
January ❘ February 2007 IT Pro 291520-9202/07/$25.00 © 2007 IEEE P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

E N T E R P R I S E S E A R C H

Beyond Search:
Content Applications

Stephen Buxton

C ontent providers and publishers are find-
ing more and more that they don’t com-
pete on content,but on what they can do
with that content. “Content was king”

back in 1997, according to Thomson Corp. Senior
Vice President David Turner, in his 2006 National
Federation of Abstracting and Information Ser-
vices presentation (“The Thomson Transformation:
Remaking a Global 500 Company,” http://www.
nfais.org/TurnerNFAIS06.ppt). Now content pro-
viders and publishers are moving “up the value
pyramid” by competing on applications built on
top of a technology platform that sits on top of con-
tent.We call these content applications.

People often associate content with a search
engine and applications with data (and therefore
a relational database management system). But
if you were designing a platform for content appli-
cations today from scratch, you would not use
either a search engine or an RDBMS as the start-
ing point. You would start with a representation
of semistructured content—stored and indexed
efficiently and securely in a content repository.
You would also need a powerful, content-focused
query/programming language. In addition, you
would take the learnings from the world of search
engines and the world of databases, add modern
content technologies such as XML and XQuery,
and come up with a brand new platform.

CONTENT APPLICATIONS
The Oxford African American Studies Center

is an example of a content application delivered

on a subscription-based Web site. Oxford Uni-
versity Press built the site, which bills itself as
“the first online resource center to fully document
the field of African American Studies and
Africana Studies” (http://www.oup.com/online/
africanamerican).

As you can see in Figure 1, this site includes the
familiar keyword search box. Here, I typed in the
phrase “Maya Angelou.” But the application dif-
fers substantially from a typical search engine.
First, the application pulls together rich, authori-
tative content from thousands of books, articles,
and original source documents—all authored for
other purposes—in various formats.

Second, the application shows the powerful user
experience that can be built using rich content and
underlying content technologies. An application
can build, on the fly, such things as

• an at-a-glance summary of Maya Angelou,
including her picture, place and date of birth,
and professions;

• summaries of the top five articles on Maya
Angelou;

• a time line of milestones in Maya Angelou’s life,
possibly correlated with other time lines (such
as the American civil liberties movement);

• recommendations, showing related people or
articles or sources; and

• drill-down in several dimensions—for example,
by types of information (biographies, images,
charts and tables,and so on) or by category (his-
tory, politics, and so forth).

Content providers are
transforming their search
offerings into applications
tailored to specific audiences,
delivering information products
based on users’ roles, activities,
and work processes.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 29, 2009 at 08:34 from IEEE Xplore. Restrictions apply.

30 IT Pro January ❘ February 2007

E N T E R P R I S E S E A R C H

None of these pages (or panels) exist in this form in the
content—the application finds pieces of information,
retrieves them, and composes the page on the fly.

Instead of installing a search engine that indexes all
their documents and adding features the search engine
provides, the folks at Oxford University Press took a dif-
ferent approach.Their application uses the keywords you
type in as a hint and delivers meaningful information
about Maya Angelou, along with a plethora of research
paths to take you further.The Oxford African American
Studies Center is not a search tool, it’s a research tool.
The site puts useful information into a context appropri-
ate to the researcher—in short, it supplies answers,
not links.

The Oxford African American Studies Center,however,
still looks a bit like a search engine. Let’s look beyond
search and research and take a quick look at two content
applications in the wild that don’t act at all like search
engines.

SafariU
SafariU (http://www.safariu.com)

is a joint venture between O’Reilly
Media and the Pearson Technology
Group. A bit like iTunes for text-
books, SafariU lets professors rip,
mix, and burn their way to custom
textbooks for courses.They start by
searching an extensive collection of
books and articles for sections,
chapters, or even whole books that
are most relevant to their course.
Then,professors can create a mash-
up of the results, adding their own
materials and notes. Once they
have the end product just the way
they want it, they can preview a
low-resolution PDF of the new
book (complete with a custom table
of contents and an accurate, auto-
matic back-of-book index) and
order printed copies of the book to
be delivered to the university store.
This content application starts with
search, but produces so much
more—in this case, a single printed
book that’s both up-to-the-minute
and perfectly tuned to the needs of
the course. For students, each sec-
tion of the book acts as a launch
pad into the more detailed infor-
mation found in the source refer-
ence available to them on the Web.

