Sommario

- Caratterizzazione alternativa di NP: il verificatore polinomiale
- esempi di problemi in NP

"I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are the same as for any mathematical conjecture:

- (1) It is a legitimate mathematical possibility, and
- (2) I do not know."

Nuova definizione di NP

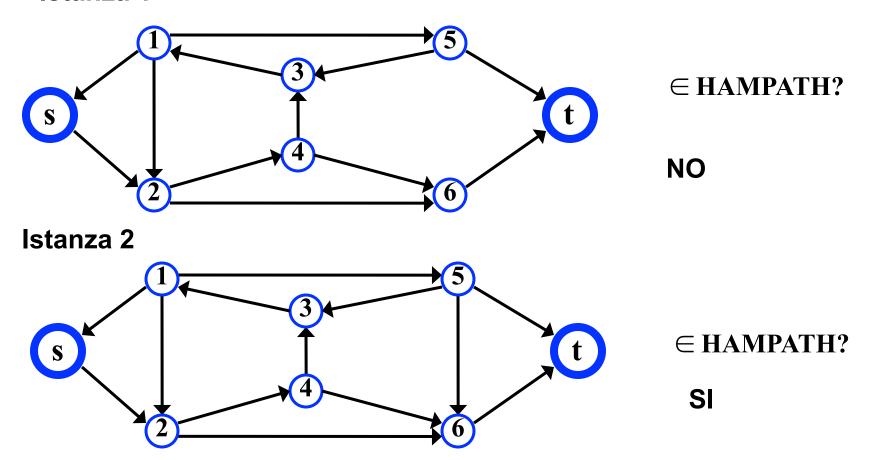
Con l'introduzione del concetto di verificatore diamo una nuova definizione di NP, come la classe dei problemi per i quali si può verificare se una potenziale soluzione lo è, in tempo polinomiale.

L'interesse per questa nuova definizione è duplice:

- 1. non fa riferimento al concetto di determinismo
- 2. supporta la tesi che P sia contenuto strettamente in NP perché questo riflette l'intuizione che trovare una soluzione è più difficile che verificare una soluzione.

HAMPATH: il problema

HAMPATH = {<G,s,t> | G è un grafo diretto con un cammino hamiltoniano da s a t (cioè un cammino che attraversa tutti i nodi di G una e una sola volta)}



HAMPATH: un verificatore

HAMPATH = {<G,s,t> | G è un grafo diretto con un cammino hamiltoniano da s a t (cioè un cammino che attraversa tutti i nodi di G una e una sola volta)}

Osserviamo che se $p = v_1,...,v_n$ è una sequenza di n vertici in un grafo diretto G, con n vertici, si può controllare che si tratta di un cammino hamiltoniano da s a t verificando che:

- 1. $v_1 = s$, $v_n = t$ e che i vertici in p siano diversi tra loro
- 2. (v_i, v_{i+1}) è un arco in G, per i = 1,...,n-1

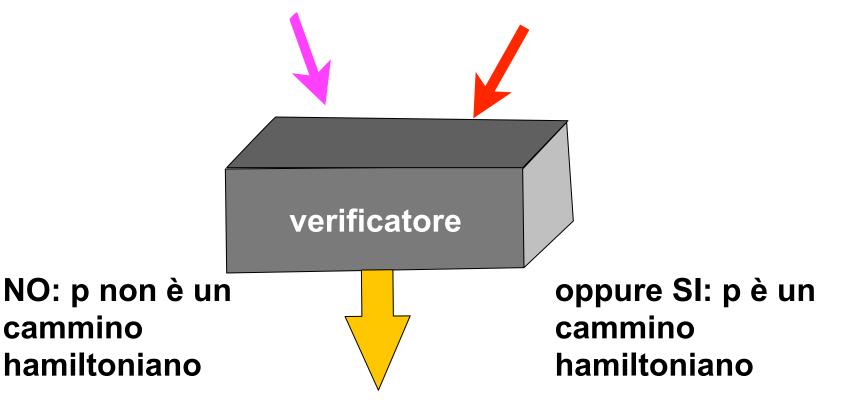
Questi controlli sono semplici computazionalmente, cioè eseguibili in tempo polinomiale

