper	
techniques	(e.g.	Google’s	Knowledge	Graph	
hCp://www.google.com/insidesearch/features/
search/knowledge.html	and	RankBrain)	

§  More	(on	deep	NLP	techniques)	in	NLP	course	(not	
here)!	

22/02/18	

22/02/18	

Knowledge	map	

22/02/18	

2.	Document	Indexing	

1. Document Representation

22/02/18	

Why	indexing	
§  The	purpose	of	storing	an	index	is	to	op:mize	speed	
and	performance	in	finding	relevant	documents	for	a	
search	query.	

§  Without	an	index,	the	search	engine	would	scan	
every	document	in	the	document	archive	,	which	
would	require	considerable	:me	and	compu:ng	
power	(especially	if	archive=the	full	web	content).	

§  For	example,	while	an	index	of	10,000	documents	
can	be	queried	within	milliseconds,	a	sequen:al	scan	
of	every	word	in	10,000	large	documents	could	take	
hours.	

22/02/18	

Inverted	index	

What happens if the word Caesar
is added to, e.g., document #14?

Sec. 1.2

For each term, we have a list that records which
documents the term occurs in. The list is called posting
list.

We	need	variable-size	posQngs	lists	(document	content	is		
osen	dynamic!!)	22/02/18	

Tokenizer
Token stream Friends Romans Countrymen

Inverted	index	construc:on	

Linguistic
modules

Modified tokens
friend roman countryman

Indexer

Inverted index

friend	

roman	

countryman	

2 4

2

13 16

1

Documents to
be indexed

Friends, Romans, Countrymen.

Sec. 1.2

22/02/18	

Indexer	steps:	Token	sequence	
§  Sequence	of	(Modified	token,	Document	ID)	pairs.	

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Sec. 1.2

22/02/18	

Indexer	steps:	Sort	

§  Sort	by	terms	
§  And	then	“docID” 	

Core	indexing	step	

Sec. 1.2

22/02/18	

Indexer	steps:	Dic:onary	&	Pos:ngs	
§  Mul:ple	term	
entries	in	a	single	
document	are	
merged.	

§  Split	into	Dic:onary	
and	Pos:ngs	

§  Doc.	frequency	
informaQon	is	
added.	

Why	frequency?	
Will	discuss	later.	

Sec. 1.2

22/02/18	

Where	do	we	pay	in	storage?	

Pointers

Terms	
and	

counts	

Sec. 1.2

Lists	of	
docIDs	

22/02/18	

Dic:onary	data	structures	for	inverted	
indexes	
§  The	dic:onary	data	structure	stores	the	term	
vocabulary,	document	frequency,	pointers	to	each	
pos:ngs	list	…	in	what	data	structure?	

Sec. 3.1

77	

Array	
§  As	we	just	have	shown,	the	simplest	structure	is	an	
array:	

	
§  Searching	(lookup)		an	item	is	O(log(n));	inser:ng	an	item	O(n)	
§  Can	we	store	a	dic:onary	in	memory	more	efficiently?	

Sec. 3.1

78	

Alterna:ve	Dic:onary	data	structures	
§  Two	main	choices:	

§  Hashtables	
§  Trees	

§  Some	IR	systems	use	hashtables,	some	trees	

Sec. 3.1

79	

Hash	tables	(1)	

1.	Each	vocabulary	term	is	hashed	to	(mapped	onto)	an	
integer	(We	assume	you	have	seen	hashtables	before)	

§  E.g.	the	index	for	a	specific	keyword	will	be	equal	to	sum	of	
ASCII	values	of	characters	mul:plied	by	their	respec:ve	
order	in	the	string	aser	which	it	is	modulo	with	2069	(prime	
number).	

Sec. 3.1

80	

Hash	tables	(2)	
§  2.	The	keyword	is	
stored	in	the	hash	
table	where	it	can	
be	quickly	
retrieved	using	
hashed	key.	

22/02/18	

Hash	tables	(4)	
§  To	achieve	a	good	hashing	mechanism,	it	is	important	to	have	a	

good	hash	func:on	with	the	following	basic	requirements:		
§  Easy	to	compute:	It	should	be	easy	to	compute	and	must	not	
become	an	algorithm	in	itself.	

§  Uniform	distribu:on:	It	should	provide	a	uniform	distribu:on	
across	the	hash	table	and	should	not	result	in	clustering.	

§  Less	collisions:	Collisions	occur	when	pairs	of	elements	are	
mapped	to	the	same	hash	value.	These	should	be	avoided.	