PathConsult
PathConsult from Elsevier

offers tools for pathologists performing differential diag-
noses (http://www.pathconsultddx.com/pathCon/home).
Going far beyond simple search, PathConsult can become
an integral part of the diagnostic process, helping pathol-
ogists perform diagnoses more quickly and accurately.
For example, a pathologist might select two or more diag-
noses to see a side-by-side comparison with “diagnostic
pearls” (see Figure 2), show cytology images and descrip-
tions, then show side-by-side stains comparisons with
related information (such as stain positivity).At any step,
additional information about any aspect of a diagnosis is
just a click away.This application is based on pictures (x-
rays, microscope slides, and so on) and text (information
about diseases and diagnostic procedures) drawn from
standard medical texts. But PathConsult, developed in
consultation with practicing pathologists, brings the ref-
erence material to life by dynamically placing it into the
context of the diagnostic process specific to each patient,
giving pathologists the information they require as they

Figure 1. Oxford African American
Studies Center, by Oxford University Press,

is subscription based.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 29, 2009 at 08:34 from IEEE Xplore. Restrictions apply.

January ❘ February 2007 IT Pro 31

need it in the course of perform-
ing a truly mission-critical activity.

Content applications, then, can
incorporate the role, activity, and
process of the end user into an
interactive, personalized informa-
tion product. Successful content
applications simplify and acceler-
ate the user’s task by contextualiz-
ing content into the user’s specific
situation.

CONTENT
In this article, when I talk about

content I mean information, largely
textual—documents, if you will.
Content could be anything from
books to journal articles to emails
to technical repair manuals. The
information in content is conveyed
not only by words, but also by its
structure and, in many cases, meta-
data.

If content structure were fixed
and regular, we might be tempted to handle that content
in an RDBMS. But content structure is different from, say,
the structure of a purchase order—it’s generally much
more complex, deeply nested, and more flexible. Content
structure varies according to its source and changes over
time (as providers change their representation or enrich
their content).

Content applications are built on these basic opera-
tions:

• Edit. If the content is stored in documents (in blobs of
text), you must always update a whole document. You
should be able to update any part of a document—a sin-
gle chapter, paragraph, figure, table—without changing
or locking any other part.

• Store. In many enterprises, content is scattered across
file systems, databases, and Web servers. But if you store
content in an intelligent repository you can better man-
age, secure, and make use of it. The repository should
store content in a format that reflects its structure, so
that you can search, retrieve, and update any part of any
document quickly.

• Enrich. Content can be enriched in a number of ways.
You can add metadata,add structure (such as calling out
code samples, or emergency procedures), call out facts
in flowing text (names of people,places, companies),and
add tags, links,and ratings for personalization.Enriching
content builds value, and generally happens over time,
manually and automatically.

• Find. Document-level search is not enough. You must
be able to do fine-grained search and retrieval, so you

can make complex requests like “Show me the first para-
graph of any section (in any document) whose title con-
tains ‘Maya Angelou’, plus the source and category for
each document, plus the alt-text and URI of any image
with ‘Maya Angelou’ in the caption or in the subsection
title directly above it.”

• Reuse/repurpose.You need to be able to reuse and repur-
pose any-sized chunks of text. For example, you can
deliver many variants of an aircraft repair manual by
reusing the parts that are common to all airlines and
including airline-specific instructions and procedures
where appropriate.

• Deliver/publish anywhere. Whether the output of your
content application is a custom book or a press view of
an article, you want to be able to publish it anywhere, in
any format—a Web page, a PDF document, a result
from a Web service or RSS feed, or a cell phone mes-
sage.You also want to publish it in innovative, interest-
ing ways.

• Analyze/mine/discover.Analyzing and mining large bod-
ies of content can produce tremendous value. For exam-
ple, you might discover what’s hot by asking “What
words and phrases are emerging among new medical
articles?” or “Show me a tag cloud for the abstracts of
computer articles that mentioned Linux this week.”(See
Figure 3 for an example of analyzing content.)

If you could do all that, you could build powerful con-
tent applications and compete on the richness of your con-
tent as well as on the rich user experiences you could offer
on top of that content.

Figure 2. Elsevier’s PathConsult
is a diagnostic comparison tool.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 29, 2009 at 08:34 from IEEE Xplore. Restrictions apply.

32 IT Pro January ❘ February 2007

E N T E R P R I S E S E A R C H

CORE TECHNOLOGIES FOR BUILDING
CONTENT APPLICATIONS

Two core technologies let you build great content appli-
cations: XML and XQuery.

Content and structure: XML
All content has some natural structure. For example, we

can describe Shakespeare’s works in plays, acts, scenes,
speeches, and lines. Structures for books and articles
include chapters, sections, subsections, and paragraphs.
Similarly, subparagraph structure includes tables, figures,
captions, bulleted lists, and so on. XML can represent not
only natural structure but also metadata—author name,
privacy level, target audience—as part of the content.
(Shakespeare’s plays, marked up in XML, are available at
http://www.ibiblio.org/xml/ examples/shakespeare/.)