L'esempio del ciclo hamiltoniano

 $HAMPATH = {<G,s,t> | G e un grafo diretto con un$ cammino hamiltoniano da s a t (cioè un cammino che attraversa tutti i nodi di G una e una sola volta)}

certificato: p= v₁,...,v_n input del problema: <G,s,t>

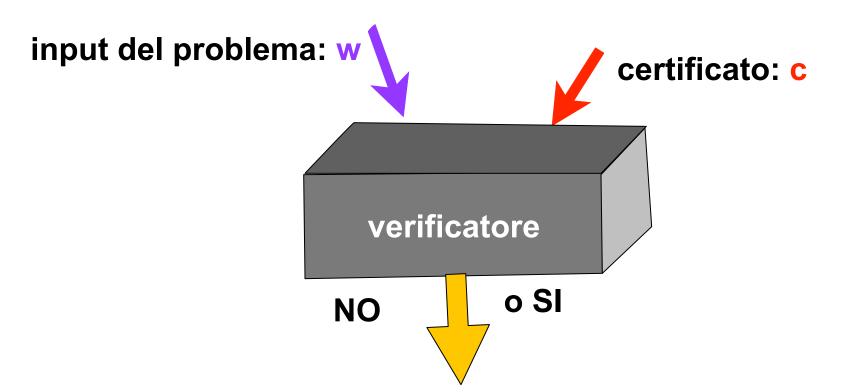
cammino



II verificatore

Un verificatore per A è un algoritmo V (una TM) tale che A = { w | V accetta < w,c> per qualche stringa c}

La stringa c è detta il certificato o la prova. Un verificatore V è detto polinomiale se accetta una stringa w in tempo polinomiale nella lunghezza di w.



II verificatore

Un linguaggio A è polinomialmente verificabile se ha un verificatore polinomiale.

Nota: il certificato c deve essere di lunghezza polinomiale nella lunghezza di w perchè il verificatore sia polinomiale, deve infatti almeno leggerlo.

Un verificatore per HAMPATH

Un verificatore per

HAMPATH = {<G,s,t> | G è un grafo diretto con un cammino hamiltoniano da s a t (cioè un cammino che attraversa tutti i nodi di G una e una sola volta)}

è un algoritmo V_H tale che

HAMPATH = $\{\langle G, s, t \rangle \mid V_H \text{ accetta } \langle \langle G, s, t \rangle, \langle v_1, ..., v_n \rangle \rangle$, v_i è un vertice di G, i=1,...,n $\}$

Quindi V_H è un algoritmo che effettua i controlli che abbiamo visto per decidere se $v_1,...,v_n$ è un cammino hamiltoniano o no. Il verificatore V_H è polinomiale. Non sappiamo se c'è un algoritmo polinomiale che decide HAMPATH.

Un verificatore per ¬HAMPATH

Un verificatore per

THAMPATH = {<G,s,t> | G è un grafo diretto senza un cammino hamiltoniano da s a t (cioè un cammino attraversa tutti i nodi di G una e una sola volta)}