Note:	Irrespec:ve	of	how	good	a	hash	func:on	is,	collisions	occur.	
Therefore,	to	maintain	the	performance	of	a	hash	table,	it	is	important	to	
manage	collisions	through	various	collision	resoluQon	techniques.	

22/02/18	

Hash	tables	(5)	
§  Separate	chaining	is	
one	of	the	most	
commonly	used	
collision	resolu:on	
techniques.		

§  It	is	usually	
implemented	using	
linked	lists.		

22/02/18	

Hash	Tables	(6)	
§  Pros:	

§  Lookup	is	faster:	O(1)	(average)	(depends	on	probability	of	
collisions	and	collision-handling).		Inser:on	is	faster	O(1)	

§  Can	reduce	storage	requirement	if	n	(number	of	keywords)		
is	much	smaller	than	the	universe	of	keys	U		

§  Cons:	
§  good,	general	purpose	hash	func:ons	are	very	difficult	to	
find	

§  sta:c	table	size	requires	costly	resizing	if	indexed	set	is	
highly	dynamic	

§  search	performance	degrades	considerably	as	the	table	
nears	its	capacity	(too	many	collisions)	

22/02/18	

Root
a-m n-z

a-hu hy-m n-sh si-z

Other	structures:	binary	trees	

Sec. 3.1

85	

A	B-tree	of	order	m	is	a	m-way	tree	that	sa:sfies	the	
following	condi:ons.		

§  		Every	node	has	<	m	children.		
§  		Every	internal	node	(except	the	root)	has	k	<m/2	
children.		

§  		The	root	has		>2	children.		
§  		An	internal	node	with	k	children	contains	(k-1)	
ordered	keys.	Its	leWmost	child	contains	keys	less	
than	or	equal	to	the	first	key	in	the	node.	The	second	
child	contains	keys	greater	than	the	first	keys	but	
less	than	or	equal	to	the	second	key,	and	so	on.		

Tree:	B-tree	(balanced	trees)	

a-hu
hy-m

n-z

Sec. 3.1

86	

B-tree	example	(numeric)	

22/02/18	

B-tree	example	(keywords)	

22/02/18	

Keywords are stored at the leaves of the tree, known
as “buckets”

Another	example	(full	words)	

22/02/18	

Inser:ng	into	a	B-Tree	
	
§  To	insert	key	value	x	into	a	B-Tree:	
§  Use	the	B-Tree	search	to	determine	on	which	node	
to	make	the	inser:on.		

§  	Insert	x	into	appropriate	posi:on	on	that	leaf	node.		
§  	If	resul:ng	number	of	keys	on	that	node	<	k,	then	
simply	output	that	node	and	return.		

§  	Otherwise,	split	the	node.	

B-Trees	pros	and	cons	
§  Trees	require	a	standard	ordering	of	characters	and	hence	

strings	…	but	we	typically	have	one	
§  Pros:	

§  Size	not	limited	as	for	hashing	
§  Cons:	

§  Search	is	slower	(wrt	hash	tables):	O(h)	where	h=log(n)	is	
depth	of	B-tree	[and	this	requires	balanced	tree]	

§  B-trees	mi:gate	the	rebalancing	problem	(wrt	standard	
binary	trees)	

Sec. 3.1

91	

Summary		
§ Once	keywords	are	extracted,	we	create	
pos:ng	lists	

§ How	do	we	search/insert	a	keyword?	
Array,	Hash	Tables,	Trees	(B-trees,	B
+trees)	

§ Next	problem	is:	How	do	we	process	a	
query	(=	searching	documents	with	some	
combina:on	of	keywords)?	

Sec. 1.3

22/02/18	

Query	processing:	AND	
§  Consider	processing	the	query:	

Brutus	AND	Caesar	
§  Locate	Brutus	in	the	Dic:onary;	

§  Retrieve	its	pos:ngs	(e.g.	pointers	to	documents	including	Brutus).	

§  Locate	Caesar	in	the	Dic:onary;	
§  Retrieve	its	pos:ngs.	

§  “Merge”	the	two	pos:ngs:	

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar

Sec. 1.3

22/02/18	

The	“merge”	opera:on	
§  Walk	through	the	two	pos:ngs	simultaneously	from	
right	to	les,	in	:me	linear	in	the	total	number	of	
pos:ngs	entries	

34
128 2 4 8 16 32 64

1 2 3 5 8 13 21
128

34
2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar 2 8

If list lengths are x and y, merge takes O(x+y) operations.
Crucial: postings sorted by docID.