Extensible Markup Language (XML) started life as a
subset of Standard Generalized Markup Language

(SGML), which was designed for
marking up content such as techni-
cal manuals. With XML, you can
represent arbitrarily deep and com-
plex structures (not just simple data
structures such as purchase orders).
You can add new tags and new
information wherever you want.
You can tie down the structure up
front, but you don’t have to—you
can enforce as much or as little con-
formance to a structural template
(an XML Schema) as you choose.

XML content yields some unique
requirements for storing, manag-
ing, and searching XML:

• Schema-agnostic. XML content
doesn’t lend itself to tight Schema
control.Typically, you want to be
able to store any XML content,
no matter what the structure,and
manipulate it over time so that
the most often-used parts of the
structure line up. And you don’t
want these changes to slow down
subsequent retrieval or manipu-
lation.

• Universal indexing. If you index
all the words and all the structure,
you can get great performance
right out of the box without
knowing anything about the con-
tent up front.

• Expressive, content-focused pro-
gramming language.You need a
tool built for the job of express-

ing all those complex questions and manipulating the
content and structure together.

With universal indexing, for example, you can ask arbi-
trarily complex questions across all the content.You don’t
need to reload or reindex when you discover a new ques-
tion or when you enrich or restructure the content. This
leads to extremely agile development of applications over
heterogeneous content.You can get value from your con-
tent application almost immediately and improve both the
content and the application incrementally over time.

Querying and manipulating
content with structure: XQuery

XQuery is a language defined by the World Wide Web
Consortium (W3C) to query and manipulate content and
structure. Think of it (though only loosely) as SQL for
XML—where SQL lets you query and manipulate data

Figure 3. O’Reilly labs’ content statistics for Jason
Hunter’s Java Servlet Programming, 2nd edition.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 29, 2009 at 08:34 from IEEE Xplore. Restrictions apply.

January ❘ February 2007 IT Pro 33

in tables (rows and columns),
XQuery lets you query and
manipulate the content and struc-
ture of XML documents.

Since XQuery includes XPath,
let’s start with XPath. XPath lets
you pull out a particular piece of an
XML document, using “/” and “//”
to represent “child” and “decen-
dant,” and “[]” to enclose a predi-
cate.

For example, the path expression

/PLAYS/PLAY[TITLE=“The
Life of Henry the
Fifth”]//PERSONA

returns a sequence of all the per-
sona anywhere in the play with the
title The Life of Henry the Fifth.
More simply, it answers the ques-
tion,Who are the characters in The Life of Henry the Fifth?

XPath is useful, but what’s needed is a more powerful set
of expressions. XQuery adds the FLWOR expression (gen-
erally pronounced “flower”). The FLWOR expression lets
us walk the XML structure tree (with XPath) and also iter-
ate over the results, doing something useful with each one
(see Figure 4).

In just the few lines shown in Figure 4, I collected all the
characters from a particular play (for).The XPath in the
for clause can be arbitrarily complex, and it can include
arbitrary predicates. In this case, I iterated over the char-
acters in the play The Life of Henry the Fifth.

In addition, I assigned a couple of iteration variables
(let). $printable-name gives us a convenient way
of talking about the character’s name, converted
to lower case. $speeches is assigned the result of
another XPath (it could have been a whole FLWOR),
which pulls together all the speeches that character makes.

The code in Figure 4 also let me arrange the results in
some order (order by). I chose ascending alphabetical
order of printable-name. Finally, the code returned
the result from each iteration, as a sequence of results
(return). I chose to return the printable name of the
character, followed by the first line of the first speech he
makes.

This is a simple example, but notice how powerful the
FLWOR expression is. The result is not just a list of
speeches, but a list of characters in the play plus the first
line from their first speeches. We could order this by the
character’s name or by the number of lines spoken. We
could pull in speeches that the same character made in
other plays, and we could classify each character accord-
ing to his or her longest speech in any play. This is the
power of using XML and a full-blown query language,

for $x in input()/PLAY[TITLE=”The Life of Henry
the Fifth”]//PERSONA

let $printable-name := lower-case($x)
let $speeches := input()/PLAY[TITLE=”The Life

of Henry the Fifth”]//SPEECH[SPEAKER=$x]
order by $printable-name ascending
return

{ $printable-name }

{ if ($speeches)
then $speeches[1]/LINE[1]/ text()
else “non-speaking part”
}

Figure 4. An XQuery to list each character in
The Life of Henry the Fifth, along with

his or her first line.

rather than unstructured content and basic keyword
search.

Notice, too, that the XQuery may contain HTML tags
(and HTML tags may contain XQuery expressions). You
can paste the example XQuery into an XQuery-aware
Web page to display the results as a list. In the same way,
XQuery expressions can appear inside (or outside) of any
XML tags, so that the results could be a SOAP message or
an RSS feed.