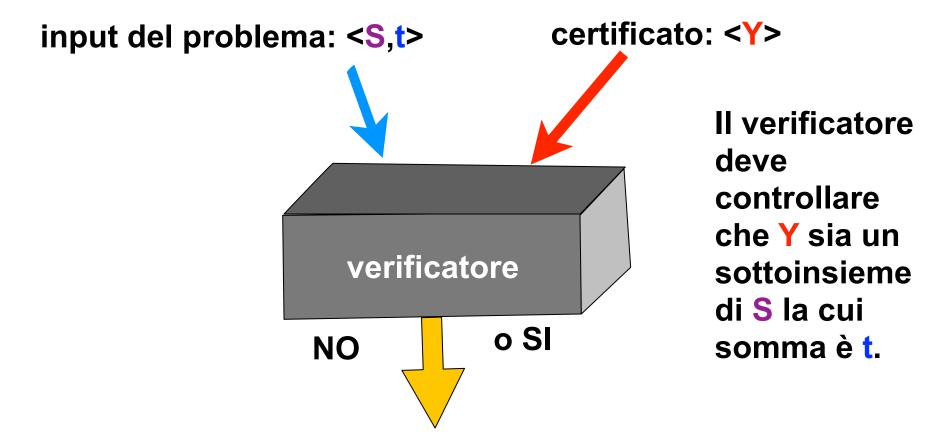
Non conosciamo un verificatore per $V_{\neg H}$ che lavori in tempo polinomiale.

Sappiamo solo che dando come certificato la sequenza di tutte le permutazioni di n-2 vertici, possiamo verificare che nessuna rappresenti un cammino da s a t. Ma questo è un verificatore esponenziale

Un verificatore per SUBSET-SUM

SUBSET-SUM = { <S,t> | S è un insieme di interi dotato di un sottoinsieme a somma t}

Es.: S={10,-3,5,-1,-8,4}, t=0 è in **SUBSET-SUM** perchè **Y** ={-3,-1,4} soddisfa la condizione.



Un verificatore per SUBSET-SUM

Un verificatore per SUBSET-SUM è un algoritmo V tale che

SUBSET-SUM = { <**S**,**t**> | V decide < <**S**,**t**>,**Y** >}

V deve controllare che Y sia un sottoinsieme di S la cui somma è t.

Questo controllo si può fare in tempo polinomiale, mentre non sappiamo se c'è un algoritmo polinomiale per decidere SUBSET-SUM.

NP e verificatori polinomiali

Teorema. Un linguaggio L è deciso da una NMT in tempo polinomiale ⇔ L ha un verificatore polinomiale.

Così potremo dire che NP è l'insieme dei problemi verificabili in tempo polinomiale, cioè dei problemi per i quali si può decidere in tempo polinomiale se un dato elemento è una soluzione del problema.

Scompare dalla definizione ogni riferimento al nondeterminismo!

NP e verificatori polinomiali

Prova:

Un linguaggio L è deciso da una NMT in tempo polinomiale ⇒ L ha un verificatore polinomiale.

Sia L un linguaggio per il quale esiste una NTM T che lo accetta in tempo polinomiale, limitato da n^k. Sia r il massimo grado di non determinismo in T e sia c una stringa su {1,...,r} di lunghezza n^k

Considera il seguente verificatore:

$$V_T$$
= input

- 1.esegui T su w seguendo il cammino computazionale descritto da c
- 2.se il cammino è di accettazione, accetta altrimenti rifiuta

Un linguaggio L è deciso da una NMT in tempo polinomiale ⇒ L ha un verificatore polinomiale.

La costruzione del verificatore è corretta perchè

 $L(T) = \{w \mid V_T \text{ accetta } < w, c > \text{ per qualche stringa } c\}$

infatti per ogni parola w accettata dalla NTM T esiste un cammino di accettazione per w, dunque esiste un certificato \mathbf{c} per cui \mathbf{V}_{T} accetta. Mentre se una parola è rifiutata da T ogni certificato porta al rifiuto in \mathbf{V}_{T} .

Inoltre la complessità è polinomiale perchè la sequenza c è di lunghezza polinomiale.

NP e verificatori polinomiali

Un linguaggio L ha un verificatore polinomiale ⇒

Lè deciso da una NMT in tempo polinomiale

Se V è un verificatore polinomiale per L vuol dire che L = { w | V accetta <w,c> per qualche stringa c}. V è una TM di complessità n^k, dove |w|=n. Quindi possiamo costruire una NTM T_V per L.