Sec. 1.3

22/02/18	

Intersec:ng	two	pos:ngs	lists	
(a	“merge”	algorithm)	

22/02/18	

Step	1	

22/02/18	

Step	2	

22/02/18	

Intersection è 2

Step	3	

22/02/18	

Step	4	

22/02/18	

Step	5	

22/02/18	

Step	6	

22/02/18	

Op:miza:onof	index	search	

§  What	is	the	best	order	of	words	for	query	processing?	
§  Consider	a	query	that	is	an	AND	of	n	terms.	
§  For	each	of	the	n	terms,	get	its	pos:ngs,	then	AND	them	

together.	

Brutus	

Caesar	

Calpurnia	

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

Query:	Brutus	AND	Calpurnia	AND	Caesar	
102

Sec. 1.3

22/02/18	

Query	op:miza:on	example	
§  Process	words	in	order	of	increasing	freq:	

§  start	with	smallest	set	(word	with	smallest	list),	then	keep	
cuYng	further.	

This is why we kept
document freq. in dictionary

Execute	the	query	as	(Calpurnia	AND	Brutus)	AND	Caesar.	

Sec. 1.3

Brutus	

Caesar	

Calpurnia	

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

22/02/18	

More	general	op:miza:on	
§  e.g.,	(madding	OR	crowd)	AND	(ignoble	OR	
strife)	

§  Get	doc.	freq.’s	for	all	terms.	
§  Es:mate	the	size	of	each	OR	by	the	sum	of	its	
doc.	freq.’s	(conserva:ve).	

§  Process	AND	in	increasing	order	of	OR	sizes.	

Sec. 1.3

22/02/18	

Example	

§  Recommend	a	query	
processing	order	for:	

 Term Freq
 eyes 213312
 kaleidoscope 87009
 marmalade 107913
 skies 271658
 tangerine 46653
 trees 316812

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

300321

379571

363465

(kaleydoscopeOReyes)AND(tangerineORtrees)AND(marmaladeORskies)

22/02/18	

OR	
size	

Skip	pointers	
§  Intersec:on	is	the	most	important	opera:on	when	it	
comes	to	search	engines.		

§  This	is	because	in	web	search,	most	queries	are	
implicitly	intersecQons:	e.g.	"car	repairs",	"britney	
spears	songs"	etc.	translates	into	–"car	AND	
repairs",	"britney	AND	spears	AND	songs",	which	
means	it	will	be	intersec:ng	2	or	more	pos:ngs	lists	
in	order	to	return	a	result.	

§  Because	intersec:on	is	so	crucial,	search	engines	try	
to	speed	it	up	in	any	possible	way.	One	such	way	is	
to	use	skip	pointers.	

22/02/18	

Augment	pos:ngs	with	skip	pointers	
(at	indexing	:me)	

§  Idea:	move	cursor	on	a	pos:ng	list	to	the	first	pos:ng	
where	DocID	is	equal	or	larger	than	the	compared	
one.		

§  Why?	To	avoid	unnecessary	comparisons	
§  Where	do	we	place	skip	pointers?	

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21
31 11

41 128

Sec. 2.3

22/02/18	

Example:	Step	1	

22/02/18	

Some	items	have	two	pointers,	one	poin:ng	to	
an	adjacent	item	the	other	skipping	a	few	items	ahead	

Step	2	

22/02/18	

Say	we	are	comparing	p2=8	and	p1=34:	since	8<34,	we	must		
move		the	pointer	to	the	right.	But	8	has	a	skip!	So	we	
first	compare	the	id	of	the	skip	(31)	with	the	id	of	p1	(34).		

Step	3	

22/02/18	

Since	31<34,	we	skip	from	8	to	31	avoiding	useless	
comparisons		with	17	and	21!	

Another	example	

Example: Start using the normal intersection algorithm.

Continue until the match 12 and advance to the next item in each
list (48, 13). At this point the "car" list is on 48 and the "repairs" list
is on 13, but 13 has a skip pointer.

Check the value the skip pointer is pointing at (i.e. 29) and if this
value is less than the current value of the "car" list (which it is 48
in our example), we follow our skip pointer and jump to this value
in the list. It would be useless to compare all elements between the
current and subsequent skip!! 22/02/18	

Where	do	we	place	skips?	
§  Tradeoff:	

§  More	skips	→	shorter	skip	spans	⇒	more	likely	to	skip.		
But	lots	of	comparisons	to	skip	pointers.	