XQuery for content
Now that you’ve seen how basic XQuery works, let’s con-

sider how we need to extend basic XQuery for content.
First, we need full-text search capability. The marriage

of full-text search and XQuery is tremendously powerful.
It enables arbitrarily fine-grained full-text search and
retrieval over arbitrarily structured content, and it’s the
foundation of content applications.

The W3C is discussing XQuery Full-Text extensions
(http://www. w3.org/XML/Query/#specs), but some ven-
dors have already implemented their own extensions.
Figure 5 shows how XQuery Full-Text might work (I’ve
used Mark Logic Corp.’s syntax to illustrate the principle,
because I can easily test the example).

This example uses the extension functions cts:
search() and cts:contains() for full-text search.
Figure 5 only shows simple keyword search, but of course
you could search for phrases, stems, synonyms, and so on.

In Figure 5, I first identified all the plays that contain the
word “battle,” then I filtered them down to only the ones
that have a speech that contains the word “castle.” Then,
for each castle speech in each war play, I returned the
speaker, the first line of the castle speech, and the actual
line that contains the word “castle.”I also ordered the plays

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 29, 2009 at 08:34 from IEEE Xplore. Restrictions apply.

by number of lines and showed the
number of lines by the play title.
Figure 6 shows the results.

XQuery, with extensions for
full-text search (like the full-text
extensions just described) and
extensions for updates (which I
don’t have room to discuss here),
is the foundation for content appli-
cations.You could use it to write a
familiar-looking search page,with a
box for document-level keyword
search and a list of links to docu-
ments in the results. But that’s just
a trivial example—XQuery can do
much, much more.

The ability to import modules
means you can write and reuse
libraries of XQuery code (see
http://developer.marklogic.com/
for some examples). This makes
XQuery suitable for building entire
applications, not just queries.
Proven programming features such

34 IT Pro January ❘ February 2007

E N T E R P R I S E S E A R C H

Figure 6. Results of the XQuery in Figure 5.

<h1>Shakespeare: castles mentioned in plays with battles</h1>
{
for $warPlay in cts:search(input()/PLAY, “battle”)
where cts:contains
($warPlay//SPEECH, “castle”)
order by count($warPlay//LINE) descending return { (
$warPlay/TITLE/text(), “(“, count(

$warPlay//LINE), “)”) }
{

for $castleSpeech in $warPlay//SPEECH where cts:contains($castleSpeech,
“castle”)
return

{ (
$castleSpeech/SPEAKER/text(),
“: “,
$castleSpeech//LINE[1],
“ ... “,
$castleSpeech//LINE[cts:contains(., “castle”)][1],
“...”
)

}
}

}

Figure 5. An XQuery to show lines about castles (and their speakers)
in plays with battles. Figure 6 shows the results.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 29, 2009 at 08:34 from IEEE Xplore. Restrictions apply.

January ❘ February 2007 IT Pro 35

as try/catch blocks (for easy error handling) can also be
added to XQuery as extensions. XQuery for content also
needs to support granular inserts, deletes, and updates
transactionally. You’d also want to be able to write trig-
gers linked to your content.

Together, these extensions give you the control and con-
sistency over content that RDBMS users have come to
expect for data.

T he promise of content applications is that content
providers and publishers can write real applications
against content, to help a known body of users, with

known roles, complete a set of tasks with extraordinary
precision and efficiency.

The world is changing into a place where content is
essentially freely available to everyone. In this new world,
content providers must differentiate themselves on the rich
applications they provide for their users.The winner will be
the content provider who best helps users accomplish their
tasks. Take another look at the Oxford University Press
African American Studies site. Wouldn’t you pay a sub-
scription fee for this kind of service, even if you could get
the raw content (say, as a stack of books)for free?

Content providers and publishers are just the early
adopters of this new wave of content applications.Content

applications will become mainstream as enterprise appli-
cations also evolve to manage, search, manipulate, and
present information in innovative ways.

So, the future of search entails rethinking what content
is, and what we can do with it. With modern core tech-
nologies—XML, XQuery, and full-text search—it’s possi-
ble to deliver sophisticated content applications that were
impossible or impractical before.These new technologies,
and XML content servers that capitalize on them, will spur
a new wave of content applications that change the way
we think about content, much as RDBMSs changed the
way we thought about data. XML content servers will
become ubiquitous, and the now-familiar basic keyword
search page will become a thing of the past. ■

Stephen Buxton is the director of product management for
Mark Logic Corp. (http://marklogic.com). He coauthored
(with Jim Melton) the book Querying XML: XQuery,
XPath, and SQL/XML in Context. Contact him at
stephen.buxton@marklogic.com.

For further information on this or any other computing topic,
please visit our Digital Library at http://www.computer.org/
publications/dlib.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 29, 2009 at 08:34 from IEEE Xplore. Restrictions apply.