T_V = su input w scegli non deterministicamente una stringa c di lunghezza n^k esegui V sull'input <w,c> se V accetta, accetta e se V rifiuta, rifiuta

Un linguaggio L ha un verificatore polinomiale ⇒ L è deciso da una NMT in tempo polinomiale

Si tratta di fa vedere che

L = { w | V accetta <w,c> per qualche stringa c}

è accettato dalla NTM T_v.

Per ogni parola w tale che <w,c> è accettata da \lor esiste un cammino di accettazione di T_{\lor} per w, visto che li "tenta" tutti. D'altro canto se una parola non ha un certificato di accettazione in \lor , tutti i cammini di T_{\lor} su w saranno di rifiuto e quindi la parola non è accettata.

NP

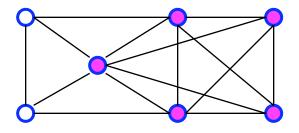
In conclusione NP si può definire anche come la classe dei problemi che ammettono un verificatore polinomiale

Problemi in NP - CLIQUE

Dato un grafo non diretto un clique del grafo è un sottografo indotto completo.

Un k-clique è un clique di k nodi

CLIQUE = {<G,k> | G è un grafo non diretto
con un k-clique} è un linguaggio in NP



Prova con verificatore

CLIQUE è in NP.

Dato un grafo G=(V,E) un certificato per il kclique è semplicemente un sottoinsieme c di k vertici di G.

Verificatore per CLIQUE:

Input << G, k>, c>

- 1.verifica che c sia un sottoinsieme di k elementi di V
- 2.verifica se tutti i vertici in c sono connessi tra loro.
- 3.se entrambi i tests hanno avuto successo, accetta altrimenti rifiuta.

Prova con una NTM

CLIQUE è in NP.

Dato un grafo G=(V,E) un certificato per il kclique è semplicemente un sottoinsieme c di k vertici di G.

NTM per CLIQUE:

Input <G,k>

- 1. nondeterministicamente genera un sottoinsieme c di k elementi di V
- 2. verifica se tutti i vertici in c sono connessi tra loro.
- 3. se sì, accetta altrimenti rifiuta.

Problemi in NP - SAT

SAT= $\{\phi \mid \phi \text{ è una formula booleana soddisfacibile}\}$

Es.
$$(A \lor \neg B) \land (\neg C \lor \neg B) \land (C \lor A \lor B)$$

Prova con verificatore

Verificatore per SAT:

Input <<φ>,c>

- 1. verifica che c sia un assegnamento di valori di verità per tutte le variabili di φ
- 2. verifica se φ risulta vera e in tal caso accetta, altrimenti rifiuta.

Prova con una NTM

Per SAT abbiamo una NTM T_{SAT} di complessità di tempo polinomiale così definita:

$$T_{SAT} = INPUT \phi$$

- 1. non deterministicamente genera un possibile assegnamento di valori 0 e 1 per le variabili di φ
- 2. verifica se φ vale 1, se sì accetta altrimenti rifiuta.

3-Sudoku

_			_					
2			3		8		5	
		3		4	5	9	8	
		8			9	7	3	4
6		7		9				
9	8						1	7
				5		6		9
3	1	9	7			2		
	4	6	5	2		8		
	2		9		3			1

Regole:

la tavola è suddivisa in 9 quadranti di 3x3 caselle alcune delle quali sono già fissate, le altre vanno riempite con numeri dall'1 al 9

su ogni quadrante devono essere messi tutti e 9 i numeri, senza ripetizioni

inoltre, ogni riga orizzontale e ogni riga verticale dell'intera tavola non deve contenere ripetizioni di numeri

Una soluzione

2	9	4	3	7	8	1	5	6
1	7	3	6	4	5	9	8	2
5	6	8	2	1	9	7	3	4
6	5	7	1	9	2	3	4	8
9	8	2	4	3	6	5	1	7
4	3	1	8	5	7	6	2	9
3	1	9	7	8	4	2	6	5
7	4	6	5	2	1	8	9	3
8	2	5	9	6	3	4	7	1