§  Fewer	skips	→	few	pointer	comparison,	but	then	long	skip	
spans	⇒	few	successful	skips.	

22/02/18	

Placing	skips	
§  Simple	heuris:c:	for	pos:ngs	of	length	L,	use	√L	
evenly-spaced	skip	pointers.	

§  This	ignores	the	distribu:on	of	query	terms.	
§  Easy	if	the	index	is	rela:vely	sta:c;	harder	if	L	keeps	
changing	because	of	updates.	

§  How	much	do	skip	pointers	help?	
§  Tradi:onally,	CPUs	were	slow	,	they	used	to	help	a	lot.	

§  But	today’s	CPUs	are	fast	and	disk	is	slow,	so	reducing	disk	
posQngs	list	size	dominates.	

22/02/18	

Algorithm	INTERSECT	with	skip	
pointers		

22/02/18	

Phrase	queries	
§  Want	to	be	able	to	answer	queries	such	as	"red	brick	
house"–	as	a	phrase	

§  red	AND	brick	AND	house	match	phrases	such	as	
"red	house	near	the		brick	factory	”	which	is	not	what	
we	are	searching	for		
§  The	concept	of	phrase	queries	has	proven	easily	
understood	by	users;	one	of	the	few	“advanced	search”	
ideas	that	works	

§  About	10%	of	web	queries	are	phrase	queries.	
§  For	this,	it	no	longer	suffices	to	store	only	
			<term	:	docs>		entries	
	
22/02/18	

A	first	aCempt:	Bi-word	indexes	
§  Index	every	consecuQve	pair	of	terms	in	the	text	as	a	
phrase	

§  For	example	the	text	“Friends,	Romans,	
Countrymen”	would	generate	the	biwords	
§  friends	romans	
§  romans	countrymen	

§  Each	of	these	biwords	is	now	a	dic:onary	term	
§  Two-word	phrase	query-processing	is	now	
immediate.	

Sec. 2.4.1

22/02/18	

Longer	phrase	queries	
§  Longer	phrases	are	processed	using	bi-words:	
§  stanford	university	palo	alto	can	be	broken	into	the	
Boolean	query	on	biwords:	

stanford	university	AND	university	palo	AND	palo	alto	
	

Sec. 2.4.1

22/02/18	

Extended	biwords	
§  Parse	the	indexed	text	and	perform	part-of-speech-tagging	

(POS	Tagging).	
§  Iden:fy	Nouns	(N)	and	ar:cles/preposi:ons	(X).	
§  Call	any	string	of	terms	of	the	form	NX*N	(regex)	an	extended	

biword	(noun	followed	by	ar:cle/prep	followed	by	anything	
followed	by	noun).	
§  Each	such	extended	biword	is	now	made	a	term	in	the	
dic:onary.	

§  Example:		catcher	in	the	rye	
																N											X			X				N	

§  Query	processing:	parse	it	into	N’s	and	X’s	
§  Segment	query	into	enhanced	biwords	
§  Look	up	in	index:	catcher	rye		(NN)	

Sec. 2.4.1

22/02/18	

Issues	for	biword	indexes	
§  Index	blowup	due	to	bigger	dic:onary	

§  Infeasible	for	more	than	biwords,	big	even	for	them	
	

§  Biword	indexes	are	not	the	standard	solu:on	(for	all	
biwords)	but	can	be	part	of	a	compound	strategy	

Sec. 2.4.1

22/02/18	

Solu:on	2:	Posi:onal	indexes	
§  PosiQonal	indexes	are	a	more	efficient	alterna:ve	to	biword	

indexes.	
§  In	a	non-posiQonal	index	each	posQng	is	a	document	ID	
§  In	a	posiQonal	index	each	posQng	is	a	docID	and	a	list	of	

posiQons	

<term,	number	of	docs	containing	term;	
doc1:	posi:on1,	posi:on2	…	;	
doc2:	posi:on1,	posi:on2	…	;	
etc.>	

Sec. 2.4.2

22/02/18	

Example:		search	for	«to	be»	

22/02/18	

Frequency	
in	doc	

Step	1:	“to”	and	“be”	co-occur	in		
DOC	1	

22/02/18	

Step	2	

22/02/18	

Not	consecu:ve!	

Step	3	(move	pointer	of	“to”	in	DOC	1)	

22/02/18	

Not	a	match!	
18	is	aser	17	

Step	4		(move	pointer	of	“BE”	in	doc	1)	

22/02/18	

Step	5	

22/02/18	

No	matches	in	
DOC1	!!	