4-Sudoku

Г	F		2						6			С	В	3	
	С				4	8	Е	Α			0		D		
D	Α	8			3		2	7	F			6		5	
6			Ε	О	F		С		8						7
Г	9	3		7					Α						2
Ε						6	F	5		8	4		3		1
С	8		1	3	9	D		0	2		Е				
	D		6		5	Е	В		1					0	4
_	_														
9	6					1		F	3	2		0		Α	
9	6			4		1 A	8	F	3 D	2	9	οв		A 2	5
9	6	Α		4	D		8	F 6			9	_		-	5 F
	6	Α			D		-		D		9 A	_	4	-	-
2	6	Α			D	Α	-		D			_	4	2	-
2	0	Α	7		D	A 2	-	6	D	0	Α	В	4	2	F
2		A 5	7		D	A 2 4	5	6	D	0 A	Α	В		8	F 0

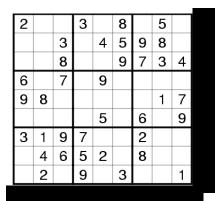
Regole:

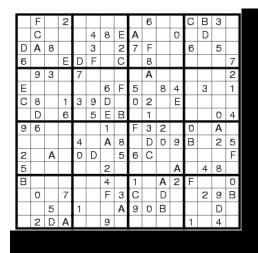
- •la tavola è suddivisa in 16 quadranti di 4x4 caselle, alcune delle quali sono già fissate, le altre vanno riempite con i numeri da 0 a 15 (da 0 a 9 e da A a F: numeri in base 16).
- •su ogni quadrante devono essere messi tutti e 16 i numeri senza ripetizioni
- •inoltre, ogni riga orizzontale e ogni riga verticale dell'intera tavola non deve contenere ripetizioni di numeri

Una soluzione

0	F	9	2	Α	7	5	1	4	6	Е	D	С	В	3	8
7	С	1	3	6	4	8	E	A	В	5	0	2	D	F	9
D	Α	8	4	9	3	В	2	7	F	С	1	6	0	5	Е
6	5	В	Ε	D	F	0	С	2	8	9	3	4	Α	1	7
4	9	3	5	7	1	С	0	D	Α	F	В	8	Е	6	2
Ε	В	7	0	2	Α	6	F	5	9	8	4	D	3	С	1
С	8	F	1	3	9	D	4	0	2	6	Е	5	7	В	Α
Α	D	2	6	8	5	Е	В	3	1	7	С	9)	F	0	4
	_														
9	6	4	8	Е	В	1	7	F	3	2	5	0	С	Α	D
9 3	6 7	4 C	8 F	E 4	B 6	1 A	7 8	F E	3 D	0	5 9	о В	C 1	A 2	D 5
_		-	8 F B	⊑ 4 0	-	-	-	F □ 6				_	1 9		
3		С	F		6	Α	8	F	D	0	9	В	-	2	5
3 2		С	F		6	A	8	F E 6 B	D C	0	9	B 7	9	2	5 F
3 2 5	7 1 E	C A 0	F B D		6	А 3 2	8	F 🖂 6 🖾 1 C	D C	0 4 1	9 8 A	B 7	9	2	5 F
3 2 5 B	7 1 E	C A 0	F B D	0 Г	6 D C	A 3 2	8 5 9	B 1	D C 7	0 4 1	9 8 A	B 7 3 F	9 4 8	2 E 8	5 F 6

Problemi in NP: n-Sudoku





Supponiamo che prenda tempo ts(n) risolvere un'istanza di dimensione n

Sia V(n) il tempo per verificare la soluzione

$$V(n) = O(n^2 \times n^2)$$

C'è una costante c tale che

$$t_S(n) \leq n^c$$
?

In altri termini c'è un algoritmo polinomiale per il sudoku?