Step	6:	start	looking	in	DOC	4	

22/02/18	

Aser	a	number	of	steps..		

22/02/18	

429->430	
433->434!!	
DOC4	has	2	matches	

Proximity	search	
§  We	just	saw	how	to	use	a	posi:onal	index	for	phrase	
searches	(phrase:	sequence	of	consecu:ve	words).	

§  We	can	also	use	it	for	proximity	search.	
§  For	example:	employment	/4	place:	Find	all	documents	
that	contain	EMPLOYMENT	and	PLACE	within	4	words	of	
each	other.	

§  “Employment	agencies	that	place	healthcare	workers	are	
seeing	growth“	is	a	hit.	

§  “Employment	agencies	that	have	learned	to	adapt	now	
place	healthcare	workers”	is	not	a	hit.	

Sec. 2.4.2

22/02/18	

Proximity	search	

§  Use	the	posi:onal	index	
§  Simplest	algorithm:	look	at	cross-product	of	posi:ons	of	(i)	

EMPLOYMENT	in	document	and	(ii)	PLACE	in	document	
§  Very	inefficient	for	frequent	words,	especially	stop	words	
§  Note	that	we	want	to	return	the	actual	matching	posi:ons,	
not	just	a	list	of	documents.	

22/02/18	

131	

Proximity	intersec:on	
An algorithm for
proximity intersection
of postings lists p1 and
p2.
The algorithm finds
places where the two
terms appear within k
words of each other
and returns a list of
triples giving docID
and
the term position in p1
and p2.

22/02/18	

Example	(search	for	a,b	at	max	
distance	k=2)	

§  1:	1	2	3	4	5	6	7	8	9	
§  					a	x	b	x	x		b	a	x	b	

§  I=<3>	(pos(b))	
§  <1,1,3>	<DocID,	pos(a),pos(b)>	
§  I=<3,6>	
§  I=<6>,	<1,7,6>	
§  etc	
	22/02/18	

Posi:onal	index	size	
§  Need	an	entry	for	each	occurrence,	not	just	once	per	
document	

§  Index	size	depends	on	average	document	size	
§  Average	web	page	has	<1000	terms	
§  SEC	filings,	books,	even	some	epic	poems	…	easily	100,000	
terms	

§  Consider	a	term	with	frequency	0.1%	

100 1 100,000

1 1 1000

Positional postings Postings Document size

Sec. 2.4.2

22/02/18	

Posi:onal	index	size	
§  Posi:onal	index	expands	pos:ngs	storage	substan?ally	

§  some	rough	rules	of	thumb	are	to	expect	a	posi:onal	index	to	
be	2	to	4	Qmes	as	large	as	a	non-posi:onal	index	

§  Posi:onal	index	is	now	standardly	used	because	of	the	
power	and	usefulness	of	phrase	and	proximity	queries		

Sec. 2.4.2

22/02/18	

Combined	scheme	
§  Biword indexes and positional indexes can be profitably

combined.
§  Many biwords are extremely frequent: Michael Jackson,

Britney Spears etc
§  For these biwords, increased speed compared to

positional postings intersection is substantial.
§  Combination scheme: Include frequent biwords as

vocabulary terms in the index. Do all other phrases by
positional intersection.

22/02/18	

Google	indexing	system	

§  Google	is	changing	the	
way	to	handle	its	
index	con:nuously	

§  See	an	history	on:	
hCp://moz.com/google-
algorithm-change	

22/02/18	

Caffeine+Panda,	Google	Index	
§  Major	recent	changes	have	been	Caffeine	&	Panda	
§  Caffeine:		

§  Old	index	had	several	layers,	some	of	which	were	refreshed	at	a	faster	
rate	than	others	(they	had	different	indexes);	the	main	layer	would	
update	every	couple	of	weeks	(“Google	dance”)	

§  Caffeine	analyzes	the	web	in	small	por:ons	and	update	search	index	
on	a	conQnuous	basis,	globally.	As	new	pages	are	found,	or	new	
informa:on	on	exis:ng	pages,	these	are	added	straight	to	the	index.	

§  Panda:	aims	to	promote	the	high	quality	content	site	by	dooming	the	rank	
of	low	quality	content	sites.	

§  Note:	Caffeine	is	parte	of	the	INDEXING	strategy,	not	searching	(later	in	
this	course)	

22/02/18	

Suggested	Reading:	hCps://arxiv.org/
pdf/1712.01208.pdf	

22/02/18	

